

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 3650–3658 | 3650

Consumption and Realization of Conditional Convolutional Variational

Autoencoder for Robot Trajectory Learning

Midhun Muraleedharan Sylaja*1, Ann Varghese2, James Kurian3

Submitted: 29/01/2024 Revised: 08/03/2024 Accepted: 15/03/2024

Abstract: Learning‐based motion planning methods have recently shown notable advantages in solving multiple planning challenges in

high‐dimensional spaces and challenging situations. The complex higher‐dimensional trajectory with many constraints makes the robot

task generation complicated. Furthermore, the availability of a sizeable robot open dataset for path learning is a significant challenge. In

this work, a variant of Conditional Variational Autoencoder with Convolutional Neural network is utilised to capture each task’s hidden

probability distribution and generated back from the latent representation. The proposed approaches focuses on a generative model for

offline generation of trajectory continuous task under static structured environment. The implemented model interfaced with the Robot

Operating System (ROS) layer, which can directly feed into any ROS enabled robots. Reconstructed error, precision and accuracy were

evaluated by the experiment of robot trajectory with reconstructed trajectory and yielded encouraging results.

Keywords: Variational Autoencoder, Robotics, Deep Learning, Machine Learning, Trajectory Continuous Task

1. Introduction

Robot trajectory planning is a fundamental aspect of

robotics, involving the generation of precise paths and

orientations that a robot follows during its motion. Humans

face difficulty identifying the raw robot trajectory points as

the robot moves in a very complex path and it is a

challenging task to visualise the robot’s movement. Various

advanced algorithms, including Deep Learning [1], [2],

Genetic algorithms [3], Model Predictive Control [4],

Rapidly exploring Random Trees [5], Swarm optimisation

[6] etc., were utilised to make collision-free smooth motion

for various applications.

A robot task is a specific operation or action that a robot is

programmed to perform to achieve a predefined objective.

Robot tasks can be categorized into sequencing tasks and

continuous tasks. The principal objective of sequencing

tasks revolves around minimizing time and effort by

determining the optimal sequence of actions [7], [8], [9]. In

contrast, continuous tasks encompass both path continuous

tasks and trajectory continuous tasks, where the robot’s end

effector must follow a seamless and uninterrupted motion

within the task space [10], [11], [12]. Quang-Nam and

Quang-Cuong discuss about the trajectory optimisation task

in the context of 3D printing [5]. This entails the execution

of a time-parameterized path while concurrently engaging

in the printing process.

Recent advancements in the field of Generative modelling

yielded mind-blowing outputs [13], [14], [15]. David Ha

and Douglas Eck presented a sequence-to-sequence network

for sketch generation [16]. Chao et al. put forth Chinese

character drawing robots using recurrent neural networks,

which is limited to the too-small number of strokes [17].

Shao et al. enhances the character generation using images

and generate sequence by sequence, which is also limited to

a small number of strokes and the network uses recurrent

deep learning layers which causes the training process much

slower [18].

Neural network layers encapsulate the hidden complex

structure of the data distribution. Autoencoder (AE) is an

unsupervised neural network architecture used for non-

linear data-specific dimensionality reduction, where output

data has same shape as input [19]. Variational Autoencoder

(VAE) is a hybrid architecture of deep learning and

variational inference which generates new data similar to

the input. VAE is a stable and flexible generative model

suitable for art generation [20]. A conditional variational

autoencoder for robot path individually generates various

paths.

Drawing a picture on canvas with pen lift between strokes

is a subset of robot tasks, is taken for generating the dataset.

The model can instruct to generate different robot sketches

by giving task as draw an apple. The learned probability

representation produces realistic generative sketches. Each

path contains a higher-dimensional time-parameterized

complex sequence of points with many constraints. Hard-

coding of each set will be time consuming and hard to

analyse and modify. Complex trajectory generation and

modification are formidably tricky even for an expert.

Conditional trajectory continuous tasks generation in

1 Department of Electronics, Cochin University of Science and

Technology, Kalamassery, India

ORCID ID : 0000-0003-3666-7520
2 Department of Electronics, Cochin University of Science and

Technology, Kalamassery, India
3 Department of Electronics, Cochin University of Science and

Technology, Kalamassery, India

* Corresponding Author Email: midhunms@cusat.ac.in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 3650–3658 | 3651

robotics is a challenging task achieved by the proposed deep

neural network architecture.

The work focus on inducing the prior knowledge into the

model as data for reducing the exploration space and to

make an offline generative model for a task structured static

environment. In this paper, a Variational Autoencoder-

based generative model is proposed, which can effectively

generate trajectories and suppress noise. The model uses

one-dimensional convolutional neural networks (CNN) for

feature extraction and generates the paths’ latent

representation in a low-dimensional space [21]. The main

contributions in this paper are summarized as

- A novel problem of conditional generation of continuous

trajectory task.

- A method to generate robot datasets from stroke based

datasets.

- A method to evaluate the performance of models based

on ISO 9283 standard.

2. System Implementation

Robots are designed to use in many different tasks with

various workspace conditions. The robot data sequence for

each joint is recorded for a fixed length (𝑁𝑚𝑎𝑥 = 512 and

feed as input data, represented by 𝑥 ∈ ℝ𝐷 Where ℝ is the

set of real numbers, and 𝐷 is the dimensionality. The label

provided as one-hot encoded and the latent space vector 𝑧

with dimensionality 𝑘 represented as 𝑧 ∈ ℝ𝑘.

In this work, a simulated version of serial manipulator

Panda robot [22], developed by Franka Emika, is employed.

Fig. 1 shows the Panda robot with the canvas and the two

poses (pen-up and pen-down). The Denavit-Hartenberg

parameters (DH parameter) [23], which describe the

geometry and kinematics of a robot’s manipulator are

shown in Fig. 1 along with the joint limits.

2.1. Dataset

Developing a robot path dataset with better two-dimensional

visualization is carried out by selecting the Quick-draw

dataset. Quick-draw [16] is the google stroke dataset

containing strokes for different images generated by people

in different parts of the world. Fig. 2 contains the steps

involved in generating the dataset. The procedure involves

extracting the raw stroke values, as depicted in Fig. 2a, from

the Quickdraw dataset. These values are then subjected to

scaling to generate waypoints for the robot’s path. During

the execution of this path, the end-effector follows a

trajectory that intersects with the canvas whenever a stroke

from the dataset is encountered. Subsequently, it is raised to

traverse to the next stroke in the sequence, a process that

continues until the completion of the drawing’s final stroke.

This approach ensures that the robot’s movement aligns

with the strokes in the dataset, replicating the desired visual

representation. Open Motion Planning Library (OMPL)[24]

- an open-source probabilistic library for robot motion

planners- is used for generating cartesian path in Robot

Operating System(ROS) (Fig. 2d)[25], [26], [27], [28]. The

robot trajectory contains a sequence of seven-dimensional

vector stored into a Hierarchical Data Format version 5

(HDF5) dataset (Fig. 2e) to deal with a much larger dataset

than memory and faster processing while training [29]. For

fed into the model, the data is normalised by using each

joints upper and lower limits, as shown in Fig. 1. Finally an

inverse transform is applied for predicted/reconstructed data

from the model.

The proposed work chooses eight different datasets as

illustrated in Table. 1 from the quickdraw dataset. Each

contains a unique id, strokes and dataset name. All datasets

contain 70k+ samples. Lots of outliers are present in

datasets since the data is generated from people from

different parts of the world.

Robot data contains different joint variables in a higher-

dimensional space. This work defined each task as a sketch

drawing path on paper. For better visualization, trajectory is

visualized by taking forward kinematics, then plotting the 𝑥

and 𝑦 on a canvas and adding the 𝑧 component as the stroke

colour.

Fig. 1. Panda robot drawing on canvas (left) with DH parameters and joint limits (right).

Fig. 1. Panda robot drawing on canvas (left) with DH parameters and joint limits (right).

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 3650–3658 | 3652

Table 1. Task dataset description with a sample from each

instance is plotted in the task space. Total instances from

each dataset is unified to avoid biasing to class imbalance

Fig. 2. Dataset generation from Quickdraw dataset, a)

Raw data from quickdraw dataset is fed into Robot

trajectory generation module. b) The Sample stroke data is

visualised with each pen stroke with a different colour. c)

ROS python module interfaced generates waypoints for

cartesian path and pass it to Moveit module using ROS

message services. d) Compute trajectory inside Moveit

module is done using RRT Planner available in Open

Motion Planning Library. Computed trajectory is converted

into same scale using the joint limits of robot. e)

Visualisation of generated trajectory in joint plots and 2D

visualisation is done using forward kinematics. f) Save the

generated trajectory into dataset for deep Learning.

2.2. Autoencoder Architecture

VAE learns the underlying probability distribution of paths

in latent dimension, and Conditional Variational

Autoencoder[30], [31], [32] is a VAE with a conditional

generation of the path with 𝑥 as inputs, 𝑦 as labels, 𝑧 as

latent representation. 𝑝𝜃(𝑥|𝑧, 𝑦) represents the prior,

𝑝𝜃(𝑧|𝑥, 𝑦) represents the posterior distributions with

normally distributed latent representation 𝑝𝜃(𝑧) =

𝒩(𝑧; 0, 𝐼𝑑) where 𝒩 represents the normal distribution, 𝑑

is the dimensionality, and 𝐼𝑑 represents the 𝑑 dimensional

identity matrix.

Fig. 3. Network architecture of Conditional Convolutional

Variational Autoencoder model with latent dimension 128.

Encoder network inputs Data and Label and produce a

latent vector. Decoder reconstruct data using latent vector

and label.

The proposed network architecture is portrayed in Fig. 3.

CNN is a specialized layer used to capture the spatial and

temporal reliance inside the data. One-dimensional CNN is

used to better capture the features in the sequential robot

data. Data and label concatenated and fed into a Fully

connected strided convolution layer [33] and a non-linear

activation function rectified linear unit (ReLU) is applied.

The re-parametrisation trick 𝑧 = 𝜇 + 𝜎 ⊙ 𝜖 (where 𝜖 ∈

𝒩(0,1)) for back-propagating in VAE is implemented

using a non-parametric Lambda layer and fully connected

dense layers for mu and sigma with linear activation. The

decoder section consists of a series of strided convolution

transpose layers with ReLU activation, and the output layer

uses the sigmoid activation function. The autoencoder

model is optimised with an RMSprop optimiser plus

minibatch gradient descent.

Given attribute input path 𝑥 ∈ ℝ𝑁𝑚𝑎𝑥×𝐷𝑜𝐹abels 𝑦 ∈ ℝ𝑙𝑎𝑏𝑒𝑙𝑠

and latent variable 𝑧 ∈ ℝ𝑙𝑎𝑡𝑒𝑛𝑡 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 forms a generator

model 𝑝𝜃(𝑥|𝑦, 𝑧) that generates realistic robot trajectories 𝑥

conditions on 𝑦 and 𝑧. The process is done in two steps,

initially sample the latent dimension 𝑧 randomly from the

prior distribution and then compute the posterior

distribution of generated path by conditioned on 𝑧 and label.

Loss Function: A key challenge when computing the

precision and accuracy is that even though the

reconstruction loss is low, computing precision and

accuracy may be higher in some cases. It is because all the

joints are not considered equally in the training. End joints

have a more negligible effect in end-effector position than

the joints near the base link. Kullback-Leibler(KL)

Divergence is a measure of how two probability distribution

is different from one another [34]. Variational autoencoder

model is trained using KL divergence loss 𝐿𝐾𝐿 and Mean

Absolute Error (MAE) employed as the reconstruction loss

𝐿𝑅. as shown in equation. 1. KL divergence will measure the

distribution mean and variance difference between normal

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 3650–3658 | 3653

distribution as shown in eq. 2. The model training is done

by finding the parameter 𝜃 that minimises the mean absolute

error.

LR=
1

𝑁
 ∑|𝑥𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑥𝑎𝑐𝑡𝑢𝑎𝑙| (1)

𝐿𝐾𝐿 = 𝑓𝐾𝐿(𝑞𝜙(𝑧|𝑥, 𝑦)||𝑝𝜃(𝑧|𝑥, 𝑦)) (2)

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑅 + 𝐿𝐾𝐿 (3)

where 𝑓𝐾𝐿 denotes KL function and 𝑁 is the total number of

data pairs used. A set of four models with different latent

dimensions as 16, 32, 64 and 128 are introduced and

represented as Model 16, Model 32, Model 64 and Model

128 respectively.

3. Qualitative Analysis

Three qualitative analysis experiments were conducted in

this study. The first experiment evaluates the visual

similarity between the command path (input path) with the

reconstructed path; the second experiment visualizes the

effect of noise in the input, and the third one plots

interpolation poses between two robot paths.

3.1. Conditional generation of path

Conditional generation of the robot path is achieved by

supplying command pose and one-hot encoded label to the

model, as presented in Fig. 4a. Fig. 5 shows a single

command path(left) and nine generated paths(right) which

shows the repeatability of the model. Conditional generation

of a single task (command path) and corresponding joint

values are plotted in Fig. 7.

Fig. 4. Conditional reconstruction with command pose and

the performance evaluation of the models a) test input from

dataset b) test input with added gaussian noise(mean=0,

variance=0.01) c) test input with added uniform

noise(peak=0.01)

Fig. 5. Conditional generation of path from the dataset by

supplying command pose and label. Input data (left) and

generated nine samples (right) in the figure from generated

Task 1 dataset.

3.2. De‐noising of the path

De-noising of input is an added advantage of the proposed

model. The noisy data input and the label encode into a

lower-dimensional latent space point, and the decoder

reconstructs it. Since the model is trained using data without

any noise, any reconstruction from the latent dimension

produces the sample from the training data’s probability

distribution. Performance evaluation is checked using two

noise models - Uniform random noise and Gaussian noise.

Gaussian noise is the normally distributed additive noise

defined by variables noise mean and variance. Uniform

random noise is an uncorrelated additive noise that follows

the uniform distribution. Evaluated performance of the

reconstruction by adding noise at the input is shown in Fig.

4b and 4c.

3.3. Latent Space Interpolation

Latent space is a compressed representation where similar

data are placed closer to each other. Probabilistic latent

space interpolation is performed using eq. 4, which morphs

one sketch to another. Fig. 6 displays the image of a path in

the dataset (Task 4) created by conditional generation.

Fig. 6. Conditional one-dimensional linear interpolation of

latent space for Task 4 dataset.

𝑧𝑘 = (𝑧𝑗 − 𝑧𝑖)𝛼 + 𝑧𝑖 (4)

where 𝛼 ∈ [0,1], 𝑖, 𝑗 ∈ 𝑁, 𝑁 is the set of natural numbers, 𝑧𝑖

and 𝑧𝑗 represent two different points on the latent space, and

𝑧𝑘 represents the linear interpolated representation between

𝑧𝑖 and 𝑧𝑗.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 3650–3658 | 3654

Fig. 7. (a) Image shows a portion of 200 time‐steps of the

commanded pose and reconstructed x, y pose (b) The

image of the corresponding joint angles are shown in

figure for all the joints (joints 1 to 7) commanded pose is

represented in

4. Performance metrics

Performance metrics consist of accuracy and repeatability

are the two prime quantitative analysis methods in robotics.

Pose Position Accuracy, Pose Orientation Accuracy, Path

Position accuracy and Path Orientation accuracy are the four

metrics analysed in this work, as defined in ISO 9283[35].

4.1. Pose Accuracy

The test procedure starts from the start point in the robot

workspace and moves till the end. Each point is visited in a

unidirectional format. Each time the position of the robot

end-effector is recorded, and then calculate the accuracy and

precision. Accuracy is computed by generating thirty

samples from each command pose of the test set.

Pose Position Accuracy Accuracy is the difference

between the centroid of generated poses (called a

barycenter) and the commanded position. The position

accuracy is calculated using the standard equation.

𝐴𝑃𝑃 = √(�̅� − 𝑥𝑐)2 + (�̅� − 𝑦𝑐)2 + (𝑧̅ − 𝑧𝑐)2 (5)

Where �̅�, �̅�, 𝑧̅ are the barycenter of position 𝑥, 𝑦 and 𝑧 and

represented as

�̅� =
1

𝑛
∑ 𝑥𝑖 ,𝑛

𝑖=1 �̅� =
1

𝑛
∑ 𝑦𝑖 , 𝑛

𝑖=1 𝑧̅ =
1

𝑛
∑ 𝑧𝑖 𝑛

𝑖=1

and 𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐 represents command poses of 𝑥, 𝑦 and 𝑧-axis

and 𝑛 represents the number of samples taken.

Pose Orientation Accuracy Fig. 1 shows the orientation

frame of the end-effector, where the roll orientation is

irrelevant while considering the drawing path. So the work

considered only pitch and yaw axes for computing accuracy

and repeatability. Pose orientation accuracy for pitch(𝛽) and

yaw(𝛾) is calculated as

𝐴𝑃𝛽 = (𝛽 − 𝛽𝑐)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (6)

𝐴𝑃𝛾 = (𝛾 − 𝛾𝑐)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (7)

Where

�̅� =
1

𝑛
∑ 𝛽𝑖 ,

𝑛
𝑖=1 �̅� =

1

𝑛
∑ 𝛾𝑖 ,

𝑛
𝑖=1

Fig. 8. Pose Precision and Repeatability of Position of the

robot end effector using Model 32

4.2. Pose Repeatability

Repeatability is a measure of the variation of the data around

the calculated centroid. Repeatability RPL is calculated

using

𝑅𝑃𝐿 = 𝐼 ̅ + 3𝑆𝐿 (8)

where 𝐼 ̅is the mean of the set and 𝑆𝐿 is the standard

deviation.

Pose Position Repeatability is calculated using eq. 8 where

𝐼 ̅ =
1

𝑁
∑ 𝐼𝑗 ,

𝑛

𝑗=1

 𝑆𝐿 = √
∑ (𝐼𝑗 − 𝐼)̅

2𝑛
𝑗=1

𝑛 − 1

𝐼𝑗 = √(𝑥𝑗 − �̅�)
2

+ (𝑦𝑗 − �̅�)
2

+ (𝑧𝑗 − 𝑧̅)
2

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 3650–3658 | 3655

Pose Orienatation Repeatability is calculated for pitch(β)

and yaw(γ) as

𝑅𝑃𝛽 = ±3𝑆𝛽 = ±3√
∑ (𝛽𝑗 − �̅�)2𝑛

𝑗=1

𝑛 − 1

𝑅𝑃𝛾 = ±3𝑆𝛾 = ±3√
∑ (𝛾𝑗 − �̅�)2𝑛

𝑗=1

𝑛 − 1

where 𝑆𝛼, 𝑆𝛽 are standard deviations

Fig. 8(left) shows the pose position accuracy and

repeatability of the robotic path in Fig. 7. The barycentre of

𝑥, 𝑦 and 𝑧-axis are more visible in the highlighted version

of path points shown in Fig. 8(right).

4.3. Path Accuracy and Repeatability

The ISO 9283 standard defines path accuracy as a metric for

assessing the quality of robot end effector movement, where

path position accuracy is determined by generating ten paths

from the command path, calculating the barycenter, and

estimating accuracy based on the maximum value of pose

accuracy. Similarly, path repeatability is estimated as the

maximum value of pose repeatability.

5. Evaluation and Applications

Autoencoder learns explicit probability distribution of the

multi-dimensional gaussian normal latent distribution. First,

demonstrate the repeatability of robotic path generation

multiple times using the same command pose as instructed

in ISO 9283 standards. Conditional generation of the path is

achieved and is shown in Fig. 4 - 6. Command poses and

reconstructed poses show a correlation. However, there are

some minor differences in each generated sample since

VAE acts like a generator model. Fig. 7 shows the joint

values corresponding to a command-pose and generated

poses. The correlation of plots shows the reconstruction

quality. Since the Variational Autoencoder is based on

probability distributed latent space, the model can predict

intermediate data generation. Fig. 7 shows linear

interpolation of generated sequences.

Table 2. Comparison of different latent space models

Accuracy and Repeatability of different datasets (mean ±

standard deviation, all values are in cm)

Task
Model

16

Model

32

Model

64

Model

128

Accuracy

Task

1

4.84 ±

3.22

3.14 ±

0.99

2.44 ±

0.70

2.68 ±

0.70

Task

2

3.15 ±

1.83

2.63 ±

0.62

2.15 ±

0.80

2.45 ±

0.55

Task

3

5.11 ±

1.69

4.44 ±

2.11

3.09 ±

0.79

3.49 ±

1.03

Task

4

6.38 ±

2.14

4.84 ±

1.73

3.50 ±

1.68

4.01 ±

1.63

Task

5

5.28 ±

2.89

3.87 ±

2.02

2.64 ±

0.57

3.87 ±

3.16

Task

6

4.24 ±

1.77

3.26 ±

0.67

2.85 ±

0.62

3.14 ±

0.91

Task

7

2.30 ±

1.45

2.21 ±

0.71

1.78 ±

0.53

2.13 ±

0.81

Task

8

2.61 ±

2.12

2.61 ±

1.89

2.08 ±

1.04

2.55 ±

1.54

Repeatability

Task

1

0.52 ±

0.15

0.80 ±

0.81

0.86 ±

0.34

1.12 ±

0.27

Task

2

0.48 ±

0.25

0.84 ±

0.34

0.89 ±

0.18

1.67 ±

0.84

Task

3

0.79 ±

0.35

0.83 ±

0.56

0.79 ±

0.19

1.21 ±

0.19

Fig. 9. Path Accuracy and Repeatability of Position and Roll and Pitch orientation of the robot end effector in Model 32

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 3650–3658 | 3656

Task

4

0.80 ±

0.55

0.98 ±

0.41

1.98 ±

3.85

2.11 ±

2.53

Task

5

0.61 ±

0.27

0.75 ±

0.26

0.68 ±

0.16

3.32 ±

6.28

Task

6

0.59 ±

0.33

0.48 ±

0.17

0.75 ±

0.15

2.13 ±

3.18

Task

7

0.48 ±

0.27

0.63 ±

0.44

0.93 ±

0.49

1.30 ±

1.14

Task

8

0.42 ±

0.17

0.65 ±

0.47

0.75 ±

0.24

1.30 ±

0.57

Pose position accuracy and repeatability of a single path is

shown in Fig. 8. It is pretty visible from the figure is that

most of the points on the path achieve pose position

accuracy much below 4cm and repeatability below 1cm.

The barycenter of the data is too close to the commanded

pose, showing better accuracy, and all generated images are

close to each other, showing better repeatability.

Fig. 9 represents the path accuracy and repeatability of a

single model (model 32) that runs on ten different

commanded paths in each dataset and observes the results.

Since the proposed dataset generation method uses data

drawn by different people from various parts of the world,

the dataset contains many outliers. While removing the

outliers, the data shows that, for this particular path, all

achieved position repeatability below 3cm and position

accuracy below 5cm. Path Orientation accuracy is below

0.03 radians, and path orientation repeatability is below 0.05

radians.

Table. 2 shows the comparison of path accuracy between

different models, among which Model 64 perform better.

However, Model 16 and Model 32 perform better in path

repeatability. While considering both path position accuracy

and repeatability, Model 64 is selected, and if it requires

more compressed latent dimension representation, Model 16

and 32 also be used. Even though as the latent space

dimension increases in the Autoencoder model, the

reconstruction loss generally decreases. However, the

computed precision and accuracy may vary because they

transform joint space data to task space points for

computation. Training of each model is done using the early

stopping method. The complexity of each dataset also

varies. Each people will generate data differently depending

on their imagination. Some common datasets like Task 1

perform well because the dataset is simple, and people from

different parts of the world draw it based on some standard

features. However, some datasets like Task 4 and Task 5

have lots of complex structures. There may not be a typical

structure in all those drawings.

Autoencoder performs lossy compression and causes the

reconstructed paths to drift in the output, reducing the path’s

accuracy and repeatability. Experts can use it to fine-tune

the robotic paths by generating, interpolating and de-

noising.

6. Conclusion

This work uses a 1D CNN-based conditional Variational

Autoencoder for the robotic path generation task. All the

models were trained using the generated dataset. Different

qualitative plots were also used to evaluate the model

performance along with quantitative measures like accuracy

and repeatability. From path position accuracy, it has been

found that all the datasets have a good accuracy value below

5cm and precision below 3cm, which is quite promising and

confirms the reliability of the proposed model.

The current system uses generated dataset of robot tasks as

there is no sizeable open dataset available. Actual robot task

trajectory can be utilized for training the model in future.

Based on the results obtained, the model will produce a

better trained model using accurate data. Since the dataset

and generated data follow similar distributions, the model

can be employed for training any continuous robot

trajectory under static structured environment with

appropriate datasets.

Acknowledgements

The authors would like to acknowledge University Grants

Commission (UGC), India under NFOBC scheme for

providing financial assistance to carry out this research

work and Cochin University of Science and Technology for

the valuable support and infrastructure.

Conflicts of interest

The authors declare no conflicts of interest.

References

[1] H. Ravichandar, A. S. Polydoros, S. Chernova, and A.

Billard, “Recent Advances in Robot Learning from

Demonstration,” Annu. Rev. Control Robot. Auton.

Syst., vol. 3, no. 1, pp. 297–330, May 2020, doi:

10.1146/annurev-control-100819-063206.

[2] S. Cebollada, L. Payá, M. Flores, A. Peidró, and O.

Reinoso, “A state-of-the-art review on mobile robotics

tasks using artificial intelligence and visual data,”

Expert Syst. Appl., vol. 167, p. 114195, Apr. 2021, doi:

10.1016/j.eswa.2020.114195.

[3] F. Zacharias, C. Borst, M. Beetz, and G. Hirzinger,

“Positioning mobile manipulators to perform

constrained linear trajectories,” in 2008 IEEE/RSJ

International Conference on Intelligent Robots and

Systems, Sep. 2008, pp. 2578–2584. doi:

10.1109/IROS.2008.4650617.

[4] G. B. Avanzini, A. M. Zanchettin, and P. Rocco,

“Constraint-based Model Predictive Control for

holonomic mobile manipulators,” in 2015 IEEE/RSJ

International Conference on Intelligent Robots and

Systems (IROS), Sep. 2015, pp. 1473–1479. doi:

10.1109/IROS.2015.7353562.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 3650–3658 | 3657

[5] Q.-N. Nguyen and Q.-C. Pham, “Planning Optimal

Trajectories for Mobile Manipulators under End-

effector Trajectory Continuity Constraint,” 2023, doi:

10.48550/ARXIV.2309.12251.

[6] R. Li, M. Liu, J. Teutsch, and D. Wollherr, “Constraint

trajectory planning for redundant space robot,” Neural

Comput. Appl., vol. 35, no. 34, pp. 24243–24258, Dec.

2023, doi: 10.1007/s00521-023-08972-5.

[7] Q.-N. Nguyen, N. Adrian, and Q.-C. Pham, “Task-

Space Clustering for Mobile Manipulator Task

Sequencing,” 2023, doi:

10.48550/ARXIV.2305.17345.

[8] J. Xu, Y. Domae, T. Ueshiba, W. Wan, and K. Harada,

“Planning a Minimum Sequence of Positions for

Picking Parts From Multiple Trays Using a Mobile

Manipulator,” IEEE Access, vol. 9, pp. 165526–

165541, 2021, doi: 10.1109/ACCESS.2021.3135374.

[9] R. Malhan and S. K. Gupta, “Finding Optimal

Sequence of Mobile Manipulator Placements for

Automated Coverage Planning of Large Complex

Parts,” in Volume 2: 42nd Computers and Information

in Engineering Conference (CIE), St. Louis, Missouri,

USA: American Society of Mechanical Engineers,

Aug. 2022, p. V002T02A006. doi:

10.1115/DETC2022-90105.

[10] L. Velazquez, G. Palardy, and C. Barbalata, “A robotic

3D printer for UV-curable thermosets: dimensionality

prediction using a data-driven approach,” Int. J.

Comput. Integr. Manuf., pp. 1–18, Sep. 2023, doi:

10.1080/0951192X.2023.2257652.

[11] J. Sustarevas, D. Kanoulas, and S. Julier, “Task-

Consistent Path Planning for Mobile 3D Printing,” in

2021 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), Sep. 2021, pp.

2143–2150. doi: 10.1109/IROS51168.2021.9635916.

[12] K. Nagatani, T. Hirayama, A. Gofuku, and Y. Tanaka,

“Motion planning for mobile manipulator with

keeping manipulability,” in IEEE/RSJ International

Conference on Intelligent Robots and Systems, Sep.

2002, pp. 1663–1668 vol.2. doi:

10.1109/IRDS.2002.1043994.

[13] H. Ha, S. Agrawal, and S. Song, “Fit2Form: 3D

Generative Model for Robot Gripper Form Design,”

2020, doi: 10.48550/ARXIV.2011.06498.

[14] S. Kumra, S. Joshi, and F. Sahin, “Antipodal Robotic

Grasping using Generative Residual Convolutional

Neural Network,” 2019, doi:

10.48550/ARXIV.1909.04810.

[15] J. J. Bird, A. Naser, and A. Lotfi, “Writer-independent

signature verification; Evaluation of robotic and

generative adversarial attacks,” Inf. Sci. Int. J., vol.

633, no. C, pp. 170–181, Jul. 2023, doi:

10.1016/j.ins.2023.03.029.

[16] D. Ha and D. Eck, “A Neural Representation of Sketch

Drawings,” 2017, doi: 10.48550/ARXIV.1704.03477.

[17] F. Chao et al., “An LSTM Based Generative

Adversarial Architecture for Robotic Calligraphy

Learning System,” Sustainability, vol. 12, no. 21, p.

9092, Oct. 2020, doi: 10.3390/su12219092.

[18] Y. Shao and C.-L. Liu, “Teaching machines to write

like humans using L-attributed grammar,” Eng. Appl.

Artif. Intell., vol. 90, p. 103489, Apr. 2020, doi:

10.1016/j.engappai.2020.103489.

[19] G. E. Hinton and R. R. Salakhutdinov, “Reducing the

Dimensionality of Data with Neural Networks,”

Science, vol. 313, no. 5786, pp. 504–507, Jul. 2006,

doi: 10.1126/science.1127647.

[20] D. P. Kingma and M. Welling, “Auto-Encoding

Variational Bayes,” 2013, doi:

10.48550/ARXIV.1312.6114.

[21] K. O’Shea and R. Nash, “An Introduction to

Convolutional Neural Networks,” 2015, doi:

10.48550/ARXIV.1511.08458.

[22] B. Zhang and P. Liu, “Control and benchmarking of a

7-DOF robotic arm using Gazebo and ROS,” PeerJ

Comput. Sci., vol. 7, p. e383, Mar. 2021, doi:

10.7717/peerj-cs.383.

[23] J. Denavit and R. S. Hartenberg, “A Kinematic

Notation for Lower-Pair Mechanisms Based on

Matrices,” J. Appl. Mech., vol. 22, no. 2, pp. 215–221,

Jun. 1955, doi: 10.1115/1.4011045.

[24] I. A. Sucan, M. Moll, and L. E. Kavraki, “The Open

Motion Planning Library,” IEEE Robot. Autom. Mag.,

vol. 19, no. 4, pp. 72–82, Dec. 2012, doi:

10.1109/MRA.2012.2205651.

[25] S. Chitta, I. Sucan, and S. Cousins, “MoveIt! [ROS

Topics],” IEEE Robot. Autom. Mag., vol. 19, no. 1, pp.

18–19, Mar. 2012, doi: 10.1109/MRA.2011.2181749.

[26] M. Quigley et al., “ROS: an open-source Robot

Operating System,” in ICRA workshop on open source

software, Kobe, Japan, 2009, p. 5.

[27] M. Cashmore et al., “ROSPlan: Planning in the Robot

Operating System,” Proc. Int. Conf. Autom. Plan.

Sched., vol. 25, pp. 333–341, Apr. 2015, doi:

10.1609/icaps.v25i1.13699.

[28] A. Koubaa, Ed., Robot Operating System (ROS): The

Complete Reference (Volume 6), vol. 962. in Studies

in Computational Intelligence, vol. 962. Cham:

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 3650–3658 | 3658

Springer International Publishing, 2021. doi:

10.1007/978-3-030-75472-3.

[29] A. Collette, Python and HDF5, First edition. Beijiing:

O’Reilly, 2014.

[30] D. Bank, N. Koenigstein, and R. Giryes,

“Autoencoders,” 2020, doi:

10.48550/ARXIV.2003.05991.

[31] D. E. Rumelhart and J. L. McClelland, “Learning

Internal Representations by Error Propagation,” in

Parallel Distributed Processing: Explorations in the

Microstructure of Cognition: Foundations, MIT Press,

1987, pp. 318–362. Accessed: Feb. 19, 2024. [Online].

Available:

https://ieeexplore.ieee.org/document/6302929

[32] P. Baldi, “Autoencoders, unsupervised learning and

deep architectures,” in Proceedings of the 2011

International Conference on Unsupervised and

Transfer Learning workshop - Volume 27, in

UTLW’11. Washington, USA: JMLR.org, Jul. 2011,

pp. 37–50.

[33] A. Radford, L. Metz, and S. Chintala, “Unsupervised

Representation Learning with Deep Convolutional

Generative Adversarial Networks,” 2015, doi:

10.48550/ARXIV.1511.06434.

[34] J. M. Joyce, “Kullback-Leibler Divergence,” in

International Encyclopedia of Statistical Science, M.

Lovric, Ed., Berlin, Heidelberg: Springer Berlin

Heidelberg, 2011, pp. 720–722. doi: 10.1007/978-3-

642-04898-2_327.

[35] ISO, “Manipulating industrial robots Performance

criteria and related test methods.” International

Organization for Standardization, Geneva, CH, Apr.

1998. Accessed: Feb. 19, 2024. [Online]. Available:

https://www.iso.org/standard/22244.html

