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Abstract: The farming community's top priority is the early diagnosis of plant diseases. Plant disease can be detected with great accuracy 

thanks to the availability of modern cell phones and digital cameras with enhanced picture acquisition capabilities. This study classified 14 

rice illnesses and signs of nutrient inadequacy using 2500 smartphone photos of various rice plant components organised into different 

groups as well as 500 real-time validation images. Affected areas were segmented using a variety of picture segmentation approaches, such 

as foreground extraction. Model and technique optimisation for applications on smartphones with offline functioning capabilities has also 

been discussed. Additionally, in order to improve classification performance, a dynamic framework that changes the model when it drops 

below a specified threshold level has been created and demonstrated. To choose the optimal method for transfer learning, several image 

classification models were compared using a wide range of supporting metrics. The deep belief network model-based Android app "Farmer" 

was tested for the ability to detect several instances of sickness in a single capture. More research is needed in order to test the programme 

on smartphones with various configurations. 
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1. Introduction 

This template, modified in MS Word 2007 and saved as a 

“Word Worldwide, disease and pests cause an estimated 9% 

loss in crop and livestock productivity each year [1]. India's 

farmers lose a total of USD 6 billion annually as a result of 

pest and crop disease attacks. About 15–25% of agricultural 

goods are lost due to plant disease in nations like India [2]. 

To conserve the crop, it is necessary to diagnose plant 

diseases and deficiencies quickly on the farm. The 

traditional methods of visual inspection as well as 

laboratory-based analysis for plant disease diagnosis seem 

time-consuming and labor-intensive in the contemporary 

era of digital agriculture. For untrained and young farmers, 

illness identification based on eye inspection might 

occasionally contain bias, misunderstandings, and 

inaccuracies [3]. As a result, specialised personnel are 

required for the diagnosis of plant diseases and nutrient 

deficits. 

Due to their similar symptoms, illnesses and nutrient 

deficiencies are difficult to distinguish from one another, 

particularly in stagnating water circumstances in paddy 

fields that have been transplanted. To reduce both 

quantitative and qualitative losses, there is a stressing need 

for an precise and quick detection of rice crop diseases. 

Imaging technologies outperform non-imaging systems in 

terms of plant disease detection, according to Mahlein et al. 

[4]. Satellite and Unmanned aerial vehicle (UAV) images 

have been heavily studied thus far in plant disease 

identification and agricultural health monitoring [5]. UAVs 

typically cover a broad area quickly, but low-resolution and 

noise-prone photos tend to increase the likelihood of 

inaccuracy [6]. 

In some nations and regions, using UAVs for aerial surveys 

also requires approval from the relevant authorities [7]. The 

whole cost of the process rises to an unaffordable level [8]. 

These techniques also depend on the climate, and final 

judgement must be made under expert supervision. 

Therefore, it has become economically impossible for small 

farm owners in underdeveloped nations to purchase UAVs 

and high-resolution imagery [9]. A climate and region 

independent, cheap, low-cost, and high-resolution scanning 

device can thereby overcome these problems.  

The potential to produce quick and real-time applications 

for the analysis of images taken with high-resolution, mega-

featured cameras has been shown by the advancement of 

machine learning, deep learning, and algorithms for image 

processing during the past ten years [10,11].  

Three prevalent wheat illnesses in Europe were categorised 

using an approach with deep residual neural networks as the 

base by Picon et al. [13]. To identify rice illnesses, Lu et al. 

[14] suggested a technique based on recognition of patterns 

combined with CNN. To categorise plant illnesses, Hasan et 

al. and Sethy et al. employed learning with deep features 

[15] and a classifier using support vector machine[16]. 

Additionally, Cruz et al.'s [17] implemented all angles 

detection of yellow lesions in vines of grapes using machine 

learning-based models. Convolutional neural-networks 
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(CNN) have demonstrated exceptional effectiveness for 

plant disease diagnosis when compared to other deep 

learning techniques [18].  

Even though a number of learning techniques under 

supervision and without supervision have demonstrated 

potential for quickly, automatically detecting crop diseases, 

they are hampered by issues such limited ability in handling 

data, difficult extraction of features after suitable separation 

of images, etc. [19]. Algorithms for classification of images, 

machine learning, picture categorization, and extraction of 

features have the capacity to streamline the process of plant 

illness diagnosis while cutting down on the amount of time 

required and expense required has been demonstrated in all 

prior investigations. 

 The accessibility as well as cost effectiveness of online 

services and agriculture based advisory systems in rural 

areas and among the farming population is a prevalent 

problem in emerging nations like India. Using smartphones 

to take pictures with excellent resolution looks to be a 

practical and viable alternative because they can reach 

within sight of the affected plants to capture excellent 

quality shots [20].  

This lessens the need for legal counsel and professional 

oversight. A method of applying optimised image 

processing along with algorithms to train methods in 

smartphones not necessitating a devoted server was put 

forward by the rising affordability of ordinary and minimum 

specification android cellphones amongst rural residents 

and field-level advisers. There is essentially no requirement 

for any communication method to relay the results, which 

can be retrieved quickly. Although photos taken with 

smartphones typically have higher resolutions, 

preprocessing takes longer, particularly when using 

techniques like segmentation based on Grab-cut algorithm 

[21].  

Consequently, the goals of this research included the 

following: 1) assess how effective it is in combining the 

processing of images with machine learning for 

smartphones images-based recognition of diseases of rice 

and nutritional deficiency signs; and 2) develop an 

application for Android for implementing instantaneous 

disease and nutrient deficiencies symptom identification. 

In this article, the gaps identified in research were filled: The 

use of inexpensive grab-cut backdrop extraction alongside 

other common methods of processing images for efficient 

training of the network, taking into account the existence of 

atypical noises, changing ageing, lighting circumstances, 

that have never been investigated by other studies, Using the 

stochastic depth optimisation method and gradually freezing 

convolution to compare the outcomes of well-known 

methods across 12 classes for rice diseases and deficiencies 

and another for healthy rice class, For accurate illness and 

nutrient shortage identification, take into account additional 

plant components impacted by the disease, such as its 

panicle as well as neck region, and tip of the leaf. 

Development of an online disconnected, optimised 

application for Android low-range smartphones with a 

monitoring server to carry out immediate diagnosis, and the 

validation of an optimal algorithm for the identification of 

multiple illnesses and deficiency instances in just one 

capture, a common field condition that has not been 

explored by prior studies. 

2. Method 

2.1 Disease Description 

Plant diseases can be classified as either biotic or abiotic. 

Identical collections of traits are revealed by distinct 

sections of plant by diseases. Certain traits remain unique 

for specific regions of the realm, while other traits could be 

common throughout a large number of locations. The 

identification and subsequent diagnosis of plant diseases are 

greatly aided by this distinctive analysis. Following are 

some descriptions of plant disease traits and deficient 

symptoms. 

2.1.1 Rice Blast 

Magnaporthe oryzae, a pathogen that damages rice plants, 

is the source of the fungal disease known as rice blast 

disease. It is one of the most devastating diseases that can 

affect rice crops and is responsible for significant yield 

losses in many parts of the world, particularly in Asia. The 

disease can occur at any stage of rice growth, from seedling 

to mature plants, and can affect all parts of the plant, 

including the leaves, stems, and grains. [22] Symptoms of 

the disease include elliptical or spindle-shaped lesions on 

the leaves, which can turn from grayish-green to brown or 

black over time, and lesions on the stems and grains. In 

severe cases, the entire plant can be destroyed. The fungus 

that causes rice blast disease can be spread through infected 

seeds, wind, and water, as well as through contact with 

infected plants or soil [23]. Management of the disease 

incorporates cultural customs such as rotation of crops and 

the adoption of resistant cultivars, and pesticide control 

measures such as fungicides. 

2.1.2 Brown spot 

Rice plants are susceptible to the fungal disease known as 

brown spot, which is brought on by the fungus Cochliobolus 

miyabeanus. It is most commonly found in tropical and 

subtropical regions, and can cause significant yield losses in 

rice crops. Symptoms of brown spot usually appear on the 

leaves, and can include small, circular, or oval lesions with 

a yellowish-brown color. These lesions may have a dark 

brown border and may coalesce to form larger lesions. As 

the disease progresses, the lesions may turn grayish-white 

or tan in the center, with a reddish-brown border. The 
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disease can also affect the panicles and seeds of rice plants, 

leading to reduced grain quality and yield. Brown spot can 

be spread through water, wind, and insects. Management of 

the disease incorporates cultural customs such as rotation of 

crops and the adoption of resistant cultivars, and pesticide 

measures such as the use of fungicides. 

2.1.3 Stem rot 

Sclerotium oryzae, a fungus, is the cause of the fungal 

disease known as stem rot, which can harm rice plants. It is 

commonly found in tropical and subtropical regions and can 

cause significant yield losses in rice crops. Symptoms of 

stem rot usually appear throughout the rice plant's 

reproductive stage, and can include wilting of the leaves, 

yellowing of the leaves, and drying of the stem. Infected 

stems can also have lesions that appear sunken and dark 

brown in color. The disease can also affect the roots and 

cause the plant to lodge or fall over. Stem rot can be spread 

through water, wind, and soil. Management of the disease 

involves cultural practices such as rotation of crops and the 

adoption of resistant cultivars, and pesticide control 

measures such as the use of fungicides. 

2.1.4 Leaf burn 

"Leaf burn" - general term that can refer to several different 

types of damage or diseases that cause burning or scorching 

of rice leaves. The symptoms of leaf burn in rice crops can 

vary depending on the underlying cause. Some general 

symptoms are discoloration, necrosis, curling, brittle leaves 

and stunted growth. 

2.1.5 Leaf smut 

Entyloma oryzae, a fungus, is the source of the fungal 

disease known as leaf smut, which can harm rice plants. It 

is commonly found in tropical and subtropical regions and 

can cause significant yield losses in rice crops. Symptoms 

of leaf smut usually appear during the vegetative stage of 

the rice plant, and can include yellowing and browning of 

the leaves. The affected leaves can have black or brown 

spots or lesions, and may become twisted or deformed. As 

the disease progresses, the affected leaves may wither and 

die, reducing the plant's ability to photosynthesize and 

produce grains. Leaf smut can be spread through water, 

wind, and soil. Agricultural practices including rotation of 

crops, the use of resistant cultivars, and pharmacological 

control methods like the use of fungicides are all used in the 

management of the disease. 

2.1.6 Bacterial blight 

A dangerous disease of rice plants called bacterial blight is 

brought on by the bacterium Xanthomonas oryzae. It can 

cause significant yield losses in rice production and is a 

significant worry for rice producers in many parts of the 

world. Symptoms of bacterial blight can vary depending on 

the stage of the infection, but often start with leaf lesions 

stained with water. As the disease progresses, the lesions 

turn yellow or brown and can become necrotic, leading to 

the death of the leaf. The disease can also cause lesions on 

the stems, panicles, and seeds, which can result in 

shrivelled, sterile grains. Bacterial blight can be spread 

through infected seeds, water, wind, and insects. 

Management of the disease involves cultural practices such 

as rotation of crops and the adoption of resistant cultivars, 

and pesticide control measures such as the use of copper-

based bactericides. 

2.1.7 Rice tungro virus 

Rice tungro is a viral disease that can affect rice plants, 

resulting two different viruses: Rice Tungro Bacilliform 

Virus (RTBV) and Rice Tungro Spherical Virus (RTSV). It 

is spread by an insect called the green leafhopper 

(Nephotettix virescens). Symptoms of rice tungro usually 

appear during the vegetative stage of the rice plant, and can 

include stunted growth, yellowing and wilting of the leaves, 

and reduced tillering. Infected plants may also have fewer 

panicles and produce fewer grains, leading to reduced yield. 

The disease can also cause discoloration of the stem and 

roots. Rice tungro can be spread through infected seed, 

infected plant debris, and the green leafhopper. 

Management of the disease involves methods of cultivation 

like planting resistant cultivars and rotating crops, and the 

use of insecticides to control the leafhopper vector. 

2.2 DEFICIENCY SYMPTOMS OF RICE 

Rice plants require a range of essential nutrients to grow and 

develop properly. Deficiencies in any of these nutrients can 

lead to symptoms that can affect the growth and yield of the 

crop.  

2.2.1 Nitrogen (N) deficiency:  

Leaves turn yellowish-green and have a general lack of 

vigor. Older leaves tend to turn yellow first, while younger 

leaves remain green. Plants may also exhibit stunted growth. 

2.2.2 Potassium (K) deficiency:  

Older leaves develop yellow or brown spots and may show 

symptoms of scorching or burning around the edges. Plants 

may also exhibit stunted growth and reduced tillering. 

2.2.3 Sulfur (S) deficiency:  

Leaves turn pale yellow and may show signs of scorching 

or burning around the edges. Plants may also exhibit stunted 

growth and reduced tillering. 

2.2.4 Magnesium (Mg) deficiency:  

Leaves turn yellow between the veins, while the veins 

remain green. Plants may also exhibit stunted growth and 

reduced tillering. 
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2.2.5 Zinc (Zn) deficiency:  

Young leaves develop small, yellowish-white spots that can 

grow in size and become necrotic. Plants may also exhibit 

stunted growth and reduced tillering. 

2.2.6 Iron (Fe) deficiency:  

Young leaves turn yellowish-white, while older leaves 

remain green. Plants may also exhibit stunted growth and 

reduced tillering. 

2.2.7 Phosphorus (P) deficiency:  

Leaves turn reddish-purple or brown, starting at the tips and 

margins of the leaves. Plants may also exhibit slow growth 

and reduced tillering. 

2.3 Image capture: 

An aggregate of 2500 photos were utilised, of which 1000 

were drawn from the plant village data collection [24], 1500 

from several farms in rural areas close to Kancheepuram, 

India, as well as in various locations in the Kancheepuram 

and Cuddalore districts of Tamil Nadu, India. Images were 

captured at several phases of rice development, from early 

tillering through panicle initiation, and under various 

daylight situations.   

When the macro mode option wasn't available, several 

pictures were also captured using a hand as the rice leaf's 

background. Images from 12 distinct illness classes are 

included in the original data set.  Images of the healthier leaf 

are additionally captured in fields that have images of the 

diseased leaf. 

2.4 Image pre-processing: 

The field-gathered images were resized, the foreground was 

segmented, and the dataset was balanced. The piXel-area 

relationship was used to do image resampling in order to get 

moire' effect-free images [25]. Using the Grab-Cut 

technique, which makes use of the Gaussian MiXture Model 

(GMM), images' foregrounds were segmented [26]. The 

intended foreground was placed inside a region of interest 

(ROI), and all other pixels were designated as background. 

The hard-labeled data was then utilised to generate a piXel 

distribution using GMM. 

Then, using pixels as a node, a pixel-distribution graph was 

built. Source and Sink, two additional nodes, were added to 

connect the piXels in the foreground and background, 

respectively. Based on its likelihood of appearing in the 

foreground or background, every node had a connection to 

either the sink or its source. The source and sink were then 

divided using a min-cut algorithm with a minimum expense 

function. The distribution of images within the image 

dataset was not equal for each class, which could have 

hampered classification performance.  

As a consequence, 600 photos were produced under each 

class after performing random oversampling on the data for 

all classes. To create an established data set for neural 

network training and validation, random oversampling 

procedures including random rotation, accidental noise 

injection, and picture flipping are employed. Testing data 

sets for each category were gathered from the input areas 

and processed using scaling and foreground separation to 

assess the model's effectiveness on real-world data. 

2.5 Android interface: 

 Many process-related costs can be cut with the help of a 

smartphone user interface that has been improved. In order 

to decrease this time and improve user-friendliness, the 

"Farmer" user interface for the was created with a particular 

task-based framework on the display. Two interfaces were 

included with the application: one for choosing an image 

within the gallery and another for taking a picture using the 

camera. The image is compressed by the application camera 

to 80% of its original quality. 

2.6 Application validation: 

 All actions can be carried out by the built Android 

application when it has been set up on a smartphone device, 

both in offline as well as online modes. Application logs 

were kept up with and kept on the device locally. Logs were 

sent to the server whenever the internet was accessible, 

performance thresholds were specified, and anytime a 

forecast fell under a predetermined value, it was posted to 

the server. Nine scalar measures were used to gauge the 

model's performance after 50 iterations of training on the 

complete data set. Since there is no one, clear statistic that 

can be used to assess the correctness of any neural network 

model, metrics including F- beta, average, false positive rate 

and Matthew's correlation coefficient were employed. 

Additionally, we examined the receiver operational 

characteristics of the model, which show how it is able to 

differentiate between classes. 

3. RESULTS AND DISCUSSION  

 600 processed photos were used for model validation and 

training across 50 phases for experimental purposes, with a 

70:30 training to validation ratio. The effectiveness of the 

"Farmer" application was also evaluated using more than 

100 real-field photos having at least one disease class in the 

ROI. On an Infinix smartphone, more than 100 photos were 

used to assess the application's usefulness in a situation with 

various disease incidences. Table 1 gives the outcome for 

the photographs with various disease conditions. The 

confidence never fell below 10%, even under the worst-case 

scenarios.  Therefore, a 10% confidence level was used for 

the models. A disease occurrence was communicated to the 

user when confidence of classes exceeded 10%.  

As a result, the approach demonstrated promise in 

circumstances where the ROI may contain different 
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diseases. In conclusion, this Android app can be used to do 

fieldwork in remote and often impacted areas of poor 

nations. Field surveys may be simpler for young farmers and 

village-level agronomists because the application doesn't 

require an internet connection to function. Additionally, 

local organisations and research facilities can use the logs 

gathered on the server to monitor the severity of plant 

diseases and issue agricultural advisories in a region. 

Table1. Training and validation performance of the 

application 

 

 

Additionally, this method can be expanded to create models 

for other valued crops by modifying the model parameters 

and adding useful application methods. As a result of the 

application's current concentration on plant illnesses that 

impact the leaves, the algorithm can be enhanced to find 

disease symptoms on additional damaged parts of the plant. 

4. CONCLUSION  

Using stochastic depth optimisation with  frozen 

convolution to classify crop illnesses and insufficiency signs 

from photos captured by smartphones, this paper assessed 

the outcome of well-known existing models. Last but not 

least, the Android app "Farmer" successfully identified 

many disease instances in the very first capture, highlighting 

the potential of the recommended method for rapid and on-

field rice disease diagnosis in the future. This investigation 

concentrated on the field identification of complicated 

issues such as the incidence of various crop diseases, 

macronutrient deficiencies, and diseases that co-occur with 

nutritional shortages. Notably, The application was created 

using the best model based on its quick prediction time, 

ability to handle a sizable dataset of images, and reasonably 

compact size, that is appropriate for the majority of 

cellphones that producers can use.  When taken as a whole, 

this study offered a novel concept for rural communities and 

field-level consultants to use to detect crop diseases using 

typical Android cellphones, suggesting both scientific and 

realistic value for disease identification. The method 

outlined here can be tested in the future to detect signs of 

crop micronutrient insufficiency that are frequently 

overlooked. 
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