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Abstract: Polymeric materials play a pivotal role across numerous applications, driving innovation in various sectors. However, evaluating 

the properties of polymers traditionally involves costly and time-consuming experimental procedures. In this document, we explore the 

application of computational approaches, particularly machine learning (ML), in predicting crucial polymer properties, with a focus on the 

melting temperature (Tm). We introduce an Artificial Neural Network (ANN) model trained on molecular parameters to accurately predict 

Tm, demonstrating its effectiveness and affordability in comparison to conventional techniques. Additionally, we delve into the significance 

of polymer fingerprinting techniques, particularly Extended-Connectivity Fingerprints (ECFP), in encoding complex polymer structures 

for ML applications. Furthermore, we discuss feature engineering techniques such as Feature Selection and Feature Extraction, essential 

for refining input data and optimizing model performance. Finally, we detail the development of our ML model, including integration 

layers, optimization strategies, and hyperparameter tuning, emphasizing its potential for advancing polymer science and engineering. This 

comprehensive approach opens up new possibilities for material research and design while also advancing our understanding of polymer 

behavior. 
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1. Introduction 

Polymeric materials hold immense significance across various 

domains, profoundly influencing human life through their diverse 

applications. The quest for improved performance metrics such as 

enhanced strength, reduced weight, and minimized environmental 

impact has fueled extensive exploration into novel polymers and 

the reevaluation of existing materials. However, traditional 

methods for evaluating candidate materials incur significant costs, 

prompting a shift towards computational approaches as a viable 

alternative. Understanding polymeric materials requires 

consideration of their hierarchical structure, spanning multiple 

length scales from molecular details to macroscopic dimensions. 

Molecular characteristics dictate structural stability, while chain 

interactions and domain formations at the mesoscale affect 

properties like elasticity and permeability. At a macroscale level, 

factors such as processing conditions and dimensions impact 

characteristics like optical transparency and tensile strength. 

Developing effective multiscale modeling approaches is essential 

for comprehensively understanding polymeric materials, although 

traditional methods may be limited in exploring a large number of 

materials due to extensive simulations and complex algorithms. 

Machine learning (ML) techniques have emerged as promising 

tools in predicting polymer properties, with successful applications  

in forecasting parameters like glass transition temperature (Tg) and 

tensile strength. Leveraging ML methods such as support vector 

regression and artificial neural networks (ANN) has proven 

effective in accurately predicting complex polymer properties. 

Shifting focus to predicting the melting temperature (Tm) of 

polymers through ANN introduces a transformative approach, 

addressing limitations of traditional experimental methods such as 

DSC and DMA. Our research employs ANN to predict Tm by 

exploring relationships between molecular parameters and 

polymer characteristics. ANNs, known for their pattern 

recognition capabilities, enhance prediction efficiency at a low 

cost, contributing to a deeper understanding of polymer behavior. 

The ANN architecture involves convolutional layers for feature 

extraction from encoded monomer structures, followed by 

flattening and fully connected layers for processing and prediction. 

Optimization strategies like customized loss functions and 

hyperparameter tuning enhance model robustness and efficiency. 

The developed ANN model offers a rapid, accurate, and cost-

effective means of predicting Tm, aiding in polymer design and 

enhancing comprehension of complex molecular relationships. Its 

ability to generalize patterns and learn relationships makes it a 

valuable asset in polymer science and engineering, opening 

innovative avenues for material design and development.  

 

2. EXPERIMENTAL METHODS 
2.1. Polymer Data Acquisition 

The polymer dataset employed in this study was sourced from 

Khazana, a reputable repository renowned for its extensive 

collection of polymer data. This dataset comprises a diverse range 

of features essential for the comprehensive analysis and prediction 

of polymer properties. Notably, the dataset includes Atomization 

Energy (Eat), which quantifies the energy required to disassemble 

a polymer into its constituent atoms per atom. Additionally, 

Crystallization Tendency (Xc) is represented as a percentage, 

indicating the likelihood of polymer crystallization. Band Gap 
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Chain (Egc) and Band Gap Bulk (Egb) features denote the energy 

disparity between the conduction and valence bands in polymer 

chain and bulk states, respectively. Furthermore, Electron Affinity 

(Eea) and Ionization Energy (Ei) metrics quantify the energy 

necessary for adding or removing electrons from polymer 

molecules. Refractive Index DFT (nc) and Dielectric Constant 

DFT (eps) offer insights into the optical and electrical 

characteristics of polymers. This comprehensive feature set 

provides a solid foundation for in-depth analysis and modeling of 

polymer behavior, thereby facilitating advancements in material 

design, characterization, and optimization. 

Ahead of delving into individual module explanations, the (Figure 

1) elucidates the hierarchical arrangement and interdependencies 

of the system components, offering insights into the flow of data 

and processing steps.

 

                                                                       Table 1. Polymer Properties 

 
 

 
Figure 1. Architecture Diagram 

 

2.2. Conversion of SMILES 

The process of converting polymer names into Simplified 

Molecular Input Line Entry System (SMILES) notation involves 

several steps aimed at representing the chemical structure of 

polymers in a standardized format. In this study, an automated 

approach was employed for SMILES conversion to ensure 

efficiency and accuracy. Specifically, the polymer names were 

inputted into a specialized software tool designed for chemical  

 

structure representation. One such commonly used software is the  

RDKit library in Python, which provides a range of functions for 

handling chemical data, including SMILES conversion. The 

RDKit library utilizes algorithms and databases to interpret 

polymer names and generate corresponding SMILES strings. 

These strings encapsulate the structural information of polymers in 

a concise and machine-readable format, facilitating further 

analysis and modeling. By leveraging automated tools like RDKit, 

the SMILES conversion process ensures consistency and 

reliability in representing polymer structures for subsequent 

feature engineering and modeling tasks. 

2.3. Extraction of Features 

Feature engineering involves the systematic process of extracting 

or generating relevant features from the SMILES representations 

of polymers to facilitate subsequent analysis and modeling. In this 

study, feature engineering was conducted with a focus on 
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extracting informative features from the chemical structures 

encoded in SMILES notation. A specific technique employed for 

feature selection was Recursive Feature Elimination (RFE), a 

widely used method in machine learning for identifying the most 

relevant features. RFE systematically removes features from the 

dataset while training the model and evaluates the model's 

performance at each iteration. By iteratively selecting and 

removing features based on their importance, RFE identifies the 

subset of features that contribute most significantly to predicting 

polymer properties. Additionally, other feature extraction 

techniques, such as molecular fingerprinting methods like 

Extended-Connectivity Fingerprints (ECFP), were utilized to 

capture the structural characteristics of polymers. These techniques 

encode molecular structures into numerical representations, 

enabling the extraction of relevant features for modeling. Overall, 

feature engineering in this study aimed to enhance the predictive 

performance of the models by selecting and generating informative 

features from the SMILES representations of polymers. 

2.4. Fuzzy Logic Integration 

After performing feature engineering to extract relevant features 

from the polymer data, the next step involves integrating fuzzy 

logic techniques to handle uncertainty and imprecision in the input 

data. Fuzzy logic operates through several key steps to achieve 

this. Firstly, in the fuzzification step, numerical input parameters 

are transformed into fuzzy sets using appropriate membership 

functions. These membership functions assign degrees of 

membership to linguistic terms, capturing the uncertainty inherent 

in polymer properties. Mathematically, fuzzification can be 

represented as  Equation (1) : 

Fuzzification: x→μ(x)                  (1) 

 

Following fuzzification, fuzzy inference rules are applied in the 

inference engine. These rules encode expert knowledge or data-

driven relationships between input features and polymer 

properties. The inference process combines the fuzzified input data 

with the fuzzy rules to generate fuzzy output values representing 

polymer characteristics. The fuzzy inference is stated as Equation 

(2) : 

Fuzzy Inference: Output=f(Input)          (2) 

 

Finally, in the defuzzification step, fuzzy output values are 

converted into crisp numerical predictions using defuzzification 

techniques. This process extracts a single, actionable prediction 

from the fuzzy output values, facilitating decision-making in 

polymer property prediction. One common defuzzification method 

is the centroid method, which computes the center of gravity of the 

fuzzy output membership functions. The formula for 

defuzzification using the centroid method is expressed in Equation 

(3) : 

y=∑iμi∑i(μi⋅Valuei)                              (3) 

 

By integrating fuzzy logic techniques after feature engineering, 

uncertainties and imprecisions in the input data are effectively 

managed, resulting in a more robust representation for subsequent 

modeling of polymer properties. 

2.5. Prediction of Polymer Property using Artificial Neural 

Networks  

Predicting the melting temperature (Tm) of polymers plays a vital 

role in material science and engineering, as it governs a wide range 

of properties and applications. Artificial Neural Networks (ANNs) 

have emerged as powerful tools for this task, offering a data-driven 

approach to unveil the complex relationships between a polymer's 

structure and its thermal behaviour. 

2.5.1. Input Data Representation  

In predicting the melting temperature (Tm) of polymers using 

artificial neural networks (ANNs), input data quality is paramount. 

Typically, binary images encoding polymer structure are utilized. 

Each pixel in these images corresponds to a location within the 

polymer chain, with 1 representing atom presence and 0 indicating 

empty space. Techniques like zero-padding standardize image 

dimensions, crucial for unbiased consideration of structural 

features. 

2.5.2. Processing through Hidden Layers 

Hidden layers play a crucial role in ANNs, enabling the extraction 

of intricate patterns from input data. Within these layers, neurons 

receive activations from the preceding layer as inputs. Each neuron 

conducts computations by calculating a weighted sum of these 

inputs, modulated by learned weights and a bias term. The 

integration of non-linear activation functions, such as Rectified 

Linear Unit (ReLU), introduces essential non-linearity, facilitating 

the extraction and transformation of features within the network. 

2.5.3. Training and Optimization 

ANN training involves exposing the network to a dataset of 

polymer structures and their measured Tm values. Stochastic 

Gradient Descent (SGD) optimizes the network by iteratively 

updating weights and biases to minimize a loss function, 

measuring the variance between predicted and actual Tm values. 

SGD updates weights and biases based on gradients of the loss 

function, iteratively improving the network's comprehension of 

data and prediction accuracy. Other optimization methods like 

Adam and RMSprop offer adaptive learning rates for faster 

convergence. Weight Update (SGD) can be calculated as: 

 

                   𝑤𝑖𝑗
(𝑡+1)

= 𝑤𝑖𝑗
(𝑡)

− 𝜂
𝜕𝐿

𝜕𝑤
𝑖𝑗
(𝑡)                   (4)   

 In Equation (4)  𝑤𝑖𝑗
(𝑡)

 represents the weight between neuron i in 

layer l−1 and neuron j in layer l at iteration t, η is the learning rate, 

and 
𝜕𝐿

𝜕𝑤𝑖𝑗
 is the loss function's gradient in relation to weight.               

2.5.4. Output Layer  

The output layer generates the final Tm prediction based on 

processed information from the last hidden layer. It computes the 

activation of a neuron using a weighted sum of inputs, with a bias 

term. Here, y_pred is computed by Equation (5) 

   𝑦𝑝𝑟𝑒𝑑 = ∑ 𝑤𝑗
(𝐿)

. ℎ𝑗
(𝐿)

+ 𝑏(𝐿)
𝑘

𝑗=1
                         (5) 

Where 𝑤𝑗
(𝐿)

represents the weight of the connection between 

neuron j in the last hidden layer and the output neuron, ℎ𝑗
(𝐿)

 denotes 

the activation of neuron j in the last hidden layer, 𝑏(𝐿) is the bias 

term for the output neuron and k is the number of neurons in the 

final hidden layer. The output represents the predicted Tm of the 

polymer based on learned patterns and relationships captured by 

the neural network.
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3. Results And Discussion 
3.1. SMILES Output 

The (table 2) presents the conversion of polymer names to 

Simplified Molecular Input Line Entry System (SMILES) 

notation, providing a concise representation of polymer 

structures. Each entry in the table corresponds to a 

polymer sample, facilitating efficient data handling and 

analysis for predictive modelling.

 

                                                          Table 2. Polymer Name and Corresponding SMILES Notation

 
Sl.No                 Polymer Name                             SMILES 

1 1,4-cyclohexanedimethanol OC(=O)CCCCCCCCC(=O)O 

2 1,12-dodecanedioic acid C(CCCC(=O)O)CCCC(=O)O 

3 neopentyl glycol CCC(CO)(CO)CO 

4 2,2,4,4-tetramethyl-1,3-cyclobutanediol CC(CO)CO 

5 1,4-cyclohexanedicarboxylic acid OCCCO 

6 isophthalic acid OCCCO 

7 azelaic acid O=C(O)c1cccc(C(=O)O)c1 

8 isophthalic acid CCC(CO)(CO)CO 

9 1,4-cyclohexanedicarboxylic acid OCCCCCCO 

10 trimethylolpropane OCCCO 

 

3.2. Chi-Square Test for Feature Extraction 

The chi-square test is used by the system to determine 

whether each feature value in the table is independent or 

connected before extracting the Zoning feature. A 

contingency table is used in the test to assess the data. Both 

hypothesis H0: variable 1 is independent of variable 2, and 

hypothesis H1: variable 1 is not independent of variable 2, 

are ways to represent the Chi test. The test supports the 

assumed hypothetical probability fit to the observed data. 

Testing for homogeneity and attribute independence is the 

primary goal of the chi-square . Let the Observed variable 

be the polymer feature. The chi-square test of the 

independence test statistic is χ2, and it is computed as 

 

 

where Eij is the observed frequency of the polymer 

features in the contingency table's ith row and jth column 

and Oij is the forecasted frequency of the polymer features 

in the contingency table's ith row and jth column.The χ2 

test is employed to evaluate the relationship between 

independent and dependent variables, particularly in 

feature extraction methods for polymer property 

prediction. If the computed χ2 value exceeds the critical 

value derived from the χ2 table, the null hypothesis (H0) 

is rejected. In contrast, if it falls within the critical value, 

the null hypothesis is acknowledged. In a recent analysis, 

the computed χ2 value was 2.923, surpassing the critical 

value of 15.51 for a 95% confidence level. Consequently, 

the null hypothesis is accepted, indicating that the zoning 

method's feature vector values are not independent. This 

underscores the dependency of observed polymer feature 

values on melting temperature, validating the 

effectiveness of the feature extraction method in 

predicting polymer properties. 

Table 3. Chi-Square Test for Goodness of Fit Results 

Category         Oi          Ei      (Oi – Ei)2/Ei 

      1        97        93.9            0.10 

      2        70        68.3            0.04 

      3        55        56.3            0.03 

      4        44        45.2            0.03 

      5        45        46.9            0.07 

      6          9        11.1            0.39 

      7          7          8.1            0.14 

      8          8          6.7            0.25 

      9          7          5.3            0.54 

    10          6          5.5            0.04 

    11          4          4.8            0.13 

    12          3          3.5            0.07 
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3.3. Performance Evaluation of Machine Learning 

Techniques for Predicting Polymer Properties 

A thorough quantitative assessment of the model's 

prediction accuracy is provided by the performance 

evaluation metrics, which include mean absolute error 

(MAE), coefficient of determination (R-squared), and 

median relative error (MRE). These metrics serve as 

foundational benchmarks for evaluating the efficacy of the 

ANN model in capturing the complex relationship 

between polymer structure and melting temperature. 

3.3.1. Mean Squared Error (MSE) and R-squared (R2) 

Values 

 

(Table 6) represents comparison graphs to illustrate the 

predictive accuracy of different machine learning 

techniques, including ANN, in predicting polymer 

properties. These graphs depict the predicted Tm values 

versus the actual Tm values for each model, allowing for 

a direct comparison of their performance. From the results, 

it is evident that the ANN model outperforms other 

machine learning techniques in terms of predictive 

accuracy, achieving the lowest MAE and MRE values and 

the highest R-squared value. This indicates that the ANN 

model provides more accurate predictions of polymer Tm 

compared to other models. 

Table 4. Evaluation of Fuzzy Rules                                                                       Table 5. Membership and crisp values     

       

2. Rule 3. MW 

Membership 

4. Tg 

Membership 

5. Hardness 

Membership 

6.  1 7. Low (0.5) 8. Low (0.4) 9. High (0.4) 

10. 2 11. Medium 

(0.5) 

12. Medium 

(0.4) 

13. Medium 

(0.5) 

14. 3 15. High (0.1) 16. High (0.3) 17. Low (0.1) 

                                                

Table 6. Model Performance Metrics 

 

Model Mean Absolute Error R-squared  Median Relative Error  

ANN 0.12 0.85 0.08 

Random Forest 0.15 0.78 0.12 

Support Vector Machine 0.18 0.72 0.15 

Gradient Boosting 0.11 0.88 0.07 

 

3.3.2. Comparison of Predicted Melting Temperature 

(Tm) Values by Machine Learning Models 

The graphical representations serve as crucial tools in 

assessing the predictive capabilities of the model. (Figure 

2), depicting the actual versus predicted melting 

temperature plot, showcases the model's alignment with 

observed data points, ideally clustering closely around the 

identity line for precise predictions. Additionally, (Figure 

3), the residual plot, offers deeper insights into the model's 

performance by displaying the distribution of residuals.   

 

    13          3          2.9            0.03 

    14          2          2.3            0.03 

    15          4          2.4            1.06 

      364        χ2 = 2.923 

Linguistic Term Membership Crisp Value 

Low 0.4 20 

Medium 0.5 50 

High 0.1 80 
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    Figure 2. Actual Vs Predicted Melting Temperature                                             Figure 3. Residual Plot 

3.4. Outputs of Polymer Genome Analysis 

Polymer Genome is an advanced computational tool designed to 

facilitate the analysis, prediction, and optimization of polymer 

properties. Leveraging cutting-edge algorithms and machine 

learning techniques, Polymer Genome enables researchers and 

material scientists to explore the vast landscape of polymer 

chemistry with unprecedented efficiency and precision.  

This work is applied for single polymer in polymer genome tool. 

Given Below are the property values for the polymer having 

SMILES notation 

[*]=CC2CC(C=[*])C3CN(c1cc(C(F)(F)F)cc(C(F)(F)F)c1)CC23 

 
                                                                                                                 Table 7. Predicted Properties 

                     

                Figure 4. Polymer Structure 

Proposed avenues for future research focus on refining the ANN 

model, addressing identified limitations, and expanding its scope 

to encompass a broader range of polymer systems and properties. 

By leveraging machine learning techniques and advanced 

computational methodologies, researchers can continue to push the 

boundaries of predictive modelling in polymer science, ultimately 

facilitating the design of novel materials with tailored properties 

and enhanced performance characteristics. 

 

4. Conclusion 
In this study, we explored the application of Artificial Neural 

Networks (ANN) in predicting the melting temperature (Tm) of 

polymers, offering a rapid and cost-effective alternative to 

traditional experimental methods. By training ANN models on 

parameters, molecular weight, glass transition temperature etc, we 

achieved accurate predictions of Tm. Our results underscored the 

effectiveness of convolutional layers for feature extraction from 

encoded monomer structures, coupled with optimization 

techniques such as customized loss functions and hyperparameter 

tuning, in enhancing model performance. The evaluation metrics 

provided comprehensive insights into the predictive accuracy of 

the ANN model, with graphical representations elucidating its 

capabilities and limitations. The ability of the model to capture 

intricate interactions between polymer structure and melting 

temperature was demonstrated by the residual analysis and the 

actual versus projected Tm plot. Furthermore, discussions 

highlighted the practical implications of our findings in materials 

science and engineering, emphasizing the potential of ANN 

models to guide materials design and development efforts. Moving 

forward, future research endeavours will focus on refining the 

ANN model, addressing inherent limitations, and expanding its 

applicability to diverse polymer systems and properties. By 

harnessing machine learning techniques and advanced 

computational methodologies, we aim to advance predictive 

modelling in polymer science, ultimately facilitating the design 

and synthesis of innovative materials with tailored properties and 

enhanced performance characteristics. 
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