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Abstract: Drug-drug interactions (DDIs) cause grave concern for those patients who require multiple drugs, and in turn for their doctors, 

caregivers, and society too. Any detection and knowledge imbibed through such interactions utilizing machine learning enables the 

pharma industry to do away with certain testing modes and helps physicians to impart optimum care while avoiding severe reactions. 

Here, we put forth a model for predicting any novel drug–drug interaction from a created heterogeneous network, blending in varied 

drug-relevant information such as drug-disease correlations and drug-side effect correlations, drug–drug interactions etc. which first runs 

a network diffusion algorithm on each network to determine the "diffusion state," such as random walk with restart. This absorbs its 

topological relation to other nodes within this diverse network, and forms a drug vector, which is followed by a Denoising Autoencoder 

model for reducing vector dimensions and identifying vital features. Then, the convolutional neural network model and Support vector 

classifier is built for predicting drug interactions and evaluating their performances. 
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1. Introduction 

The DDIs (Drug-Drug Interactions) are known as the 

undesirable secondary effects coming about because of the 

simultaneous utilization of at least two medications. At the 

point when any specialist endorses a few medications for a 

certain patient at the same time, DDIs might result in 

unsalvageable secondary impacts. These may prompt 

different sicknesses or could even be fatal. These 

secondary effects are especially recognizable in grown-up 

individuals and malignant growth patients who consume 

loads of medications daily. As the significance of 

anticipating DDIs in human wellbeing, industry and 

economy, with its measure of cost and conventional trials, 

the exact computational strategies for foreseeing DDI are 

out of luck. Vast biomedical data other than the 

improvement of computational methodologies is available. 

For instance, DrugBank, a popular and dependable 

information base of known DDI, contains over 300,000 

DDIs. By and by, this measure of communication 

information is under 1% of the all-out drug matches that 

exist in DrugBank. Somewhat recently, numerous 

computational techniques have been created to resolve this 

issue and beat these impediments. Although past 

techniques had extraordinary advances, more prediction 

precision is yet required. 

2. Related Work 

Currently, numerous computational techniques have been 

evolved to predict DDIs. DDI forecasting methods can be 

categorized into text mining, similarity-based prediction 

and classification-based prediction. Text-mining 

techniques use natural language processing to extract any 

potential connections between medications from 

unstructured data sources. Similarity based strategies 

presume that comparative medications might interface with 

a similar medication. For example, two medications might 

collaborate with the assumption that these have 

comparable molecular profile. Classification-based 

procedures simulate the binary classification problem in 

the DDI prediction task. That is, the presence or lack of 

collaborations represents drug matching as feature vectors 

and target variables. Link prediction in classification-based 

strategies surveys the likelihood of a connection between 

sets of nodes within a network, considering perception of 

topology of extant nodes along with traits.  

Notwithstanding, scientists recognized a few issues that are 

disregarded by an extraordinary greater part of DDI 

expectation studies: (i) powerlessness to foresee recently 

created drugs, (ii) inability to deal with outrageous 

information skewness of DDI matches, (iii) dependence on 

chose information sources (primarily DrugBank), and (iv) 

reckless assessment procedures that are reflected by 

utilizing region under ROC bend as the principal 

assessment metric to evaluate nature of forecast. This 

multitude of constraints urges to play out a similar report, 

which assists with finding a superior and further developed 

experiment for the Medication Cooperation Expectation. A 
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portion of the current strategies utilized for foreseeing 

potential DDIs are given beneath. 

In the method suggested by Kastrin et.al [1] authors 

addressed DDIs as one complicated network wherein 

nodes allude to medications and connections allude to their 

possible interactions. As of late, ‘connection forecast’ has 

drawn in much thought in academic local area. So, they 

addressed the course of connection forecast as “binary 

classification” task on any network of expected DDIs. This 

involved the connection expectation strategies for 

foreseeing obscure cooperations between drugs in five 

erratic picked huge scope DDI data sets, specifically 

Twosides, DrugBank, SemMedDB, KEGG and NDF-RT 

and assessed presentation of connection expectation by 

utilizing a set of trials on DDI networks. Next, they 

executed “link prediction” utilizing “unsupervised” plus 

“supervised” mode comprising “decision tree, k- nearest 

neighbors, support vector machine, random forest, and 

gradient boosting machine classifiers” considering 

topological and semantic similitude highlights. From the 

investigations directed, they found that the supervised 

approach plainly outperformed unsupervised methodology, 

where area beneath the recall curve for precision was 0.93 

for gradient boosting as well as random forest for 

Twosides network. Thus, they presumed that supervised 

link prediction way was promising for potential DDIs 

prediction potential to function with recognizable proof of 

possible DDIs in clinical examination. 

A similarity-based ensemble prediction typel is set up for 

identifying any potential DDI in the research conducted by 

Mahadevan et.al [2 where neighbor recommender and 

Jaccard's coefficient were utilized to calculate similarity 

measures  and random walk algorithm which enhanced 

prediction through “genetic algorithm” techniques. This 

ensemble method can identify any drug-drug interaction 

for varied features. The results showed enhanced precision, 

recall and accuracy due to random walk and genetic 

algorithm. Researchers tried this approach to show how 

this could aid comprehension of DDIs in novel drugs 

which are clinically administered to any patient who takes 

other drugs for treating correlative conditions. 

Rohani et.al [3] proposed adequate computational 

procedures to predict unknown DDI with high precision. 

They used neural network-based procedure for drug 

affiliation assumption using diverse information about 

drugs. The "drug substructure, target, side effect, off-label 

side effect, pathway, transporter, and indication data" were 

taken into consideration while determining the 

commonalities between various medicines. All along, they 

used a heuristic closeness decision cycle, and a while later 

organized the picked likenesses with “nonlinear similarity 

fusion” procedure for obtaining irrefutable level features. 

Thereafter, a neural network was involved for 

collaboration assumption. Comparability determination 

and joining bits of NDD have been proposed in past 

examinations of various issues. So, they combined these 

parts with a neural network plan and applied the systems 

concerning DDI assumption. 

     Takeda et.al suggested a method in which the essential 

systems of DDIs depended on pharmacokinetics (PK) and 

pharmacodynamics (PD). The system analyzed impacts of 

2D primary similitudes of medications on DDI expectation 

by collaborating networks of both PD and PK information. 

Their supposition was that one query drug (Dq) and one 

medication be inspected (De) possibly having DDI. The 

assumption was that medications in De interaction network 

are basically like Dq, where De network portrays 

relationship between medications and proteins connecting 

with PK and PD for De. The displaying system contained 

four stages. In the first phase, association network for 

every De was built; second, underlying similitudes among 

Dq and every one of the medications in De network, inc 

luding De were figured; third, DDI expectation models 

were built utilizing primary likenesses with strategic 

relapse approach; at last, 4-fold cross-validation was 

conveyed for model assessment. 

    DDIGIP, a model proposed by Yan et.al for DDI 

prediction was based on Regularized Least Squares (RLS) 

classifier and the Gaussian Interaction Profile (GIP) kernel. 

This kernel is based on drug-drug interaction profiles. The 

first relational score was calculated using K-nearest 

neighbors (KNN) and the chemical, biological, and 

phenotypic information of pharmaceuticals in the presence 

of novel drugs. Compared to the existing methods (L1 

Classifier group strategy), DDGIP strategy obtained AUC 

values of 0.96 and 0.9636 in 5-fold and 10-fold cross 

validations respectively, whereas the AUC values were 

0.9570 and 0.9599 for the existing methods. Besides, in 

newer medications, value for AUC of DDIGIP technique 

arrived at 0.9262 that likewise beats other cutting-edge 

technique (Weighted normal group strategy) for 0.9073. 

3. Proposed Architecture 

We hereby recommend a learning-based approach for 

detecting any drug-drug interaction, which is mainly 

divided into three modules. The general workflow of this 

suggested system is shown in Figure 1. 

For ease of understanding the proposed model has been 

divided into 3 modules where the first module is the 

Heterogeneous-network-based feature extractor, which 

calculates the similarity matrices for the drug related 

networks and perform a Random with Restart on these 

similarity matrices; which is taken as the weighted edge for 

the network. The Second is the Denoising-Autoencoder 

(DAE) based feature selector which is used for the 

dimensionality reduction and the last module is the Drug-
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Drug Interaction prediction model, which includes the 

SVM and CNN model trainings, predictions and their 

evaluations. 

3.1 Network based feature extractor 

This heterogeneous network will be built by coordinating 

an assortment of medication related data sources, 

comprising drug-drug associations, associations of drugs 

and their side effects, drug-disease associations and 

similarities between drugs considering their chemical 

structure. These datasets are accessible from the publically 

accessible datasets, for example, DrugBank data set, 

Similar Toxicogenomic Data set, SIDER data set and so 

on. First and foremost, the Jaccard similarity calculation 

[6] is executed on every one of these association and 

interaction matrix individually and is put away as a text 

record.  

      

    The Jaccard similitude coefficient is a sign of the 

likeness between two sets which is the comparability 

between two medications and is defined thus: 

  Sim(A, B) = 
|𝑨∩𝑩|

|𝑨∪𝑩|
          (1) 

 

Fig.1: Architecture of the proposed model 

 

Fig.2: Snapshot of drug-disease similarity matrix 

 

Fig.3: Diffusion state matrix of drug features 
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Fig.4: Low-dimensional depiction of pharmacological characteristics 

When the first information is changed into similarity 

matrices, it is considered as the weighted edge for the 

networks and Random walk with Restart [7] calculation is 

applied to every closeness framework to acquire the 

diffusion state matrices of each medication in the network 

and go along with it to shape the single diffusion state 

network of medication highlights. RWR is used because, in 

order to take use of any innate direct or indirect linkages 

among nodes, it introduces a pre-defined restart probability 

to the first node of each iteration by taking into account 

"local and global topological connectivity" patterns in a 

network.  

According to this, the greater the nodal similarity, the 

higher will be its transition probability. [8]. As fewer 

hyperparameters and lower computation is required for 

RWR algorithm, this is widely used in complex networks 

that analyze and feature representation learning [9,10]. 

RWR algorithm is formulated thus      

𝒙𝒕 = 𝛃𝐱𝒕−𝟏𝑺 + (𝟏 − 𝜷)𝒙𝟎,       𝜷 ∈ (𝟎, 𝟏)          (2) 

where xt is an n-dimensional vector. The jth element of xt 

denotes the label confidence score of drug dj at time step t. 

x0 denotes an n-dimensional initial one-hot vector. The jth 

entry of x0 will be 1 and all other entries will be 0. M 

denotes the similarity matrix.  M is normalized as S = T−1 * 

M, wherein T is diagonal degree matrix with Tii = ΣjMij. β 

is the restart probability. When L1 norm of Δx = xt − xt−1 is 

less than small positive ε we get a stationary distribution 

vector x, which is diffusion state of each node [11]. The 

distribution vectors x will be then stored as matrix X[12]. 

Subsequently, we splice this for getting a single diffusion 

state matrix about drug. Columns of drug denotes the 4 

nodes corresponding to drug, disease, side effect and any 

drug and rows denotes varied drugs. The element T(i,j) 

stands for transition probability between node j and drug i. 

3.2 Dimensionality Reduction 

Vector of diffusion state matrix generated in the former 

module is high-layered, and therefore inadequate. For 

obtaining fundamental elements, we apply a Denoising-

Autoencoder (DAE) model [18] that executes information 

procedure based on autoencoder. Based on input data, 

autoencoders use programmed encoders to obtain low-

dimensional information via "neural networks." 

Essentially, the Decoders recuperate the unique 

contribution from low-dimensional information[13]. So, in 

Denoising-Autoencoder-based feature selector model, to 

get the low-dimensional representations of those drugs, a 

noise factor is added to the input vector and the model will 

learn the low dimensional features from code produced by 

encoder in the Autoencoder and can obtain the vital aspects 

from original input for a more robust representation. In this 

method, DAE has one concealed layer having 100 units 

and each batch consists of 16 samples. 20 is taken as the 

number of epochs. Thus, drug feature dimension is reduced 

to 100 from the original dimensions, which is 2832 and 

noise figure is set as 0.2, [18] utilizing softplus [14] and 

RMSProp function [15] to optimize mean-square error 

(MSE) [16]. Finally, backpropagation (BP) algorithm helps 

guide the DAE [17][18] which provides the low 

dimensional vector representation of given input.  
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Finally, the model embraced 10-fold cross validation 

technique for isolating train and test set. Here, 90% of 

known and unknown examples have been utilized for 

model preparation and 10% examples were acquired for 

model testing. As indicated by the known drug-drug 

interaction matrix, we randomly chose the unknown 

examples with same number of positive or known 

examples. Altogether, we have 20,000 examples. 

Subsequent to joining the drug vectors, drug pair vectors of 

200 aspects are obtained, which is then given to the for 

building a prediction model and their exhibitions are 

assessed. 

3.3 Drug-Drug Interaction Prediction 

We used CNN as a supervised learning model for 

predicting drug interaction, influenced by CNN's success 

in classification tasks[19]. This prediction model contains 

four layers; the “convolution layer” - which helps model 

imbibe any local or global structure from input vector[20]. 

Here the convolutional layer was comprised of 4 kernels 

with “rectified linear unit (ReLU)” activation function [19] 

as feature extractor [20], to efficiently ease up calculations, 

by avoiding gradient explosion and disappearance. After 

this, the “max-pooling layer”, decreased feature map 

dimension [21], while the pooled size was taken as 2∗1, 

and the step size was 2 in our model. Then, a one-

dimensional vector connected vital features extracted from 

all kernels. These were passed to the “fully connected 

layer” with 180 hidden units and an output unit of sigmoid 

layer which was created for “binary classification” of drug 

interaction prediction [18].  

To compare the models and identify the optimum model 

among them, we have also used a support vector machine 

for predicting these drug interactions. SVM is a 

supervised machine learning classifier, which can map 

input data set into high-dimensional feature space and 

later goes on to construct a hyperplane to segregate 

classes according to maximum margin principle. Several 

kernel functions exist like linear/nonlinear kernels [25]. 

Here we have employed the Radial Basis Function (RBF) 

as the kernel for drug-drug interaction prediction, which 

is the most generalized one due to its similarity to the 

Gaussian distribution.  

4. Results & Discussions 

For implementing the model, the heterogeneous network 

was built by collecting three kinds of nodes, the drug, 

disease and the side-effects and three types of edges, the 

‘drug-drug interaction’, ‘drug-disease association’ and 

‘drug-side-effect association’. ‘Drug-drug interactions’ 

taken from DrugBank database [22] constitutes the drug 

nodes while ‘drug–disease associations’ taken from 

‘Comparative Toxicogenomic Database’ [23] forms the 

disease nodes. The "SIDER database" was used to 

compile the side-effect nodes and drug–side-effect 

connections. [24].  

First, we constructed four similarity matrices for drug 

relevant networks based on Jaccard’s similarity 

coefficient. Fig.2 shows a snapshot of drug similarity 

matrix.  

Then a Random walk with Restart algorithm is 

performed on these similarity matrices, where similarity 

was taken as the weighted edge for the network. The 

model performed RWR algorithm for drug related 

similarity matrices respectively, spliced into a single 

diffusion state matrix of drug network. Fig.3 gives a 

snapshot of diffusion state matrix of drug features. Rows 

of drug diffusion matrix denote diverse drugs, while 

columns denote proteins, diseases, side effects and drug 

nodes. The matrix values denote any association between 

drugs and 4 biological entities. This vector is noisy, high-

dimensional and incomplete. For obtaining essential 

features, a DAE model was applied to carry data 

operation, based on the Autoencoder. Snapshot of result 

of the DAE model application is depicted in Fig.4. where 

in the dimension of drug features is reduced to 100.  

Finally, the Drug-Drug Interaction prediction model was 

constructed using SVM and CNN models. In CNN 

model, the dropout layer is added before fully connected 

layer. Dropout percentage was 0.5. The Adam algorithm 

was used and for the optimization of binary cross entropy 

loss, the initial learning rate was set as 0.001. 

Here, we adopted 10-fold cross validation in which 90% 

of samples including positive as well as negative samples 

were considered for training model and 10% for testing. 

The known drug-drug interactions pairs were taken as 

positive samples and randomly selected negative samples 

whose count is equivalent to the count of positive 

samples. Altogether there were 20,000 samples. After 

joining the drug vectors, drug-drug pair vectors of 200 

dimensions are obtained which was then given to CNN 

and SVM model for building a prediction model and their 

performances are thereafter evaluated and compared.  
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Fig.5: CNN Model Summary 

 

 

Fig.6: Confusion matrix of the CNN model prediction 

with 20,000 samples 

  

Fig.7: Confusion matrix of the SVM model prediction 

with 20,000 samples 

 

Fig.8: AUROC score for the CNN Model with 10-fold 

cross validation 

  

 

Fig.9: AUROC score for the SVM model with 10-fold 

cross validation 

 Performance evaluation 

After we built our model, “AUROC” and “AUPR” scores 

helped in evaluating the model that we had trained and 

tested. We have used the 10- fold cross validation for 

model evaluation on both the CNN and SVM models. 

From the 20,000 samples, we split the samples to 18,000 

training data and 2000 testing data and performed the 

cross validation. Then we found the mean AUROC and 

AUPR scores for which prediction models have been 

built. They denote areas under ROC curve and PR curve 

respectively. These scores are used since they are the 

common evaluation criteria for machine learning. The 

higher their score value, the higher will be the accuracy 

of prediction and hence the prediction data performance 

[18]. Figure 5 depicts the summary of CNN model. 

Confusion matrices of the prediction with 20,000 

samples using CNN model and SVM model are shown in 

figures 6 and 7 respectively. Figure 8 shows the 

evaluations scores when the CNN model is tested on the 

dataset that is used for training the model.  The 

performance of DDI prediction with the SVM model is 

shown in figure 9.    

From the above result, we can see that the CNN model 

has better scores when evaluated. Then the CNN model 

has been tested to predict the drug-drug interaction on 

entirely new data which is having drug interactions and 

non-interactions. The model was able to correctly classify 

that drug combination as interacting and non-interacting 

based on the input data.  The figure 4 shows the AUROC 

for the CNN Model with 10cross validation and Figure 5 

shows the AUROC for the SVM model with 10-cross 

validation. Since the CNN has better performance, it is 

chosen as the best model for Drug-Drug Interaction 

Prediction. 

5. Conclusion and Future Scope 

In this research, we suggested a learning-based method 

for drug-drug interaction predictions. Here, Jaccard 

closeness coefficient and RWR, are the first and foremost 

model that are utilized to acquire the important elements 
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of medications from heterogeneous network. Then, at 

that point, to reduce dimensions and to distinguish the 

fundamental highlights, we utilized a DAE mode. 

Thirdly, in view of the highlights got from the past 

module, the CNN and SVM model were developed. Also, 

in light of their exhibition assessment we arrived at the 

resolution that the CNN has better interaction prediction 

capability when contrasted with the SVM model. 

Henceforth, we consider adding up more significant data 

to this heterogeneous network. We can add network setup 

for this CNN model that is suitable for accommodating 

intricate input networks. Here, we have predicted DDIs, 

as it is an extendible strategy and can likewise be utilized 

to anticipate other related bearings later on, for example, 

drug-target interactions, drug-side effects etc. 

References 

[1] Kastrin A, Ferk P, Leskoˇsek B. Predicting potential 

drug-drug interactions on topological and semantic 

similarity features using statistical learning. PLOS 

ONE 13(5):e0196865, (2018). 

[2] Mahadevan, A. A., Vishnuvajjala, A., Dosi, N., Rao, 

S.: A Predictive Model for Drug-Drug Interaction 

Using a Similarity Measure. IEEE Conference on 

Computational Intelligence in Bioinformatics and 

Computational Biology (CIBCB), pp. 1-8. (2019) 

[3] Rohani, N., Eslahchi, C. Drug-Drug Interaction 

Predicting by Neural Network Using Integrated 

Similarity. Sci Rep 9, 13645 (2019). 

[4] Takeda T, Hao M, Cheng T, Bryant SH, Wang Y. 

Predicting drug-drug interactions  through drug 

structural similarities and interaction networks 

incorporating pharmacokinetics and 

pharmacodynamics knowledge. J Cheminform. 

(2017). 

[5] Yan, C., Duan, G., Pan, Y. et al. DDIGIP: predicting 

drug-drug interactions based on  Gaussian 

interaction profile kernels. BMC Bioinformatics 20, 

538 (2019) 

[6] Niwattanakul S, Singthongchai J, Naenudorn E, 

Wanapu S. Using of jaccard coefficient for keywords 

similarity. In: Proceedings of the International 

Multiconference of Engineers and Computer 

Scientists; 2013. p. 380–4. 

[7] Tong H, Faloutsos C, Pan J-Y. Random walk with 

restart: fast solutions and applications. Knowl Inf 

Syst. 2008;14(3): 327–46 

[8] Lee S, Lee J, Lim J, Suh I. Robust stereo matching 

using adaptive random walk with restart algorithm. 

Image Vis Comput.2015;37:1–11. 

https://doi.org/10.1016/j.imavis.2015.01.003. 

[9] Yan, X. Y., Zhang, S. W., and Zhang, S. Y. (2016). 

Prediction of Drug-Target Interaction by Label 

Propagation with Mutual Interaction Information 

Derived from Heterogeneous Network. Mol. Biosyst. 

12 (2), 520–531. doi:10.1039/c5mb00615e 

[10] Luo, Y., Zhao, X., Zhou, J., Yang, J., Zhang, Y., 

Kuang, W., et al. (2017). A Network Integration 

Approach for Drug-Target Interaction Prediction and 

Computational Drug Repositioning from 

Heterogeneous Information. Nat. Commun. 8 (1), 

573–613. doi:10.1038/s41467-017-00680-8 

[11] Cho, H., Berger, B., and Peng, J. (2015). Diffusion 

Component Analysis: Unraveling Functional 

Topology in Biological Networks. Res. Comput. Mol. 

[12] Biol. 9029, 62–64. doi:10.1007/978-3-319-16706-0_9 

[13] Yan, X. Y., Yin, P. W., Wu, X. M., & Han, J. X. 

(2021). Prediction of the Drug-Drug Interaction 

Types with the Unified Embedding Features from 

Drug Similarity Networks. Frontiers 

inpharmacology,12,794205. 

https://doi.org/10.3389/fphar.2021.794205 

[14] Peng J, Guan J, Shang X. Predicting parkinson’s 

disease genes based on node2vec and autoencoder. 

Front Genet. 2019; 10:226. 

https://doi.org/10.3389/fgene.2019.00226 

[15] Ramachandran P, Zoph B, Le Q, Quoc V. Searching 

for activation functions. arXiv e-prints. 2017. 

https://ui.adsabs.harvard.edu/abs/2017arXiv17100594

1R. Provided by the SAO/NASA Astrophysics Data 

System 

[16] Mukkamala M, Hein M. Variants of RMSProp and 

Adagrad with logarithmic regret bounds. In: Doina P, 

Yee Whye T, editors. Proceedings of the 34th 

International Conference on Machine Learning. vol. 

70. Sydney: PMLR; 2017. p.2545–53 

[17] Allen D. Mean square error of prediction as a 

criterion for selecting variables. Technometrics. 

1971;13(3):469–75. 

[18] LeCun Y, Boser B, Denker J, Henderson D, Howard 

R, Hubbard W, Jackel L. Backpropagation applied to 

handwritten zip code recognition. Neural Comput. 

1989;1(4):541–51 

[19] Peng, J., Li, J. & Shang, X. A learning-based method 

for drug-target interaction prediction based on feature 

representation learning and deep neural network. 

BMC Bioinformatics 21, 394 (2020). 

https://doi.org/10.1186/s12859-020-03677-1 

[20] Clevert D-A, Unterthiner T, Hochreiter S. Fast and 

accurate deep network learning by exponential linear 

units (elus). arXiv e-prints. 2015arXiv:1511 ˙ 07289. 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 3536–3543  |  3543 

https://ui.adsabs.harvard.edu/abs/2015arXiv15110728

9C 

[21] [20] Luo P, Ding Y, Lei X, Wu F. deepdriver: 

predicting cancer driver genes by convolutional 

neural networks. Front Genet. 2019;10:13 

[22] Peng J, Hui W, Li Q, Chen B, Hao J, Jiang Q, Shang 

X, Wei Z. A learning-based framework for miRNA-

disease association identification using neural 

networks. Bioinformatics.2019;35(21):4364–71. 

https://academic.oup.com/bioinformatics/article-

pdf/35/21/4364/30330838/btz254.pdf. 

[23] Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, 

Pon A, Banco K, Mak C, Neveu V, et al. Drugbank 

3.0: a comprehensive resource for omics research on 

drugs. Nucleic Acids Res. 2010;39((suppl_1)):1035–

41. 

[24] Davis A, Murphy C, Johnson R, Lay J, Lennon-

Hopkins K, Saraceni-Richards C,  Sciaky D, 

King B, Rosenstein M, Wiegers T, et al. The 

comparative toxicogenomics database: update 2013. 

Nucleic Acids Res. 2012;41(D1):1104–14. 

[25] Kuhn M, Campillos M, Letunic I, Jensen L, Bork P. 

A side effect resource to capture  phenotypic 

effects of drugs. MolSyst Biol. 2010;6(1):343. 

[26] Friedman J, Hastie T, Tibshirani R. The elementsof 

statistical learning:Data mining, inference, and 

prediction. New York,NY:Springer;2001. 

 


