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Abstract:  Neural spike sorting is the basic process of understanding the brain's complex operation, which identifies and classifies spikes 

or electrical peaks emitted by one neuron. Manual spike sorting methods usually employ manual curation and heuristic algorithms, which 

can be difficult to use and time-consuming. This method requires a long time and a great deal of expertise. In automatic spike sorting, 

the spikes generated by various neurons are first detected and then classified automatically. This approach is faster and less labor-

intensive than manual spike sorting. In the detection steps the traditional method used is threshold detection but, in this method, there 

are many spikes can be missed if the threshold high, or many background noise can be detected as spikes if the threshold values so low 

therefor using wavelet transform methods in detections step more accurate detecting the spikes and make it visualized from the 

background noise .This article presents a new method involving the joint application of Wavelet Transform Detection and Convolutional 

Neural Networks (CNNs) in order to expedite the process of intelligent spike sorting. Wavelet transform improves spike detection 

accuracy in this regard by allowing spikes from background noise to be effectively separated. The CNNs, trained successfully to spike 

clustering, perform quick and precise classification of the spikes of neurons. Integration of the present techniques will be more precise 

and effective for the sorting spike of brain supporting the progress in neuroscience studies and brain to the machine interface. 

Keywords: Neural Spike Sorting, spikes clustering, stationary wavelet, Deep learning, Convolution Neural Networks CNN. 

1. Introduction 

Examining the electrical behaviors of neurons forms the 

foundation for investigating brain functionalities. 

Communication among brain neurons occurs through the 

transmission of electrical impulses known as action 

potentials or "spikes" [1]. Understanding the connections 

among diverse neurons is crucial in progressing our 

comprehension of brain science and neural engineering 

[2]. The primary task  of spike sorting is entails isolating 

the spikes originating from individual neurons identified 

by the extracellular electrodes before interpreting the 

transmitted data through these connections [2]. This 

process strives to support specific spikes with individual 

neurons, considering that each electrode records the 

extracellular field involving the spike activities of several 

neighboring neurons. Known as spike sorting [3], this 

technique centers on identifying unique spike waveforms. 

This assertion is grounded in the fact that the spike shape 

of each neuron is individual, influenced by factors such as 

its dendritic structure, spatial layout, and alignment in 

relation to the recording position [4].Clearly, the standard 

spike sorting process involves four fundamental steps, 

with the first step beginning with the application of a 

bandpass filter to the recorded raw data for the 

identification of spikes. The second step is Spike detection 

which consists of recognizing spikes using techniques 

such as specifying an amplitude threshold [5]  or 

executing enhanced approaches such as wavelet 

transforms [6]. Following spike detection, extracting 

distinguishing features from these identified spikes is 

common, often utilizing methods such as principal 

component analysis (PCA) [7] and wavelet transform 

coefficients [8],[9]. The final step is organizing these data 

points within the feature space, which is vital to delineate 

clusters associated with individual neurons. Various 

techniques, encompassing both traditional and cutting-

edge approaches, have been applied to achieve this 

objective, including [10], k-means clustering, and 

Gaussian mixture models [11]. Organizing spikes into 

separate clusters representing individual neurons is 

commonly conducted through manual or semi-automated 

methods, which can be time-intensive and susceptible to 

mistakes [12]. In contrast, fully automated spike sorting 

seeks to mechanize the entire process of spike 

categorization without the need for human involvement 

[13]. Hence, manually reassigning incorrectly sorted 

spikes becomes essential, demanding considerable time 

and effort. Furthermore, the progress in contemporary 

microelectronics and electrophysiology has led to the 

widespread adoption of high-density microelectrode 

arrays featuring numerous channels for recording 

neuronal populations [14]. Consequently, the 

simultaneous recording of firing activities from hundreds 

or even thousands of neurons result in amassing extensive 
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data volumes. Presently, methods heavily rely on manual 

intervention, especially in lengthy experiments, resulting 

in slow and unreliable processes [15]. Inevitably, these 

misclassifications significantly impact subsequent data 

analyses. Thus, an urgent need arises for an efficient 

method that minimizes manual workload while ensuring 

accuracy and reliability. This goal agrees with deep 

learning methods' recent advancements as they rise to 

overcome the challenges of manual spike classification 

[16]. One of the basic triggered outcomes of deep learning 

algorithms is CNN through which spike and spike sorting 

detection can be carried out successfully.  

This paper presents an intelligent neural spike sorting by 

integrating the wavelet detection methods to detect the 

spikes and for the classification we proposed anew model 

using convolution neural network . 

The remaining structure of this paper is as follows: 

Section 2 providing a brief overview of related work 

Section 3 introduce the methodology used in this paper  . 

Section 4 detail of the proposed model using 1DCNN.In 

Section 5 experimental result and comparing with other 

studies is made. The last Section 6 is the conclusions and 

future works  

2.Literature Review 

 In table (1) summarizes the CNN used in spike sorting at 

different stages in spike sorting .as we can see  

 M.Wang (2023) [17] put forward a deep learning network 

used in enhancing spike sorting accuracy. In this method, 

a convolutional neural network (CNN) is linked with the 

sliding window long short-term memory (LSTM) network 

to extract the required discriminative features from the 

raw extracellular recordings. The CNN captures abstract 

features that differentiate spike waveforms from the 

artifacts while the sliding window LSTM network 

captures temporal dependencies of such spike waveforms. 

Results obtained clarify [17] that the  

proposed method outperforms other existing state-of-the-

art algorithms, in terms of the number of hits, misses, and 

false positive neurons. It obtains an overall accuracy of 

97.5% for simulated dataset and 95.6% for the 

experimental dataset. However, the method proposed has 

several limitations such as requiring huge amounts of 

training data and also having the computational 

complexity of the network. 

In the analysis presented by Z. Li, Y. Wang, and N. Zhang 

(2020) [18], it was noted that the suggested 1D-CNN 

model displayed greater robustness in comparison to 

conventional methods and a deep-learning-based 

multilayer perceptron (MLP) model. The amplification of 

noise levels across all datasets led to a deterioration in 

classical methods, manifesting in an elevated error rate of 

46.28%, while the error rate for the MLP model rooted in 

deep learning climbed to 48.45%. In contrast, the error 

amount of the proposed method was around 2% for all 

datasets, which was more robust.  

The aim of (M. Hall 2023) [19]  works  is to address the 

spike classification of different neuronal data in a general 

and effective manner. The authors suggest that the 

Convolutional Neural Network (CNN) is dramatically 

more robust to waveform variations and has classification 

accuracy far superior to conventional techniques. Overall, 

the work aims to afford a further efficient and precise 

technique for classifying neuronal data, the CNN 

demonstrated a higher classification accuracy than the 

previous NAS (Neural Amplitude Spike) network design 

a simple neural network used as a baseline for comparison 

with the proposed CNN in this study. The CNN exhibited 

an average increase in accuracy of 1.99%. The CNN had 

an average accuracy of 86.23%, ranging from 79.62% to 

89.55% across all areas.  

C.O. Okreghe, M.Zamani (2023) [20], the improvement 

in spike detection precision is realized through the 

incorporation of two convolutional neural network 

algorithms into the conventional pipeline,  dedicating one 

to channel selection and the other to artifact removal. The 

process of selecting channels proves to be highly effective 

in identifying those capturing neuronal occurrences, 

achieving an average precision of 99.5%, while the 

accuracy in eliminating artifacts stands at 92.3%. 

Employing K-means clustering for both channel selection 

and artifact removal results in a classification accuracy of 

87% and 91.53% on the experimental and simulated 

datasets, respectively, showcasing superior performance 

compared to traditional methods.  

The authors M.Saif-ur-Rehman. et al., (2019) [21] aim to 

address the limitations of existing spike sorting 

algorithms, which often require manual intervention, are 

computationally expensive, and may not generalize well 

to different datasets. The proposed algorithm uses a deep 

convolutional Siamese network and hierarchical 

clustering to learn the pairwise similarity of spikes and 

cluster them into distinct units. The proposed algorithm 

achieved a classification accuracy of 84.33% on the 

testing set of simulated data. In this paper, the stationary 

wavelet was employed to detect spikes in the detection 

step. The accuracy of the detection method used for 

feature extraction and classification was evaluated using a 

one-dimensional convolutional neural network. To 

evaluate the proposed system, the simulated data set has 

been widely used as a ground for testing [10]. Also, we 

compare the results of the proposed method with other 

classification techniques, like K nearest neighborhood 

(KNN) and support vector machine (SVM). 
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3.    Methods and Materials 

3.1    Proposed Methodology  

The exploration of neural spike sorting methods is a 

critical pursuit in neurophysiological research, aiming to 

decipher intricate neuronal activities within the brain. 

Traditional approaches we proposed for spike sorting 

often incorporate stationary wavelet analysis for spike 

detection, principal component analysis (PCA) for feature 

extraction, and support vector machines (SVM) for 

classification. Based on the above, this study suggests a 

new method of using Convolutional Neural Networks 

(CNNs) for spike sorting which is suggested as a new 

scheme for feature extraction and classification. The 

proposed methodology is designed to compare the 

performances of spike sorter adopting CNN against a 

conventional approach using stationary wavelet analysis, 

PCA, and SVM. This comparison is meant to evaluate a 

CNN-based method's effectiveness, accuracy, and 

computational efficiency in spike sorting from 

electrophysiological recording. In comparing the 

approaches, one can shed light on the advantages, 

disadvantages, limitations, and future improvements that 

can significantly improve the spike sorting performance 

using CNN. Then, the comparison shows the possibility 

of CNNs in solving neural spike sorting problems and the 

capacity to improve classification accuracy and spike 

classification rate over traditional techniques. Figure (1) 

shows the proposed system. 

3.1.1  Generate synthetic data  

The dataset provided by Quiroga et al. [10] is a valuable 

resource for researchers in the field of neuroscience. It 

contains detailed information about neural activity 

recorded from brains of experimental subjects. The 

dataset includes recordings from various brain regions and 

under different experimental.

Table 1. comparison of the adapted CNN used in spike sorting

Paper Title CNN 

Structure 

Number of 

Layers 

Number 

of 

Epochs 

Problem 

Statement 

Accuracy 

 Manqing 

Wang, 

Liangyu 

Zhang 2023 

[17] 

1D-CNN for 

detection and 

CNN-LSTM 

for 

classification 

3 

convolutional 

layers and 2 

fully 

connected 

layers 

Not 

specified 

Spike sorting in 

extracellular 

recordings 

Recall rate of 

94.40% in low 

noise level 

dataset and 

accuracy of 

97.5% in 

simulated data 

Z. Li, Y. 

Wang, N. 

Zhang 2020 

[18] 

1D-CNN 4 

convolutional 

layers and 2 

pooling 

layers,1 

connected 

layer 

100 

epochs 

Spike sorting in 

extracellular 

recordings 

99.9% noise-

free, 99% for 

SNR=10, 94% 

for recorded 

data from rat  

M. Hall 2023 

[19] 

1D- CNN 4 convolution 

layers and 1 

pooling  

Not 

specified 

classification of 

neuronal spikes 

in extracellular 

recordings. 

Average 

accuracy of 

86.23%, ranging 

from 79.62% to 

89.55% across 

all areas. 

 C.O. 

Okreghe, 

M.Zamani 

,2023 [20] 

1D-CNN 

detecting the 

spikes,2D-

CNN  

4 convolution 

layers 3 

pooling  1  

Not 

specified 

Accurately 

detecting and 

classifying in 

high-channel-

count sensing  

99.5% in 

channel 

selection and 

92.3 % in 

artefact removal  

Accuracy of 

classification 

87%  

M.Saif-ur-

Rehman.et al, 

2019 [21] 

1D-CNN 4 

convolutional 

layers and 3 

pooling  fully 

connected 

layers 

Not 

specified 

 
Batch size 20 

was 97.5% and 

reached 99.5% 

with batch size 

65 
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conditions, providing a comprehensive view of neural 

activity. The grouped data allows researchers to compare 

and contrast neural responses under different conditions, 

which can lead to valuable insights into brain function and 

behavior. In order to assess the performance of a method 

with certainty, simulated data is typically employed. This 

is because the characteristics of simulated data are known 

in advance, allowing for a fair comparison with the results 

obtained from the suggested methods. The data utilized in 

this study has been synthesized in the following manner: 

first, a triplet of spikes was singled out from the data 

openly available on  

[https://www2.le.ac.uk/centres/csn/software]  

supplied by Quiroga et al. [10]. To mimic a group of spikes 

containing solely these three instances, a sequence was 

produced based on the Poisson distribution. The temporal 

and cluster attributes of the spikes have been 

predetermined and serve as the ground truth for future 

comparisons. Subsequently, the noise was produced with 

the features of a normal distribution and a   standard 

deviation of unity. Finally, the spikes aligned in a prior 

stage, which had been extracted, were polluted by the 

produced noise. 

3.1.2 Neural Spikes Detection  

Applying a threshold to the neural signal is     the essence 

of most detection methods, either directly or after 

implementing an operator designed to accentuate the 

spikes while diminishing the noise. The presence of a spike 

is determined by the crossing of the threshold. If set 

excessively high, smaller spikes may go unnoticed. But if 

it is too low, noise activity might cause false positives. 

Therefore, advanced methods are used for detection, like 

Stationary wavelet transform. The Stationary Wavelet 

Transform (SWT) is a prominent tool in neural spike signal 

processing that provides a flexible framework for 

analyzing non-stationary signals with dynamic frequency 

changes over time. Unlike the Discrete Wavelet Transform 

(DWT), the SWT overcomes limitations by ensuring 

translation invariance, which is essential for applications 

requiring accurate time-frequency localization. Its unique 

ability to decompose signals into distinct frequency bands 

while preserving temporal information makes it valuable 

in various fields, including neuroscience, where it is 

extensively used for neural spike sorting. 

 

            Fig.1. the proposed method for 1DCNN based spike sorting comparing it with  machine learning  

Wavelet-based denoising offers a multi-scale approach to 

noise reduction, involving signal down-sampling during 

decomposition and applying thresholding to wavelet 

coefficients, potentially targeting specific frequency bands 

in the frequency domain. To overcome the limitations of 

traditional wavelet transforms, this study employs a multi-

layer stationary wavelet transform (SWT), as depicted in 

Figure (2),  

Input the data set 

Create Synthetic data

Detection the spikes 

Evaluate the Accuracy of 

the detection 

SWT

Feature 

Extraction 
PCA 

Clustering using Machine 

Learning  

Training 

80% 

Testing 

20%

 Accuracy of 

the model

ML Accuracy 

Classification using CNN 

Training 

80% 

Testing 

20%

 Accuracy of 

the model

CNN Accuracy 
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Fig 2. Architecture of the proposed SWT  4 level-based spike detection 

 

The Stationary wavelet transform module provides the first 

level d1 and detail level d4 for the application of the 

threshold. to estimate the standard deviation SD the 

following equation used   

𝑆𝐷 = {
|𝑑1|

0.6745
}                                      (1) 

The threshold Thr is estimated by using the following 

equation  

𝑇ℎ𝑟 =  𝑆𝐹 ∗  𝑆𝐷                         (2) 

The scaling factor 𝑆𝐹 is an integer in the range of 3 and 5, 

it depends on application. In all analyses, the noise is 

Gaussian and white. The spike detector just outputs a pulse 

when the absolute level of high-pass filter detail signal |𝑑4| 

crosses the threshold 𝑇ℎ𝑟. A pulse is outputted each time 

the waveform crosses the threshold. coefficients represent 

the high- frequency component’s extracts at different level 

of decomposition using mother filters .and (a1) is an 

approximation coefficient represents the low-frequency 

approximation obtained at the first level of decomposition 

using father filter. overall, the mother filter (high-pass 

filter) extracts high-frequency details at each level of 

decomposition (d1, d2, d3, d4), while the father filter (low-

pass filter) extracts low-frequency approximation (a1) 

representing the coarse features of the signal. Together, 

these filters enable the SWT to decompose the signal into 

different frequency   bands while preserving its time-

domain characteristics. Therefor Stationary Wavelet 

Transform (SWT) offer superior  frequency resolution 

compared to the Discrete Wavelet Transform (DWT) [22]. 

Furthermore, each node in the SWT tree corresponds to a 

unique set of SWT coefficients, which can be generated 

using different wavelet filters. Since each coefficient 

represents the magnitude of a specific frequency range 

within a particular time interval, additional iterations tend 

to generate a significant amount of redundant information 

[23] [24].  

3.1.3 Features Extraction 

In the early days of spike sorting, the feature extraction 

was based on the amplitude to separate spikes. This 

approach, although an easy and fast method, may 

encounter a limitation when neurons have the same 

magnitude of amplitude but differ in shape. Therefore, 

principal component analysis (PCA), a more 

sophisticated approach, has been used for feature 

extraction [26]. 

PCA is a highly effective and automated method for 

spike sorting. It involves calculating the principal 

components (PCs) of a group of neuronal spikes and 

using the first 2 or 3 PCs to create a feature space. This 

feature space captures the majority of the variance in 

the spikes. By projecting the neuronal spikes onto the 

feature space, the inherent characteristics of the spikes 

are emphasized, allowing for the observation and 

differentiation of several clusters that are composed of 

different neuronal spikes. The first two or three PCs 

form a low-dimensional feature space. Aligned spikes 

are then projected into this feature space by taking the 

dot product between the spikes and each PC. In the 

feature space, dots represent aligned neuronal spikes, 

while each cluster represents a potential neuron [7]. 

Finally, clustering algorithms are employed to 

differentiate the clusters in the feature space and assign 

the spikes to their closest cluster (neuron) [10]. 

3.1.4 Classification of the Neural spike using SVM 

The primary objective of clustering is to differentiate 

and classify the detected spikes into various classes, 

given the recording of spikes from multiple neurons by 

a unique electrode, as previously indicated. In the 

current clustering procedures, machine learning makes 

the clustering intelligent [26]. One popular approach 

uses support vector machines (SVMs) to classify the 

spikes into distinct groups . SVMs are a machine 

learning algorithm that separates data into different 

classes based on labelled examples [27]. In the case of 
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spike sorting, the training dataset will typically consist 

of simulations of single neurons as they fire spikes, 

along with the labels identifying the type of neuron (or 

the source) for each spike. The SVM is then trained to 

assign each spike in the recordings to the correct source. 

Once the SVM is trained, it can be used to classify new 

spikes in the recordings. The SVM provides a decision 

boundary that separates the different sources, and for 

each new spike, the SVM estimates the probability of its 

belonging to each source. The spike can then be assigned 

to the source with the highest probability. The Figure 

below shows the block diagram of the proposed SVM 

Model where  the first 80% of the spikes were selected 

as training, and 80% of the labels were also selected as 

training labels ,and the remaining 20% of the spikesis 

used for testing , and labels were used for testing the 

model. And for nonlinearity classification a Gaussian 

Kernal are used ,and for the multi class SVM classifier 

is trained using the “one -vs-all” strategy ,where 

multiple binary classifiers are trained ,each 

distinguishing one class from the rest . The SVM 

classifier is configured with a Gaussian kernel and 

trained on the extracted features. Finally, the trained 

classifier is used to predict the labels of the test dataset, 

and the predicted labels are obtainedas showin in figure 

(3). 

 

Fig 3. Block diagram for the SVM model. 

3.2 Classification  of neural spike using CNN 

Convolutional Neural Networks are a type of neural 

network that excel in processing two-dimensional 

images.The core of a Convolutional Neural Network is 

the convolutional layer. This layer performs the 

convolution operation, which can be seen as matrix-

vector multiplication[28]. Using this operation, the 

neural network is able to extract features from the input 

data. These features capture important patterns and 

information that are useful for classification . In the 

context of spike sorting, an 1D Convolutional Neural 

Network (1DCNN) can be used to analyze 

electrophysiological data and automatically determine 

the activities of individual  

neurons[29]. Therefore, using Convolutional Neural 

Networks play a crucial role in neural spike sorting. 

They are able to process one-dimensional neural data 

and extract important features that can be used for 

classification. This allows for the automatic 

determination of the activities of individual neurons, 

reducing the chance of misclassification.1D 

Convolutional Neural Networks have been proven to be 

effective in solving the problem of neural spike sorting. 

They can accurately classify spikes by identifying the 

cluster that each spike belongs to. These networks use 

convolutional layers to process the encoded raw data 

with different filters, allowing them to find hidden 

features within the spike waveforms. These features 

capture important patterns and information that are 

useful for accurately classifying the spikes[30].  

Determining the structure of the 1D CNN used in neural 

spike sorting can vary based on the specific task that the 

CNN is used for and the characteristics of the spike 

waveforms, but the basic architecture components of the 

1D CNN contain the following . 

1- Input layer: where the spikes waveforms are 

fed into the model as one dimension sequence data, 

typically representing the temporal characteristics of the 

neuronal spikes[18]. 

2- Convolution layers contain different 

components like: 

a) Conv1Dlayers : These layers perform 

convolution operation  between the input layer and the 

Feature Extraction 

using PCA 

Select N Spikes for 

Training 

80%

Select N Spikes for the 

testing 

20%

Select y spikes label for 

Training 

80%

Select Y spikes labels for 
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Classification model using the 
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and there  labels)

Evaluate the accuracy of the model 
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filter across the whole temporal dimension of the spike 

waveforms. 

b) Filters: different filters are applied to select 

different patterns present in the spikes  

c) Activation function : there are many activation 

functions but the most widely used in spike sorting is the 

ReLU which is applied to introduce non-linearity . 

3- Pooling Layers: These are optional layers, the 

most applied of which is Max Pooling 1D , which might 

be used to reduce the computational complexity and 

downsample the learning features  

4- Dense Layers: 

a) Fully connected Layers: FC layers process the 

flattened features for the classification or clustering of 

the spikes.  

b) Output layer : the output layer might have 

different nodes representing different spike clusters [31]  

3.3 Architecture of the Proposed CNN Model 

 This section describes the proposed model for 

intellegent spike sorting by using new 1DCNN 

architecture specifically designed for spike sorting 

classification. Our model takes advantage of the 

temporal nature of spike waveforms by processing them 

as one-dimensional signals. The architecture consists of 

multiple convolutional layers followed by max-pooling 

layers to extract relevant features from the input spike 

waveforms. We also incorporate batch normalization. 

The final layers of the network include fully connected 

layers with softmax activation to perform classification 

into different spike units. The proposed one-dimensional 

CNN architecture is shown in Figure (4). In the design 

we carefully consider the choice of activation functions 

to capture the non-linearities present in spike 

waveforms. We experiment with activation functions 

such as ReLU to identify the most suitable option for 

spike sorting tasks.  

Additionally, we employ data augmentation techniques 

to increase the diversity of training samples and improve 

the generalization capability of the model.The initial 

layer is a sequence input layer with 64 dimensions. 

Subsequently, four blocks of convolutional layers are 

applied, each comprising three 1D convolutions with 64 

filters, using causal padding and. "causal" means that the 

activations computed for a particular time step cannot 

depend on activations from future time steps [31]. The 

architecture of proposed networks consists of multiple 

blocks, each containing a stride of 1. Layer 

normalization follows each convolutional layer, 

enhancing stability during training. Between these 

layers, skip connections are established through 

element-wise additions, aiding in gradient flow. 

Additionally, max pooling layers with a pool size of 1 

are introduced for downsampling. ReLU activation 

functions are applied after normalization, contributing to 

non-linearity in feature extraction. The final layers 

include a fully connected layer with four neurons, 

representing output classes, followed by a softmax 

activation for probability distribution generation. The 

architecture demonstrates a systematic approach to 

capturing temporal features in sequential data, a crucial 

aspect for accurate spike sorting in neural recordings. 

3.3.1 Input Sequance Layer  

The process leading up to the use of the 1D 

convolutional neural network (1DCNN) for spike 

sorting involves several important steps. Initially, a 

synthetic dataset is created to imitate neural spike 

signals with known characteristics, which includes 

modeling spike waveforms, noise, and various spike 

shapes. This provides a controlled environment for 

evaluating spike sorting algorithms. After creating the 

dataset, spike detection and alignment are performed to 

accurately identify spike occurrences by using SWT  and 

align their waveforms across the dataset, ensuring 

consistent input sequences for further analysis. 

Following this, the dataset is split into training and 

testing sets, with 80% of the data allocated for training 

and 20% for testing. This division helps evaluate the 

model's ability to generalize on unseen data. The training 

set is used to optimize the parameters of the 1DCNN, 

allowing the network to learn meaningful features and 

patterns from the input sequance  spike data. Meanwhile, 

the testing set serves as an independent evaluation to 

assess the model's performance on new spike 

waveforms. This strict division between training and 

testing ensures a comprehensive evaluation of the spike 

sorting model, validating its effectiveness in accurately 

classifying neural spikes.  The main  idea of spike 

sorting is identifying and classifying the neural spikes 

recorded from electrodes implanted in the brain. using 

the CNN to classify different spikes patterns, which 

could represent different neural activities. The proposed 

1DCNN Architecture .The main building block of a 

1DCNN is a causal convolution layer, which operates 

over the time steps of each sequence. The architecture of 

proposed networks consists of multiple blocks, each 

containing . Figure (4) visually represents the CNN 

architecture operating on a simulated database. 

Consisting of four blocks , each block content four  set 

of  causal convolution layer with the same dilation factor 

followed by max pooling used to reduce the 

computational complexity and down sample the learning 

features , followed by normalization ReLU activation  . 

The proposed network adds the input of each block to 

the output of the next block  as shown in figure (4). At 

the end the connect the four blocks with the Fully 
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connected layer followed by SoftMax , final steps  are 

the classes output. For each block ,64 filters have been 

used and ,the size of each filter is size of 3 these filters  

used  for the 1_D convolution layers. For the training 

options used 100 epochs with minibatch size 1.Also with 

the learning rate of 0.001 . after training the model we 

need to test the classification accuracy of the model by 

comparing on a held-out test set with the true labels for 

each spike.The feature extraction process through 

varying abstractions and exchanging information from 

one layer to another establishes a receptive field, 

enabling the CNN model to achieve near-invariance to 

spatial alterations with a more economical 

computational expenditure. In the context of 

classification endeavors, this network structuring 

approach is termed an encoder block, and the outcomes 

derived from these encoders constitute extracted 

attributes from the input information, like the 

characteristics of the identified spikes. Consequently, to 

transform encoders into a classifier, it is typical to affix 

fully connected strata to the ultimate layer of the 

network, succeeded by non-linear operations like 

Sigmoid or SoftMax [32]. To solve the overfitting, 

incorporating batch normalization and dropout strata are 

among the layers. Throughout the training phase of a 

CNN model, the 1-dimensional kernels within the 

network are initially established with random 

initialization or diverse techniques for initialization. 

Using the backpropagation technique, initialized kernels 

should be optimized using an algorithm like Adam.

Fig 4. The architecture of the proposed 1D CNN forspike sorting classification 

3.3  The simulated data 

The first time the dataset was introduced, I  was the 

main one used in several works in the spike signals 

sorting. The generation of simulated signals involved 

the utilization of a compilation of 12 varied spike 

configurations obtained from real neocortical and 

basal ganglia recordings [Quiroga et al. 2004]. 

Further insights into this collection can be found in 

Collection 2 (Easy - Difficult). The 12 spike outlines 

are categorized into three groups, forming four sets, 

with each quartet featuring four signals exhibiting 

diverse noise levels. These outcomes are a sum of 16 

test signals. Figure (5) displays the four sets (12 

spikes total) of spike configurations utilized in the 

simulations. A duration of 60 seconds was assigned 
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to each signal, and the simulation was executed at a sampling rate of 24 kHz. 

 

Fig 5.  Overview of the four sets of spike shapes. Three spike shapes represent each set. 

To distribute these three spikes, a Poisson distribution has 

been applied to mimic the distribution of the spikes in the 

brain; also, it is more accurate and scientific. Figure (6) 

shows how the three spikes have been distributed.  

 

Fig 6. Sequence of spikes generated using Poisson distribution 

Then, different noise levels have been added to the 

sequence of spikes by using gaussian noise(sigma) to 

estimate the noise standard deviation from the generated 

sequence of spikes. Also, the dataset is divided into 16 

datasets built from a 594-spike waveform database. These 

datasets were built using an averaging method of the real 

recording from the neocortex and basal ganglia. In this 

dataset, the noise was randomly created by selecting and 

adding several spikes from the database with different 

amplitudes. The noise level in this database is varied 

between 0.05 and 0.4.  

 

3.5 Assessing the Effectiveness of the Proposed 

System 

Four Experiments were conducted per dataset. The 

distribution of data utilized in training and testing is 

depicted in Figure (7). For every dataset, the training 

subset encompassed 50%, 60%, 70%, and 80% of the 

overall data, while the corresponding testing subset 

encompassed the remaining 50%, 40%, 30%, and 20%, 

respectively. To assess the model's performance, 

accuracy, measured as the proportion of accurately 

classified samples out of the total data, was employed to 

determine the overall classification score, and it was 

instrumental in analyzing the experimental data. 

________Spike1
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________ Spike 3

________Spike1

________ Spike 2
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________Spike1
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Fig 7: Ratio of data allocated to the training and testing sets across the four experiments, denoted by 'E'. 

The confusion matrix is a vital tool for evaluating the 

performance of classification model performance. It 

comprehensively analyses how a model's predictions 

compare to the actual labels derived from the ground 

truth. The confusion matrix consists of three essential 

components: 

1. True Positives (TP): In these spikes, that model 

successfully predicted the positive class. 

2. True Negatives (TN): In each situation, the model 

properly predicted the negative class, which was 

incorrect.  

3. False Negatives (FN): In these cases, the  

model predicted the erroneous class, which was negative, 

whereas the true class was positive. 

The Confusion Matrix, which calculates the proportion of 

correctly classified samples to all samples, as 

demonstrated in the example below, can be used to 

evaluate the classification models' accuracy. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑁+𝐹𝑃
           (3) 

  

To determine the accuracy for the TP divided by the total 

number of spikes with positive  

labels (TP plus FP added together), as stated in formula 4, 

high precision indicates that the model and categorization 

are producing more useful results. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                          (4)                                              

Calculating the recall by dividing the total number of 

components that genuinely belong to the positive class TP 

will allow you to determine the model's sensitivity (5). 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦  =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                   (5)                                                    

4. Results and Discussions  

The data set used in this work contains 4 groups (Easy1, 

Easy2, Difficult 1, and Difficult 2), where every set 

comprises three signals with changeable noise levels, as 

shown in Figure (6). From the tested set, we took the times 

when the spikes start firing and then took the classes to 

generate the synthetic data and disrepute the signal by 

using a Poisson distribution, which mimics the 

distribution of spikes in the brain, as shown in Figure (7).  

In table (2) show the distributed of spikes generated by 

using synthetic data set the total number of spikes for each 

group of (Easy _1, Easy_2, Difficult_1, Difficult_2) in 

different noise level (𝜎) from 0.05 to 0.4 for data set 

Easy_1 and from 0.5 to 0.2 for the rest datasets. The total 

number (sc1) of sequences of spike type 1 is noted as 

Spike Class 1, and total  number of spikes class type 2 is 

(sc2) and the same thing for spike Class 3 (sc3). The last 

column is the total spikes input to the system at each level 

of noise and for each data set. The second step of the 

proposed methodology is applying a stationary wavelet 

transform (SWT) to detect the spikes. In this work, we 

used the Coif_1 filter bank to detect the spikes. The results 

of the evaluation of the accuracy of applying the SWT _4 

layer _ Coif1 method, are shown in table (3) where TSI is 

the total number of spikes and the output spikes of the 

detection area (true spike output) (TSO). The TPn is the 

number of spikes detected and classified in the same class, 

while FPn is the number of spikes put in another class. 

FZn is the number of the signals detected, but not spikes; 

it is the background noise. At lower noise levels (0.05 and 

0.1), the accuracy of spike detection remains consistently 

high across all datasets. For instance, in Data Set 1, at 

noise levels 0.05 and 0.1, the accuracy remains 

consistently at 98.5%. 
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Table 2. The total number of spikes input and different noise level (σ) 

Data set 𝜎 sc1 sc2 sc3 Total 

Easy_1 0.05 962 930 973 2865 

 

0.1 957 915 1006 2878 

0.15 937 966 935 2838 

0.2 955 929 937 2821 

0.25 910 898 879 2687 

0.3 918 949 919 2786 

0.4 891 947 950 2788 

Easy_2 0.05 923 902 945 2770 

 

0.1 940 913 990 2843 

0.15 978 893 911 2782 

0.2 968 968 912 2848 

Difficult 

_1 
0.05 905 912 950 2767 

 

0.1 962 922 905 2789 

0.15 909 967 919 2795 

0.2 927 871 974 2772 

Difficult_2 0.05 897 914 920 2731 

 

0.1 991 954 901 2846 

0.15 917 914 961 2792 

0.2 924 972 944 2840 

 

in Data Set 1, there is a noticeable decline in accuracy from 

98.5% at 0.1 noise level to  98.6% at 0.15, but a subsequent 

drop to 98.5% at 0.2. Similar trends are visible in Easy-2 

and Difficult-1 datasets. Also, accuracy considerably 

decreased across all datasets at noise levels of 0.25, 0.3, and 

0.4. For instance, in Data Set 1, the accuracy drops to 93.9% 

at 0.25 noise level, further decreasing to 80.6% at 0.3 and 

notably down to 55.1% at 0.4. 

Table 3. The success of spike detection in terms of false positive and false zero by using SWT _4 Layer _cofi1 

Data set  𝜎  TSI     TSO  TPn  FPn  FZn  AD  

Data set 1:  0.05 2865 2908 2865 43 0 98.5 

Easy-1 0.1 2878 2921 2878 43 0 98.5 

  0.15 2838 2877 2838 39 0 98.6 

  0.2 2821 2847 2813 34 8 98.5 

  0.25 2687 2601 2561 40 126 93.9 

  0.3 2786 2317 2278 39 508 80.6 

  0.4 2788 1594 1557 37 1231 55.1 

Data set 2:  0.05 2770 2810 2770 40 0 98.5 

Easy -2 0.1 2843 2887 2843 44 0 98.4 
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  0.15 2782 2819 2782 37 0 98.6 

  0.2 2848 2884 2848 36 0 98.7 

Data set 3:  0.05 2767 2810 2767 43 0 98.4 

Difficult -1 0.1 2789 2830 2789 41 0 98.5 

  0.15 2795 2835 2795 40 0 98.5 

  0.2 2772 2803 2761 42 11 98.11 

Data set 4:  0.05 2731 2770 2731 39 0 98.5 

Difficult -2 0.1 2846 2887 2846 41 0 98.5 

  0.15 2792 2833 2792 41 0 98.5 

  0.2 2840 2878 2840 38 0 98.68 

 

The third step of the proposed method, as shown in 

Figure (2), is applying PCA for dimension reduction 

and extracting the most important features of the 

spikes from the spikes that have been detected. The 

next step is the classification by training a model 

using SVM; the data set are separated into training 

and testing, as shown in Figure (3). Table (6) presents 

the results of spike sorting classification using (SVM) 

across different noise levels for four datasets. The 

"Noise Level" column denotes the amount of noise 

added to the data .The subsequent columns, such as 

"TPn1," "TPn2," "TPn3," and "TPn4," indicate the 

true positives for each class. The "Accuracy of 

classification" column reflects the overall accuracy of 

the SVM model in classifying spikes. In dataset 1 

(Easy-1), as the noise level increases, the accuracy 

gradually decreases from 99.8% to 88.7%. This 

suggests that the SVM model performs exceptionally 

well with low noise but faces challenges as the noise 

level intensifies. Similar trends are observed in 

dataset 2 (Easy-2), with accuracy ranging from 

99.6% to 97.4%. Dataset 3 (Difficult-1) and dataset 4 

(Difficult-2) also exhibit a decline in accuracy with 

higher noise levels, indicating the impact of noise on 

SVM classification performance. In the second 

section, the 1D-CNN model classification with 

different proportions of data in training and testing, 

as shown in Figure (7), with four experiments were 

noted by E as shown in table (5)  and compared with 

the two most widely used methods (SVM, KNN) as 

shown in table (6). The model used for KNN is the 

same as the one proposed for the SVM, where the 

data set is suppurated to 80 % for training and 20 % 

for testing. The data results with different noise levels 

are shown in Table(6).

Table 4. Accuracy of classification  SVM

Data 

set 
𝜎 TPn1 TPn2 TPn3 TPn4 AC 

Data set 

1:  0.05 198 188 187 9 99.8 

Easy-1 0.1 190 172 212 11 99.4 

 
0.15 175 199 193 9 98 

 
0.2 184 184 191 11 97.3 

 
0.25 165 166 178 12 96.1 

 
0.3 101 161 183 9 94.1 

 
0.4 43 79 187 10 88.7 

Data set 

2:  0.05 182 176 195 9 99.6 
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Table  (5)shows that experiment (E4) with an 80% training 

dataset allocation consistently achieves accuracy rates 

across noise levels and training set sizes. This experiment 

shows reliable performance when faced with varying 

degrees of noise. For example, at a noise level of 0.05, 

Experiment 4 consistently achieves an 

 accuracy of 100%, indicating its reliability in relatively 

cleaner signal conditions. Compared  

to other experiments, (E4) exhibits a stable and higher 

accuracy performance across different noise levels and 

training set sizes, making it a more dependable choice. 

Therefore, we select (E4) to compare it with other 

classification methods such as SVM and KNN. Looking 

at Table (6), we can observe that the proposed method of 

sorting classification using the 1D_CNN consistently 

outperforms both KNN and SVM across noise levels and  

SNRs. The CNN tends to achieve accuracy percentages 

compared to KNN and SVM at different noise levels. For 

instance, at  

noise levels like 0.05 with SNR 20, CNN consistently 

demonstrates accuracy percentages close to or reaching 

100%, while  

KNN and SVM slightly fall below these values. In 

situations with levels of noise and signal-to-noise ratios, 

the CNN algorithm consistently demonstrates higher 

accuracy. 

 

Table5.  comparing the classification accuracy based on 

different training and testing data allocations in the 

1D_CNN model 

Table 6 . Comparing the accuracy of the proposed 1D_CNN 

with the traditional method used machine learning in 

classification 

Data 

set  
𝜎 

E1 

50

%  

E2 

60

% 

E3 

70%  

E4 

80

%  

Data 

set 1:  

0.0

5 99.9 

99.

8 100 100 

Easy-1 0.1 99.9 

99.

3 99.6 100 

  

0.1

5 99.2 

98.

3 99.4 99.7 

  0.2 97.9 

96.

8 97.8 98.9 

Data set  𝜎 
SN

R 

KN

N 

SV

M 

1D- 

CNN 

Data set 

1:  

0.0

5 20 99.6 99.8 100 

Easy-1 0.1 10 99.5 99.4 100 

  

0.1

5 6.6 99.5 98 99.7 

  0.2 5 98.9 97.3 98.9 

      

  
0.2

4 96.7 96.1 96.75 

Easy -2 0.1 193 176 200 9 99.5 

 
0.15 187 175 192 10 99.5 

 
0.2 198 191 181 7 97.4 

Data set 

3:  0.05 178 190 183 11 99.8 

Difficult 

-1 0.1 184 195 176 11 99.6 

  0.15 175 203 181 8 99.6 

  0.2 167 175 208 11 98 

Data set 

4:  0.05 173 183 187 11 99.7 

Difficult 

-2 0.1 200 201 168 9 98.3 

 
0.15 183 183 192 9 95.4 

 
0.2 194 198 175 9 87.88 
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0.2

5 94.9 

95.

3 96.7 

96.7

5 

 
0.3 94.4 

94.

4 94.4 94.9 

 
0.4 89.6 

89.

6 89.8 91.2 

Data 

set 2:  

0.0

5 99.9 100 100 100 

Easy -2 0.1 99.7 

99.

8 99.8 

99.9

8 

 

0.1

5 98.7 

99.

1 98.9 99.6 

  0.2 97.8 

96.

3 98.2 98.6 

Data 

set 3:  

0.0

5 99.9 100 100 100 

Difficul

t -1 0.1 99.7 100 100 100 

  

0.1

5 96.7 

99.

3 99.7 99.8 

 
0.2 96.4 

96.

6 97.4 98.2 

Data 

set 4:  

0.0

5 100 100 99.9 100 

Difficul

t -2 0.1 98.1 

98.

7 99 99.8 

 

0.1

5 93.3 

94.

2 94.4 96.2 

 
0.2 84.4 

84.

8 86.7 

89.9

7 
 

5 

 
0.3 3.3 94.4 94.1 94.9 

 
0.4 2.5 88.5 88.7 91.2 

Data set 

2:  

0.0

5 20 99.7 99.6 100 

Easy -2 0.1 10 99.7 99.5 99.98 

 

0.1

5 6.6 99.2 99.5 99.6 

  0.2 5 97.3 97.4 98.6 

Data set 

3:  

0.0

5 20 99.7 99.8 100 

Difficult 

-1 0.1 10 99.5 99.6 100 

  

0.1

5 6.6 98.5 99.6 99.8 

 
0.2 5 97.3 98 98.2 

Data set 

4:  

0.0

5 20 99.5 99.7 100 

Difficult 

-2 0.1 10 98.9 98.3 99.8 

 

0.1

5 6.6 94.7 95.4 96.2 

 
0.2 5 86.5 

87.8

8 89.97 
 

across various noise levels, with the lowest accuracy at 

91.2%, still outperforming their reported rate. While Li, 

Wang, and Zhang (2020),  in their study, reported 99.9% 

accuracy in noise-free scenarios and varying accuracy 

rates for different SNR levels. The result of our model 

accuracy closely matches their figures, particularly in 

noise-free environments (99.8% and above). Also, Hall 

(2023) reported an average accuracy of 86.23%, ranging 

from 79.62% to 89.55% across all areas. Our results 

consistently surpass this range, showcasing higher 

accuracy even at the lowest end of highly noise-recorded 

data (91.2%). In summary, the proposed 1D-CNN-based 

model consistently demonstrates competitive or improved 

performance compared to these studies, especially in 

noise-free scenarios and across various noise levels, 

highlighting its robustness and effectiveness in spike 

sorting tasks.
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Fig 10 . Confusion matrix (a) for data set C_Difficut1 _noise 02 (b) for data set Easy_1_noise_02 

 

Fig 11. Shape of the three spikes in (a) C_Difficult1 with noise 0.05, (b) C_Easy1_noise 0.05 

5.Conclusion 

The 1D-CNN model gave a good performance accuracy 

compared to the classical methods like SVM and KNN in 

their ability to do spike sorting tasks. Compared to SVM 

and KNN, 1D-CNN performed better, increasing 

accuracy in all the considered noise conditions and SNRs.  

Additionally, compared to previous studies in spike 

sorting, the 1D-CNN runs a high level of performance. In 

noise-free  environments, it closely approaches or 

surpasses the best accuracy of that reached at in the 

previous research. Indeed, as described earlier, even in 

reduced SNR value, the proposed model does not lose 

competitiveness in achieving accuracy with the 

intensification of noise to display robustness regarding 

the detection and classification of spikes. The accuracy 

rates obtained by this 1D-CNN model exhibited 

effectiveness in dealing with complex spike sorting tasks, 

either outperforming or coming very close to the state-of-

the-art methods mentioned recently in the literature. This 

indicates its potential as an advanced, reliable tool for 

neuronal spike analysis, especially in challenging the 

noisy recording conditions. In future studies, this CNN 

model will be improved to cluster overlapped spikes 

efficiently and, at the same time, improve its ability to 

classify multichannel recordings simultaneously 
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