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Abstract: Learning‐based motion planning methods have recently shown notable advantages in solving multiple planning challenges in 

high‐dimensional spaces and challenging situations. The complex higher‐dimensional trajectory with many constraints makes the robot 

task generation complicated. Furthermore, the availability of a sizeable robot open dataset for path learning is a significant challenge. In 

this work, a variant of Conditional Variational Autoencoder with Convolutional Neural network is utilised to capture each task’s hidden 

probability distribution and generated back from the latent representation. The proposed approaches focuses on a generative model for 

offline generation of trajectory continuous task under static structured environment. The implemented model interfaced with the Robot 

Operating System (ROS) layer, which can directly feed into any ROS enabled robots. Reconstructed error, precision and accuracy were 

evaluated by the experiment of robot trajectory with reconstructed trajectory and yielded encouraging results. 
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1. Introduction 

Robot trajectory planning is a fundamental aspect of 

robotics, involving the generation of precise paths and 

orientations that a robot follows during its motion. Humans 

face difficulty identifying the raw robot trajectory points as 

the robot moves in a very complex path and it is a 

challenging task to visualise the robot’s movement. Various 

advanced algorithms, including Deep Learning  [1], [2], 

Genetic algorithms [3], Model Predictive Control [4], 

Rapidly exploring Random Trees [5], Swarm optimisation 

[6] etc., were utilised to make collision-free smooth motion 

for various applications. 

A robot task is a specific operation or action that a robot is 

programmed to perform to achieve a predefined objective. 

Robot tasks can be categorized into sequencing tasks and 

continuous tasks. The principal objective of sequencing 

tasks revolves around minimizing time and effort by 

determining the optimal sequence of actions [7], [8], [9]. In 

contrast, continuous tasks encompass both path continuous 

tasks and trajectory continuous tasks, where the robot’s end 

effector must follow a seamless and uninterrupted motion 

within the task space [10], [11], [12]. Quang-Nam and 

Quang-Cuong discuss about the trajectory optimisation task 

in the context of 3D printing [5]. This entails the execution 

of a time-parameterized path while concurrently engaging 

in the printing process. 

Recent advancements in the field of Generative modelling 

yielded mind-blowing outputs [13], [14], [15]. David Ha 

and Douglas Eck presented a sequence-to-sequence network 

for sketch generation [16]. Chao et al. put forth Chinese 

character drawing robots using recurrent neural networks, 

which is limited to the too-small number of strokes [17]. 

Shao et al. enhances the character generation using images 

and generate sequence by sequence, which is also limited to 

a small number of strokes and the network uses recurrent 

deep learning layers which causes the training process much 

slower [18]. 

Neural network layers encapsulate the hidden complex 

structure of the data distribution. Autoencoder (AE) is an 

unsupervised neural network architecture used for non-

linear data-specific dimensionality reduction, where output 

data has same shape as input [19]. Variational Autoencoder 

(VAE) is a hybrid architecture of deep learning and 

variational inference which generates new data similar to 

the input. VAE is a stable and flexible generative model 

suitable for art generation [20]. A conditional variational 

autoencoder for robot path individually generates various 

paths. 

Drawing a picture on canvas with pen lift between strokes 

is a subset of robot tasks, is taken for generating the dataset. 

The model can instruct to generate different robot sketches 

by giving task as draw an apple. The learned probability 

representation produces realistic generative sketches. Each 

path contains a higher-dimensional time-parameterized 

complex sequence of points with many constraints. Hard-

coding of each set will be time consuming and hard to 

analyse and modify. Complex trajectory generation and 

modification are formidably tricky even for an expert. 

Conditional trajectory continuous tasks generation in 
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robotics is a challenging task achieved by the proposed deep 

neural network architecture. 

The work focus on inducing the prior knowledge into the 

model as data for reducing the exploration space and to 

make an offline generative model for a task structured static 

environment. In this paper, a Variational Autoencoder-

based generative model is proposed, which can effectively 

generate trajectories and suppress noise. The model uses 

one-dimensional convolutional neural networks (CNN) for 

feature extraction and generates the paths’ latent 

representation in a low-dimensional space [21]. The main 

contributions in this paper are summarized as 

 

- A novel problem of conditional generation of continuous 

trajectory task. 

- A method to generate robot datasets from stroke based 

datasets. 

- A method to evaluate the performance of models based 

on ISO 9283 standard. 

2. System Implementation 

Robots are designed to use in many different tasks with 

various workspace conditions. The robot data sequence for 

each joint is recorded for a fixed length (𝑁𝑚𝑎𝑥 = 512 and 

feed as input data, represented by 𝑥 ∈ ℝ𝐷 Where ℝ is the 

set of real numbers, and 𝐷 is the dimensionality. The label 

provided as one-hot encoded and the latent space vector 𝑧 

with dimensionality 𝑘 represented as 𝑧 ∈ ℝ𝑘. 

In this work, a simulated version of serial manipulator 

Panda robot [22], developed by Franka Emika, is employed. 

Fig. 1 shows the Panda robot with the canvas and the two 

poses (pen-up and pen-down). The Denavit-Hartenberg 

parameters (DH parameter) [23], which describe the 

geometry and kinematics of a robot’s manipulator are 

shown in Fig. 1 along with the joint limits.  

2.1. Dataset 

Developing a robot path dataset with better two-dimensional 

visualization is carried out by selecting the Quick-draw 

dataset. Quick-draw [16] is the google stroke dataset 

containing strokes for different images generated by people 

in different parts of the world. Fig. 2 contains the steps 

involved in generating the dataset. The procedure involves 

extracting the raw stroke values, as depicted in Fig. 2a, from 

the Quickdraw dataset. These values are then subjected to 

scaling to generate waypoints for the robot’s path. During 

the execution of this path, the end-effector follows a 

trajectory that intersects with the canvas whenever a stroke 

from the dataset is encountered. Subsequently, it is raised to 

traverse to the next stroke in the sequence, a process that 

continues until the completion of the drawing’s final stroke. 

This approach ensures that the robot’s movement aligns 

with the strokes in the dataset, replicating the desired visual 

representation. Open Motion Planning Library (OMPL)[24] 

- an open-source probabilistic library for robot motion 

planners- is used for generating cartesian path in Robot 

Operating System(ROS) (Fig. 2d)[25], [26], [27], [28]. The 

robot trajectory contains a sequence of seven-dimensional 

vector stored into a Hierarchical Data Format version 5 

(HDF5) dataset (Fig. 2e) to deal with a much larger dataset 

than memory and faster processing while training [29]. For 

fed into the model, the data is normalised by using each 

joints upper and lower limits, as shown in Fig. 1. Finally an 

inverse transform is applied for predicted/reconstructed data 

from the model. 

The proposed work chooses eight different datasets as 

illustrated in Table. 1 from the quickdraw dataset. Each 

contains a unique id, strokes and dataset name. All datasets 

contain 70k+ samples. Lots of outliers are present in 

datasets since the data is generated from people from 

different parts of the world. 

Robot data contains different joint variables in a higher-

dimensional space. This work defined each task as a sketch 

drawing path on paper. For better visualization, trajectory is 

visualized by taking forward kinematics, then plotting the 𝑥 

and 𝑦 on a canvas and adding the 𝑧 component as the stroke 

colour. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Panda robot drawing on canvas (left) with DH parameters and joint limits (right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 1.  Panda robot drawing on canvas (left) with DH parameters and joint limits (right). 
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Table 1. Task dataset description with a sample from each 

instance is plotted in the task space. Total instances from 

each dataset is unified to avoid biasing to class imbalance 

 

Fig. 2.  Dataset generation from Quickdraw dataset, a)  

 

Raw data from quickdraw dataset is fed into Robot 

trajectory generation module. b) The Sample stroke data is 

visualised with each pen stroke with a different colour. c) 

ROS python module interfaced generates waypoints for 

cartesian path and pass it to Moveit module using ROS 

message services. d) Compute trajectory inside Moveit 

module is done using RRT Planner available in Open 

Motion Planning Library. Computed trajectory is converted 

into same scale using the joint limits of robot. e) 

Visualisation of generated trajectory in joint plots and 2D 

visualisation is done using forward kinematics. f) Save the 

generated trajectory into dataset for deep Learning. 

2.2. Autoencoder Architecture 

VAE learns the underlying probability distribution of paths 

in latent dimension, and Conditional Variational 

Autoencoder[30], [31], [32] is a VAE with a conditional 

generation of the path with 𝑥 as inputs, 𝑦 as labels, 𝑧 as 

latent representation. 𝑝𝜃(𝑥|𝑧, 𝑦) represents the prior, 

𝑝𝜃(𝑧|𝑥, 𝑦) represents the posterior distributions with 

normally distributed latent representation 𝑝𝜃(𝑧) =

𝒩(𝑧; 0, 𝐼𝑑) where 𝒩 represents the normal distribution, 𝑑 

is the dimensionality, and 𝐼𝑑 represents the 𝑑 dimensional 

identity matrix. 

 

 

 

 

 

 

 

Fig. 3. Network architecture of Conditional Convolutional 

Variational Autoencoder model with latent dimension 128. 

Encoder network inputs Data and Label and produce a 

latent vector. Decoder reconstruct data using latent vector 

and label. 

The proposed network architecture is portrayed in Fig. 3. 

CNN is a specialized layer used to capture the spatial and 

temporal reliance inside the data. One-dimensional CNN is 

used to better capture the features in the sequential robot 

data. Data and label concatenated and fed into a Fully 

connected strided convolution layer [33] and a non-linear 

activation function rectified linear unit (ReLU) is applied. 

The re-parametrisation trick  𝑧 = 𝜇 + 𝜎 ⊙ 𝜖  (where  𝜖 ∈

𝒩(0,1)) for back-propagating in VAE is implemented 

using a non-parametric Lambda layer and fully connected 

dense layers for mu and sigma with linear activation. The 

decoder section consists of a series of strided convolution 

transpose layers with ReLU activation, and the output layer 

uses the sigmoid activation function. The autoencoder 

model is optimised with an RMSprop optimiser plus 

minibatch gradient descent. 

Given attribute input path 𝑥 ∈ ℝ𝑁𝑚𝑎𝑥×𝐷𝑜𝐹abels 𝑦 ∈  ℝ𝑙𝑎𝑏𝑒𝑙𝑠  

and latent variable 𝑧 ∈ ℝ𝑙𝑎𝑡𝑒𝑛𝑡 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 forms a generator 

model 𝑝𝜃(𝑥|𝑦, 𝑧) that generates realistic robot trajectories 𝑥 

conditions on 𝑦 and 𝑧. The process is done in two steps, 

initially sample the latent dimension 𝑧 randomly from the 

prior distribution and then compute the posterior 

distribution of generated path by conditioned on 𝑧 and label. 

 

Loss Function: A key challenge when computing the 

precision and accuracy is that even though the 

reconstruction loss is low, computing precision and 

accuracy may be higher in some cases. It is because all the 

joints are not considered equally in the training. End joints 

have a more negligible effect in end-effector position than 

the joints near the base link. Kullback-Leibler(KL) 

Divergence is a measure of how two probability distribution 

is different from one another [34]. Variational autoencoder 

model is trained using KL divergence loss 𝐿𝐾𝐿 and Mean 

Absolute Error (MAE) employed as the reconstruction loss 

𝐿𝑅. as shown in equation. 1. KL divergence will measure the 

distribution mean and variance difference between normal 
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distribution as shown in eq. 2. The model training is done 

by finding the parameter 𝜃 that minimises the mean absolute 

error. 

LR=  
1

𝑁
 ∑|𝑥𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑥𝑎𝑐𝑡𝑢𝑎𝑙| (1) 

𝐿𝐾𝐿 = 𝑓𝐾𝐿(𝑞𝜙(𝑧|𝑥, 𝑦)||𝑝𝜃(𝑧|𝑥, 𝑦)) (2) 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑅 + 𝐿𝐾𝐿 (3) 

where 𝑓𝐾𝐿 denotes KL function and 𝑁 is the total number of 

data pairs used. A set of four models with different latent 

dimensions as 16, 32, 64 and 128 are introduced and 

represented as Model 16, Model 32, Model 64 and Model 

128 respectively. 

3. Qualitative Analysis 

Three qualitative analysis experiments were conducted in 

this study. The first experiment evaluates the visual 

similarity between the command path (input path) with the 

reconstructed path; the second experiment visualizes the 

effect of noise in the input, and the third one plots 

interpolation poses between two robot paths. 

3.1. Conditional generation of path 

Conditional generation of the robot path is achieved by 

supplying command pose and one-hot encoded label to the 

model, as presented in Fig. 4a. Fig. 5 shows a single 

command path(left) and nine generated paths(right) which 

shows the repeatability of the model. Conditional generation 

of a single task (command path) and corresponding joint 

values are plotted in Fig. 7. 

 

Fig. 4. Conditional reconstruction with command pose and 

the performance evaluation of the models a) test input from 

dataset b) test input with added gaussian noise(mean=0, 

variance=0.01) c) test input with added uniform 

noise(peak=0.01) 

 

 

 

 

 

 

Fig. 5. Conditional generation of path from the dataset by 

supplying command pose and label. Input data (left) and 

generated nine samples (right) in the figure from generated 

Task 1 dataset. 

3.2. De‐noising of the path 

De-noising of input is an added advantage of the proposed 

model. The noisy data input and the label encode into a 

lower-dimensional latent space point, and the decoder 

reconstructs it. Since the model is trained using data without 

any noise, any reconstruction from the latent dimension 

produces the sample from the training data’s probability 

distribution. Performance evaluation is checked using two 

noise models - Uniform random noise and Gaussian noise. 

Gaussian noise is the normally distributed additive noise 

defined by variables noise mean and variance. Uniform 

random noise is an uncorrelated additive noise that follows 

the uniform distribution. Evaluated performance of the 

reconstruction by adding noise at the input is shown in Fig. 

4b and 4c. 

3.3. Latent Space Interpolation 

Latent space is a compressed representation where similar 

data are placed closer to each other. Probabilistic latent 

space interpolation is performed using eq. 4, which morphs 

one sketch to another. Fig. 6 displays the image of a path in 

the dataset (Task 4) created by conditional generation. 

Fig. 6. Conditional one-dimensional linear interpolation of 

latent space for Task 4 dataset. 

𝑧𝑘 = (𝑧𝑗 − 𝑧𝑖)𝛼 + 𝑧𝑖 (4) 

where 𝛼 ∈ [0,1], 𝑖, 𝑗 ∈ 𝑁, 𝑁 is the set of natural numbers, 𝑧𝑖 

and 𝑧𝑗 represent two different points on the latent space, and 

𝑧𝑘 represents the linear interpolated representation between 

𝑧𝑖 and 𝑧𝑗. 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 3650–3658 |  3654 

 

 

 

Fig. 7. (a) Image shows a portion of 200 time‐steps of the 

commanded pose and reconstructed x, y pose (b) The 

image of the corresponding joint angles are shown in 

figure for all the joints (joints 1 to 7) commanded pose is 

represented in 

4. Performance metrics 

Performance metrics consist of accuracy and repeatability 

are the two prime quantitative analysis methods in robotics. 

Pose Position Accuracy, Pose Orientation Accuracy, Path 

Position accuracy and Path Orientation accuracy are the four 

metrics analysed in this work, as defined in ISO 9283[35]. 

4.1. Pose Accuracy 

The test procedure starts from the start point in the robot 

workspace and moves till the end. Each point is visited in a 

unidirectional format. Each time the position of the robot 

end-effector is recorded, and then calculate the accuracy and 

precision. Accuracy is computed by generating thirty 

samples from each command pose of the test set. 

Pose Position Accuracy Accuracy is the difference 

between the centroid of generated poses (called a 

barycenter) and the commanded position. The position 

accuracy is calculated using the standard equation. 

𝐴𝑃𝑃 = √(�̅� − 𝑥𝑐)2 +  (�̅� − 𝑦𝑐)2 + (𝑧̅ − 𝑧𝑐)2 (5) 

Where  �̅�, �̅�, 𝑧̅ are the barycenter of position 𝑥, 𝑦 and 𝑧 and 

represented as 

�̅� =  
1

𝑛
∑ 𝑥𝑖 ,𝑛

𝑖=1     �̅� =  
1

𝑛
∑ 𝑦𝑖 ,     𝑛

𝑖=1  𝑧̅ =  
1

𝑛
∑ 𝑧𝑖  𝑛

𝑖=1  

and 𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐  represents command poses of 𝑥, 𝑦 and 𝑧-axis 

and 𝑛 represents the number of samples taken. 

Pose Orientation Accuracy Fig. 1 shows the orientation 

frame of the end-effector, where the roll orientation is 

irrelevant while considering the drawing path. So the work 

considered only pitch and yaw axes for computing accuracy 

and repeatability. Pose orientation accuracy for pitch(𝛽) and 

yaw(𝛾) is calculated as 

𝐴𝑃𝛽 = (𝛽 − 𝛽𝑐)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  (6) 

𝐴𝑃𝛾 = (𝛾 − 𝛾𝑐)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (7) 

Where 

�̅� =  
1

𝑛
∑ 𝛽𝑖 ,

𝑛
𝑖=1     �̅� =  

1

𝑛
∑ 𝛾𝑖 ,     

𝑛
𝑖=1  

Fig. 8. Pose Precision and Repeatability of Position of the 

robot end effector using Model 32 

4.2. Pose Repeatability 

Repeatability is a measure of the variation of the data around 

the calculated centroid. Repeatability RPL is calculated 

using 

𝑅𝑃𝐿 =  𝐼 ̅ + 3𝑆𝐿 (8) 

where 𝐼 ̅is the mean of the set and 𝑆𝐿 is the standard 

deviation. 

Pose Position Repeatability is calculated using eq. 8 where 

𝐼 ̅ =  
1

𝑁
∑ 𝐼𝑗 ,

𝑛

𝑗=1

       𝑆𝐿 = √
∑ (𝐼𝑗 − 𝐼)̅

2𝑛
𝑗=1

𝑛 − 1
 

𝐼𝑗 = √(𝑥𝑗 − �̅�)
2

+ (𝑦𝑗 −  �̅�)
2

+ (𝑧𝑗 − 𝑧̅)
2
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Pose Orienatation Repeatability is calculated for pitch(β) 

and yaw(γ) as 

𝑅𝑃𝛽 =  ±3𝑆𝛽 =  ±3√
∑ (𝛽𝑗 − �̅�)2𝑛

𝑗=1

𝑛 − 1
 

𝑅𝑃𝛾 =  ±3𝑆𝛾 =  ±3√
∑ (𝛾𝑗 − �̅�)2𝑛

𝑗=1

𝑛 − 1
 

where 𝑆𝛼, 𝑆𝛽 are standard deviations 

Fig. 8(left) shows the pose position accuracy and 

repeatability of the robotic path in Fig. 7. The barycentre of 

𝑥, 𝑦 and 𝑧-axis are more visible in the highlighted version 

of path points shown in Fig. 8(right). 

 

4.3. Path Accuracy and Repeatability 

The ISO 9283 standard defines path accuracy as a metric for 

assessing the quality of robot end effector movement, where 

path position accuracy is determined by generating ten paths 

from the command path, calculating the barycenter, and 

estimating accuracy based on the maximum value of pose 

accuracy. Similarly, path repeatability is estimated as the 

maximum value of pose repeatability.  

5. Evaluation and Applications 

Autoencoder learns explicit probability distribution of the 

multi-dimensional gaussian normal latent distribution. First, 

demonstrate the repeatability of robotic path generation 

multiple times using the same command pose as instructed 

in ISO 9283 standards. Conditional generation of the path is 

achieved and is shown in Fig. 4 - 6. Command poses and 

reconstructed poses show a correlation. However, there are 

some minor differences in each generated sample since 

VAE acts like a generator model. Fig. 7 shows the joint 

values corresponding to a command-pose and generated 

poses. The correlation of plots shows the reconstruction 

quality. Since the Variational Autoencoder is based on 

probability distributed latent space, the model can predict 

intermediate data generation. Fig. 7 shows linear 

interpolation of generated sequences. 

Table 2. Comparison of different latent space models 

Accuracy and Repeatability of different datasets (mean ± 

standard deviation, all values are in cm) 

Task 
Model 

16 

Model 

32 

Model 

64 

Model 

128 

Accuracy 

Task 

1 

4.84 ± 

3.22 

3.14 ± 

0.99 

2.44 ± 

0.70 

2.68 ± 

0.70 

Task 

2 

3.15 ± 

1.83 

2.63 ± 

0.62 

2.15 ± 

0.80 

2.45 ± 

0.55 

Task 

3 

5.11 ± 

1.69 

4.44 ± 

2.11 

3.09 ± 

0.79 

3.49 ± 

1.03 

Task 

4 

6.38 ± 

2.14 

4.84 ± 

1.73 

3.50 ± 

1.68 

4.01 ± 

1.63 

Task 

5 

5.28 ± 

2.89 

3.87 ± 

2.02 

2.64 ± 

0.57 

3.87 ± 

3.16 

Task 

6 

4.24 ± 

1.77 

3.26 ± 

0.67 

2.85 ± 

0.62 

3.14 ± 

0.91 

Task 

7 

2.30 ± 

1.45 

2.21 ± 

0.71 

1.78 ± 

0.53 

2.13 ± 

0.81 

Task 

8 

2.61 ± 

2.12 

2.61 ± 

1.89 

2.08 ± 

1.04 

2.55 ± 

1.54 

Repeatability 

Task 

1 

0.52 ± 

0.15 

0.80 ± 

0.81 

0.86 ± 

0.34 

1.12 ± 

0.27 

Task 

2 

0.48 ± 

0.25 

0.84 ± 

0.34 

0.89 ± 

0.18 

1.67 ± 

0.84 

Task 

3 

0.79 ± 

0.35 

0.83 ± 

0.56 

0.79 ± 

0.19 

1.21 ± 

0.19 

 

Fig. 9. Path Accuracy and Repeatability of Position and Roll and Pitch orientation of the robot end effector in Model 32 
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Task 

4 

0.80 ± 

0.55 

0.98 ± 

0.41 

1.98 ± 

3.85 

2.11 ± 

2.53 

Task 

5 

0.61 ± 

0.27 

0.75 ± 

0.26 

0.68 ± 

0.16 

3.32 ± 

6.28 

Task 

6 

0.59 ± 

0.33 

0.48 ± 

0.17 

0.75 ± 

0.15 

2.13 ± 

3.18 

Task 

7 

0.48 ± 

0.27 

0.63 ± 

0.44 

0.93 ± 

0.49 

1.30 ± 

1.14 

Task 

8 

0.42 ± 

0.17 

0.65 ± 

0.47 

0.75 ± 

0.24 

1.30 ± 

0.57 

 

Pose position accuracy and repeatability of a single path is 

shown in Fig. 8. It is pretty visible from the figure is that 

most of the points on the path achieve pose position 

accuracy much below 4cm and repeatability below 1cm. 

The barycenter of the data is too close to the commanded 

pose, showing better accuracy, and all generated images are 

close to each other, showing better repeatability. 

Fig. 9 represents the path accuracy and repeatability of a 

single model (model 32) that runs on ten different 

commanded paths in each dataset and observes the results. 

Since the proposed dataset generation method uses data 

drawn by different people from various parts of the world, 

the dataset contains many outliers. While removing the 

outliers, the data shows that, for this particular path, all 

achieved position repeatability below 3cm and position 

accuracy below 5cm. Path Orientation accuracy is below 

0.03 radians, and path orientation repeatability is below 0.05 

radians. 

Table. 2 shows the comparison of path accuracy between 

different models, among which Model 64 perform better. 

However, Model 16 and Model 32 perform better in path 

repeatability. While considering both path position accuracy 

and repeatability, Model 64 is selected, and if it requires 

more compressed latent dimension representation, Model 16 

and 32 also be used. Even though as the latent space 

dimension increases in the Autoencoder model, the 

reconstruction loss generally decreases. However, the 

computed precision and accuracy may vary because they 

transform joint space data to task space points for 

computation. Training of each model is done using the early 

stopping method. The complexity of each dataset also 

varies. Each people will generate data differently depending 

on their imagination. Some common datasets like Task 1 

perform well because the dataset is simple, and people from 

different parts of the world draw it based on some standard 

features. However, some datasets like Task 4 and Task 5 

have lots of complex structures. There may not be a typical 

structure in all those drawings. 

Autoencoder performs lossy compression and causes the 

reconstructed paths to drift in the output, reducing the path’s 

accuracy and repeatability. Experts can use it to fine-tune 

the robotic paths by generating, interpolating and de-

noising. 

6. Conclusion 

This work uses a 1D CNN-based conditional Variational 

Autoencoder for the robotic path generation task. All the 

models were trained using the generated dataset. Different 

qualitative plots were also used to evaluate the model 

performance along with quantitative measures like accuracy 

and repeatability. From path position accuracy, it has been 

found that all the datasets have a good accuracy value below 

5cm and precision below 3cm, which is quite promising and 

confirms the reliability of the proposed model. 

The current system uses generated dataset of robot tasks as 

there is no sizeable open dataset available. Actual robot task 

trajectory can be utilized for training the model in future. 

Based on the results obtained, the model will produce a 

better trained model using accurate data. Since the dataset 

and generated data follow similar distributions, the model 

can be employed for training any continuous robot 

trajectory under static structured environment with 

appropriate datasets.  
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