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Abstract: Artificial neural networks (ANNs) are being increasingly used for predicting various civil engineering characteristics, such as 

the prediction of compressive strength of concrete of various grades, fracture toughness, and determining the displacement in concrete 

reinforcement buildings, etc. In this study, comparison is made between feed forward back propagation (FFBP) and Cascade forward back 

propagation (CFBP) algorithms for concrete mix design. ANN models have been developed using cement quantity, fine aggregate, metal, 

water, super plasticizer, and aggregate cement ratio by weight as the input variables to forecast the compressive strength of concrete for 3, 

7, and 28 days. The training and testing datasets were split into 50% and 70% respectively. The results revealed that both FFBP and CFBP 

algorithms are successful models for predicting the compressive strength, but the training dataset of 70% and FFBP algorithm gave more 

accurate results. 
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1. Introduction 

In the world, concrete is frequently used in construction. 

Cement, sand, aggregate, water, and other materials are 

used to make it. Therefore, it is highly practical to predict 

the compressive strength of concrete based on the 

proportioning design. The growing use of soft computing 

approaches in predicting concrete strength is due to the 

remarkable compressive strength of concrete and its 

capacity to be molded into various forms and sizes. 

Utilizing a prediction model allows for the estimation of 

compressive strengths for various mix designs, making it 

easier to choose those that meet the necessary strength for 

subsequent physical tests. This method reduces the 

necessity for multiple attempts, resulting in substantial 

time and financial savings. Furthermore, it enables the 

determination of the most financially efficient alternative 

among choices that necessitate compressive strength for 

economic reasons. Soft computing techniques, often 

known as data-driven models, utilize input-output data to 

achieve improved accuracy, significant time and cost 

savings. The Artificial Neural Network (ANN) approach, 

which consists of interconnected nodes that simulate 

biological neurons, is very remarkable. 

Design and construction rules require an obligatory 28-

day compressive strength test in the field of quality control 

and performance evaluation [1]. Nevertheless, this test is 

characterized by its technical complexity, lengthy 

duration, and susceptibility to experimental inaccuracies. 

Moreover, once the test is performed, there is no 

opportunity for rectification if the concrete does not pass 

the test after a long period of waiting. Hence, the pre-28-

day assessment of compressive strength is extensively 

embraced due to its manifold advantages. By adopting this 

proactive strategy, it becomes possible to strategically 

plan operations like as prestressing and formwork 

removal, resulting in improved overall efficiency. 

Furthermore, it enhances quality control by ensuring that 

structures are more resilient, hence reducing undue stress 

during the initial stages. 

Using ANNs and ANFIS models, the authors evaluated 

the 28-day compressive strength of the concrete [2]. ANN 

were employed to develop a new approach for 

determining the FRP-confined compressive strength of 

the concrete [3]. Nowadays, artificial intelligence is being 

applied to different fields such as damage detection in 

skeletal structures [4]. ANN are a frequently suggested 

technique for predicting concrete strength, with the back 

propagation network being the most widely used ANN 

network [5] [6]. However, some research found that the 

service life and durability of concrete using recycled 

aggregate were inferior to those of conventional concrete 

[7, 8], while other studies found that the durability of 

recycled aggregate-based concrete was superior to that of 

conventional concrete [9]. Although there is no 

commercial strategy for the use of high-quality recycled 

aggregate, the availability of additional data may 

nonetheless inspire customers to utilize more recycled 

aggregate. 

For example, M5P (a tree model used to test the efficiency 

of ANNs) was used to predict the mechanical 

characteristics of concrete incorporating used foundry 

sand. Their findings demonstrate that the M5P tree model 
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performs well in predicting the characteristics of concrete 

[10], [11]. 

ANN have become influential instruments in the realm of 

concrete mix design, providing inventive methods for 

maximizing the intricate connections among different mix 

constituents and the resultant concrete characteristics. The 

process of concrete mix design is of utmost importance in 

the construction sector, as it seeks to attain an equilibrium 

between the properties of workability, strength, and 

durability. Historically, this procedure depends on 

empirical techniques and rigorous experimental tests, 

resulting in a tedious and time-consuming process. 

On the other hand, ANN offer a method that is based on 

data, allowing for the representation of complex nonlinear 

connections inside concrete mixture designs. These 

computational models replicate the learning process of the 

human brain, enabling ANN to adjust and extrapolate 

from available data, finally forecasting the ideal 

combination of ingredients for desired tangible 

characteristics. The employment of ANN in concrete mix 

design enables a more efficient and precise exploration of 

the extensive design possibilities, resulting in enhanced 

performance and optimal allocation of resources. 

This introduction examines the incorporation of ANN into 

the field of concrete mix design, highlighting its capacity 

to transform and simplify this essential element of 

construction. Researchers and practitioners seek to 

improve the accuracy and effectiveness of concrete mix 

design by utilizing the capabilities of ANN. This effort 

aims to drive progress in the construction sector and 

promote sustainable infrastructure development. 

To predict the compressive strength of concrete with 

ground granulated blast furnace slag, a hybrid ANN with 

a multi-objective salp swarm method was used [10]. In 

that study, it was demonstrated that the M5P tree model 

was outperformed by 13 out of 19 ANN. This have 

become powerful instruments with significant 

ramifications in different disciplines, within the ever-

changing landscape of modern technological 

breakthroughs. The need to explore the complexities of 

FFBP in ANN is due to the unmatched capability these 

networks provide for addressing complicated problems, 

especially in the fields of predictive modeling and pattern 

recognition. 

The main incentive arises from the innate ability of ANN 

to replicate the complex learning mechanisms of the 

human brain. With the advancement of technology, there 

is a growing need for autonomous systems that can adapt, 

generalize, and learn from data. ANN, particularly the 

feedforward backpropagation (FFBP) model, offer a 

chance to tap into this potential, facilitating the 

development of sophisticated applications in areas 

including image and speech recognition, medical 

diagnosis, financial forecasting, and beyond. 

The exploration of Feedforward Backpropagation (FFBP) 

in ANN aims to tackle the complexities and non-linear 

patterns found in datasets. Conventional statistical 

techniques frequently prove insufficient in handling 

intricate patterns, rendering them unsuitable for jobs that 

entail subtle correlations and multifarious 

interdependencies. FFBP, due to its capacity to simulate 

complex connections and adjust to various datasets, 

emerges as a potent solution for navigating the 

complexities of real-world challenges. 

The domain of concrete mix design involves complex 

interactions among different components, highlighting the 

necessity for advanced modeling tools. The objective of 

utilizing FFBP in this particular scenario is to optimize 

and improve the concrete mix design process. Our goal is 

to utilize the learning capabilities of FFBP to enhance the 

optimization of concrete component proportions, taking 

into account variables such as workability, strength, and 

durability. This not only accelerates the design process but 

also guarantees that the resulting concrete constructions 

fulfill the specified performance parameters. 

Moreover, the reason for examining Feedforward 

Backpropagation (FFBP) in ANN is rooted in the wider 

context of promoting sustainable practices in the building 

sector. Optimizing concrete mix designs boosts resource 

efficiency, minimizes material waste, and ultimately 

improves the sustainability of construction projects. The 

objective goes beyond simple prediction; it is in line with 

a vision of developing more robust and ecologically 

responsible infrastructures. 

FFBP, when employed in quality control, provides a 

strong and reliable method for forecasting the 

compressive strength of concrete well in advance of the 

conventional 28-day testing period. This not only 

expedites building schedules but also enables proactive 

modifications, so enhancing the overall efficiency and 

durability of structures. The objective is not solely to 

achieve accurate predictions, but rather to provide 

construction professionals with tools that facilitate 

informed decision-making and resource efficiency. 

To summarize, the exploration of FFBP in ANN goes 

beyond the technical complexities, driven by motivation 

and purpose. It is in line with a more comprehensive goal 

of utilizing state-of-the-art technology to tackle practical 

problems, improve effectiveness, and promote sustainable 

and resilient practices in various industries. The FFBP 

model, as a component of ANN, provides a mechanism to 

explore novel opportunities, enabling the development of 

smarter, adaptable, and more efficient systems in the 

always changing realm of technology and industry. 
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This study aimed to investigate the effectiveness of the 

Artificial Neural Network in evaluating the compressive 

strength of concrete. The experiment comprised six 

concrete mix designs with a grade of M20, incorporating 

five specific mix factors, namely cement content, fine 

aggregate, metal, water, and aggregate cement ratio. The 

compressive strength of each mixture was evaluated 

following 3, 7, and 28 days of immersion in water for 

curing. Later on, soft computing techniques, particularly 

the Artificial Neural Network, were applied and simulated 

using MATLAB© 2015. The concrete mix parameters 

were used as input variables in this modeling procedure, 

with the compressive strength of concrete serving as the 

output parameter. The outcomes derived from these two 

models were subsequently refined and put to a comparison 

examination. The main goal was to assess the efficacy of 

the Artificial Neural Network in forecasting the 

compressive strength of concrete.  

2. Methodology 

2.1 Data collection 

Data was collected by laboratory tests. The ratio of M20 

concrete is 1:1.5:3. Displays below Mix no 1 the cement, 

sand, and aggregate ratio, which implies that 1.5 

kilograms of sand and 3 kilograms of aggregate should be 

used for every kilogram of cement used to make concrete; 

that is, 1 part cement, 1.5 parts sand, and 3 parts aggregate. 

M20 Concrete, also known as nominal concrete, is a 

material that can be expertly constructed according to 

Indian Standard IS 456:2000, and has a compressive 

strength of 20 N/mm2 at 28. 

 Typically, concrete must be fully hydrated with 38% of 

its weight in water. A water-cement ratio of 0.45 to 0.50 

is often used for M20 Concrete. 

M20 concrete Used in RCC works like, Rigid Pavement 

Construction, used to construct structural members like 

slabs, beams, columns, etc (for small to medium structures 

only. Not suitable for heavy structures or work), Water 

retaining structures, piles, etc. 

Required Water Cement Ratio for M20 concrete are for 

high-quality concrete works; 0.45 w/c ratio is specified, 

Minimum water-cement ratio: 0.45. 

Below is an example of concrete mix proportioning. These 

examples are only meant to help with the procedure's 

explanation; the real mixing ratios must be determined 

using trial batches made using the supplied supplies. 

Mix No.1 

 

Strength at 28 days (N/mm2)                        20 N/mm2 

Characteristic strength                                  20 N/mm2 

Target Design Strength                                  26.60 N/mm2 

Workability 

a) Slump (mm)                                                70mm 

Degree of Control                                           Good 

Method of Compaction                                 Vibration 

Type of Cement                                              ACC O.P.C. 53 Grade 

Maximum Nominal Size                                20 

of Aggregate (mm)     

Water Cement Ratio by Weight 

A Free                                                     0.55 

B Actual                                                  0.55 

Mix Proportion                                            Cement Fine Aggregate Metal 

                                                                                     (Crushed Stone)  20mm  

Weight of Material (kg/m3)                        350                        818.5                           1169.28 

Proportion by Weight                                  1                               2.34                          3.34 

Proportion by Volume                                 1                             2.51                             3.76 

Water (lit/m3)                                                          193 
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Super plasticizer (Kg/m3)                                      1.1 

Aggregate-cement Ratio by weight                       5.68 

Laboratory Cube Strength obtained 

Average of three test specimen  

after curing 

A      S   3 days                                                          14.66 N/mm2                         

 (Immerse Curing Method) 

B 7 days                                                          22.81 N/mm2 

 (Immerse Curing Method) 

C 28 days                                                      30.33 N/mm2 

 (Immerse Curing Method) 

Unit weight of fresh concrete (kg/m3)                2530.78 

Cement Content (kg/m3)                                     350 

 

2.2 Model Performance Evaluation  

Four criteria were utilised for a comparative evaluation of 

the model's performance to assess the ANN's prediction 

accuracy. MSE, Mean Relative Error (MRE), and 

Correlation Coefficient (CC) are the norms that were used. 

2.2.1 Mean Absolute Error (MAE):  

The MAE is a quantitative measure used to evaluate the 

degree of agreement between a forecast or prediction and 

the observed outcomes. The determination is made by 

computing the mean of the absolute between the predicted 

values and the corresponding measurements within the 

validation dataset. Put simply, the mean absolute error 

measures the average size of differences between 

predictions and actual outcomes.  

 

2.2.2 Mean Square Error (MSE):  

The MSE is a measure used to assess the difference 

between the projected values from an estimator and the 

actual values of the estimated quantity. The MSE is 

calculated by taking the total of the squared residuals or 

errors and dividing it by the degrees of freedom in the 

sum. It provides a quantification of the variance or 

estimate mistake. The mean squared error is computed by 

aggregating the squared discrepancies between 

anticipated and actual values, and subsequently dividing 

by the relevant degrees of freedom. This metric is highly 

important for evaluating the overall accuracy and 

precision of an estimator. It offers a quantifiable measure 

of how well the projected values coincide with the 

observed values. The mean squared error is a commonly 

used metric in statistical and machine learning domains. It 

enables practitioners to assess the effectiveness of 

estimators and models by examining the average of the 

squared discrepancies between anticipated and actual 

values. 

 

2.2.3 Mean relative Error (%):  

The absolute error is multiplied by the precise value's 

magnitude to get the relative error. It often takes the form 

of a percentage and aids in the calculation of the real error 

to true ratio.   MRE=1/n ∑n
i=1 [X –Y] / [X] ×100   

 

2.2.4 Coefficient of correlation (Cc) 

It is a gauge of how strongly two variables are correlated 

linearly. It is defined in terms of the variables' standard 

derivations divided by the (sample) covariance of the 

variables.

 

2.3 TRAINING ALGORITHMS  

a) Feed Forward Back Propagation Algorithm (FFBP) 

The prevailing technique used to train feed-forward ANN 

is the error backpropagation method, which employs the 

gradient descent updating algorithm. The FFBP model, 

seen in Figure 1, is a commonly used approach for training 

ANN. This procedure encompasses two critical stages. 
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During the initial stage, every input pattern from the 

training dataset passes through the network's input layer 

in order to reach the output layer. In the second stage, an 

error is calculated by comparing the output of the network 

with the intended goal output. Subsequently, this error is 

transmitted in reverse to the input layer, while 

simultaneously modifying the weights to enhance the 

network's performance. The inquiry utilizes the FFBP 

paradigm for its construction. 

The error backpropagation methodology, which 

incorporates the gradient descent update algorithm, is the 

principal approach used to train feed-forward ANN. The 

FFBP model, seen in Figure 1, is a commonly utilized 

method for training ANN. This paradigm adheres to a 

two-stage process that is essential for achieving successful 

learning. During the initial phase, every input pattern from 

the training dataset passes through the input layer of the 

network and moves towards the output layer. In the 

second stage, an error is calculated by comparing the 

network's output with the desired goal output. 

Subsequently, this error is transmitted in reverse to the 

input layer, accompanied by the modification of weights 

to enhance the network's performance. 

The current research employs the FFBP model as the 

fundamental framework for building and training the 

Artificial Neural Network. The backpropagation of errors 

and weight adjustments in this method are essential for the 

learning process, enabling the network to adapt and 

enhance its predicting abilities using the available training 

data. 

 

Fig.1: Feed-Forward Back Propagation (FFBP) Neural Network Architecture  

b) Cascade Forward Back Propagation Algorithm 

(CFBP) 

The Cascade Back-Propagation (CFBP) method, invented 

by Scott Fahlman from Carnegie Mellon in 1990, is a 

conceptual framework designed to enhance the speed of 

learning in ANN. The framework, seen in Figure 2, 

integrates components from both the back-propagation 

and cascade-correlation methods, thus acquiring its 

unique designation. The CFBP method describes a step-

by-step approach to modify the weights of synaptic 

connections by moving in the direction of decreasing error 

in the vector space of these weights. This method is 

consistent with well-known algorithms used for learning 

in neural networks. Usually, the error measure is a 

quadratic function that represents the difference between 

the actual and desired outputs. Although feed-forward 

networks and CF models have similarities, CF models 

have additional weight connections from inputs to each 

layer and from each layer to subsequent layers. Artificial 

neural network (ANN) models have been developed in 

this context using MATLAB® 2015. 

 

Fig.2: CFBP Neural Network Architecture  
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3. Result And Discussion  

3.1 Artificial Neural Network Model 

To determine the optimal configuration for predicting the 

compressive strength of concrete using Artificial Neural 

Networks (ANNs), a comprehensive exploration was 

conducted, varying the number of neurons in the hidden 

layer, the transfer function in the input layer, and the 

training methodology. Numerous ANN models were 

generated and evaluated with both 50% and 70% training 

datasets to discern the impact of data quantity on model 

performance. The crucial consideration in this exploration 

was striking a balance in the number of neurons in the 

hidden layer, recognizing that too few may compromise 

information gathering, while an excess might lead to 

overfitting issues. 

The ANN model was structured with one input layer 

featuring five input variables, a hidden layer with neurons 

ranging from one to ten, and an output layer with a single 

neuron. The transfer functions employed in the hidden 

layer included logsigmoidal, transigmoidal, and 

purelinear. The evaluation criteria for identifying the 

optimal model were based on the correlation coefficient 

approaching one and achieving the minimum values for 

Mean Absolute Error (MAE) and mean relative error 

(MRE). This systematic exploration aimed to discern the 

interplay between the architectural components of the 

ANN and the training dataset size, striving to uncover an 

optimal configuration that ensures robust predictive 

performance in estimating concrete compressive strength. 

From Fig. 3.1 to 3.3, it is observed that the ANN models' 

prediction for the compressive strength of concrete shows 

a good correlation with the observed compressive strength 

of concrete for almost all days (3, 7, and 28). This is 

because the predicted compressive strength of concrete by 

the ANN models correlates well with the observed 

compressive strength of concrete. 

 

 

Fig.3.1 ANN prediction for 3-days Compressive Strength 

 

Fig.3.2 ANN prediction for 7-days Compressive Strength 
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        Fig.3.3 ANN prediction for 28-days Compressive Strength 

Fig. 3.1 to 3.3: ANN Predictions of compressive strength of concrete   

    

3.2 Effect of transfer function 

The table1 lists the typical error analysis for training and 

testing on various days (3, 7, and 28). It has been noted 

that model performances vary significantly with changes 

in the number of neurons in the hidden layers, the transfer 

function, and the ANN algorithm. The table 1 lists the 

best-fitting ANN model for each zone based on 

performance indices and transfer function. From the 

table1, it can be seen that for three days compressive 

strength, Logsigmoidal is the best transfer function, for 

seven days compressive strength, Purelinear is the best 

transfer function, and for twenty-eight days compressive 

strength, Tansigmoidal is the best transfer function. 

3.3 Effect of number of neurons in hidden layers 

Fig. 3.3 displays how well the ANN model performed 

during training and testing for typical days (three, seven, 

and twenty-eight). It can be seen from Table 3 that a 

hidden layer structure with seven neurons works better for 

three days, eight neurons for seven days, and eight 

neurons for twenty-eight days. Due to daily variations in 

statistical variables, the structure of the best-fitting hidden 

layer varies. 

 

A) Correlation Coefficient (Cc) in correlation with the number of neurons in the hidden layer for 3 days 

Compressive strength 
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B) Correlation Coefficient (Cc) and the Number of Neurons in the Hidden Layer exhibit a relationship for 7 

days Compressive strength 

 

C) Correlation Coefficient (Cc) in relation to the Number of Neurons in the Hidden Layer for 28 days 

Compressive strength 

         Fig.3.3: ANN Model Performance 

3.4 ANN model performance 

When ANN models with various hidden layer 

architectures have high coefficients of correlation that are 

often closer to one during training and testing, the best 

fitting model should be chosen based on MAE and mean 

relative error (MRE) from Figure 3.3. From Table 1, it is 

also clear that practically every predicted day (3, 7, and 

28), the ANN models exhibit extremely high levels of 

correlation between observed and anticipated values. 

3.5 Effect of length of dataset 

Three, seven, and twenty-eight days, respectively, are 

used to evaluate the impact of training dataset duration on 

prediction accuracy. Two distinct dataset lengths were 

first utilized to test how the model's performance was 

affected by the dataset's length. These two datasets 

training lengths are 50% and 70%, respectively. From 

Figures 3.6.1 to 3.6.2, as the duration of the dataset 

increases, the correlation coefficient (Cc) increases and 

the MAE and mean relative error (MRE) both decreases. 

At 70% of the length of the training dataset, the highest 

correlation and lowest mean relative error (MRE) are 

found. This can be attributed to providing a longer dataset 

for training. Error rises when the training dataset length 

exceeds 50%. 

3.6 Comparative Analysis of CFBP and FFBP 

Algorithms. 

Cascade-forward and feed-forward backpropagation 

algorithms are used for predicting the compressive 

strength of concrete for three, seven, and twenty-eight 

days. Table 2 shows that feed-forward backpropagation 

performs better than cascade-forward. 
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Correlation (Cc) in relation to the Percentage of the Training Dataset Length. 

 

Correlation (Cc) as it pertains to the Percentage of the Training Dataset Length. 

 

Correlation (Cc) in relation to the Percentage of the Training Dataset Length. 

fig.3.6.1: Coefficient of Correlation 
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Relationship between Length of Training Dataset (%) and MAE % 

 

Relationship between Length of Training Dataset (%) and MAE % 

 

Relationship between Length of Training Dataset (%) and MAE % 

fig.3.6.2: Mean absolute error 
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Fig.5.13: Relationship between Length of Training Dataset (%) and MRE % 

 

Fig.5.14: Relationship between Length of Training Dataset (%) and MRE % 

 

Fig.5.15: Relationship between Length of Training Dataset (%) and MRE % 

fig.5.13 to 5.15: mean relative error 

Table 1: Best fitting ANN model 

Length 

of 

training 

dataset 

Days 

Type of 

neural 

network 

Transfer 

function 

No. of 

neurons 
CC MRE MAE 

  

 
 

 

 

70% 

3 Feed Logsig 7 1 6.27 0.91   

7 Feed Purelinear 8 1 9.144 1.923   

28 Feed Tansig 8 1 4.311 1.215   

 

Table 2 Comparative Analysis of the Performance of CFBP and FFBP Algorithms              

No. of length 

of 

training 

dataet 

% 

CFBP FFBP 
 

Days  

  Cc MAE MRE Cc MAE MRE  

3 
50 0.994056 0.942049 6.659196 0.994056 0.973881 6.86105  

70 0.999 0.971446 6.405908 1 0.919916 6.27318  
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7 
50 1.00E+00 3.493333 16.93162 0.97802 11.33706 16.0705  

70 0.999 2.084917 10.06844 1 1.923662 9.144391  

28 
50 0.999557 1.466667 5.195064 0.99951 0.847217 2.997265  

70 0.999 1.215 4.310964 1 1.215269 4.311919  

 

According to the data in Table 2, the performance 

measures show that FFBP performs better than CFBP in 

this particular situation. The figures from 3.6.1 to 5.15 

provide visual depictions that demonstrate the connection 

between the size of the training dataset and important 

metrics such Coefficient of Correlation (Cc), MAE, and 

Mean Relative Error (MRE). 

Table 1 presents data on the most suitable Artificial 

Neural Network (ANN) models, determined by different 

parameters. It emphasizes the efficacy of FFBP in 

predicting concrete strength on different days. The 

comparison presented in Table 1 clearly illustrates the 

improved performance of FFBP in terms of Cc, MAE, and 

MRE. 

In addition, the comprehensive comparison presented in 

Table 2, which considers various sizes of training datasets 

and durations, highlights the persistent dominance of 

FFBP over CFBP. The FFBP model consistently 

demonstrates superior performance with higher Cc values 

and lower MAE and MRE percentages, which indicates its 

greater accuracy and reliability in predicting concrete 

compressive strength. 

4. Conclusions 

ANN models were used in the research to estimate the 

compressive strength of M20 grade concrete.  

1) The study shows that hidden layer neurons and 

alterations to the transfer function have a significant 

impact on model performance. It is clear that on various 

study days, such as three days for Logsigmoidal, seven 

days for Purelinear, and twenty-eight days for 

Transigmoidal transfer functions, all performed better due 

to the significant nonlinearity between the input and 

output variables. The study also shows that hidden layer 

neurons and alterations to the transfer function have a 

significant impact on model performance. 

2) It shows that a hidden layer structure with 7 neurons 

performs better for 3 days, 8 neurons perform better for 7 

days, and 8 neurons perform better for 28 days. 

The relationship between the size of the training dataset 

and the accuracy of predictions is a primary area of 

interest, since it provides valuable insights into the 

model's performance. More precisely, a dataset consisting 

of 70% training data exhibits higher prediction accuracy 

in comparison to a dataset containing only 50% training 

data. This is seen in the elevated correlation coefficient 

(Cc), which signifies a more robust linear association 

between the expected and actual values. In addition, the 

dataset including 70% training data demonstrates a 

decrease in MAE, showing a reduction in overall 

prediction errors, as well as a decrease in mean relative 

error (MRE), suggesting a more precise prediction in 

relation to the actual values. 

A notable pattern arises as the size of the training dataset 

grows — there is a consistent enhancement in the 

accuracy of predictions. The decrease in error 

measurements, such as MAE and Mean Relative Error 

(MRE), indicates that when additional data is used for 

training, the model improves its ability to predict 

outcomes, leading to a more precise depiction of the actual 

relationships existing in the dataset. This trend highlights 

the significance of having a sufficient amount of training 

data to improve the model's capacity to generalize and 

generate precise predictions beyond the training set. 

Essentially, the accuracy of predictions is heavily 

influenced by the magnitude of the training dataset. A 

more extensive training dataset, namely one consisting of 

70% training data, leads to significant enhancements in 

correlation coefficient, mean absolute error, and mean 

relative error. The diminishing mistakes found as the 

training dataset lengthens highlights the crucial 

significance of data quantity in enhancing the model's 

prediction skills. These findings emphasize the 

significance of meticulously choosing and enhancing 

training datasets to guarantee the optimal performance of 

predictive models. 

Feed-forward backpropagation approach performs better 

than cascade-forward backpropagation algorithm. 
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