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Abstract: The present research initiatives are based on improved multiple access methodologies with a focus on future wireless 

communication technologies. A skilled competitor, Non-Orthogonal Multiple Access (NOMA), can be utilized to construct the next 

generation of wireless communications. When compared to other orthogonal resources, NOMA's main strength is its ability to handle 

many users. The major NOMA detection method used at receivers for downlink NOMA transmissions is Successive Interference 

Cancellation (SIC). The receiver complexity and concerns about error propagation are the key limitations of SIC. Deep Learning (DL) is 

used for downlink NOMA transmission, which is decoded using a Sparse Code Multiple Access (SCMA) decoder. SCMA is used in 

conjunction with DL to forecast the channel and decode it at the receiver. Two users are provided equal access to resources, notably 

power, based on their proximity to the base station (BS). With SCMA decoding at the receiver, simulations for AWGN, Rayleigh, and 

Rician channels were carried out while various constraints were taken into account. SCMA-DL surpasses the MMSE and SIC detection 

methods in terms of Bit Error Rate (BER) during the decoding phase. 
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1. Introduction 

NOMA is 100 times faster than 3GPP-LTE in terms of 

peak data rate. It also has a 1 ms latency, making it 10 

times faster than 4th generation networks. The network 

should have 100,000 devices connected every km, which is 

100 times more than what is required for next-generation 

communication networks. The standard OFDM method for 

the next generation of wireless networks confines users to 

sharing all domains, including time, frequency, and space 

domains [1]. NOMA, which comes in three flavors—

power-domain, code-domain, and hybrid-domain—is 

largely used in wireless communication for MIMO systems 

in sending and receiving. On the receiver side, signals from 

various User Equipment (UE) were decoded using a 

power-domain NOMA technique with SIC. In contrast, it 

was expected that adopting user-specific spreading 

sequences might enhance code-domain NOMA approaches 

to multiplex signals from numerous UEs [2]. Despite the 

fact that the received signal has severe channel degradation 

dependent on the UE in the cluster, the receiver decodes it 

using the SIC method to calculate the UE's channel gain. 

Channel gain is low. UE signals are given a higher power 

allocation and are decoded first, whereas UE signals with a 

lower power allocation are considered interference. A 

signal is modulated once the higher-power signal has been 

correctly detected and decoded. The receiving signal is 

then calculated [3, 4]. This step is repeated until the UE 

successfully decodes the required data. 

The SCMA method, which is a code domain NOMA 

approach, provides a realistic solution for next-generation 

wireless networks. SCMA combines spreading and 

modulation techniques. A codebook containing user-

specific data bits that must be converted into 

multidimensional codewords is delivered to each UE. As a 

result, the design of the codebook has a significant impact 

on how SCMA systems operate [3, 5]. To comprehend 

sparsely organized codebooks that decode overlapped 

codewords, the Iterative Message Passing Algorithm 

(MPA) and Maximum Likelihood Decoding (MLD) are 

widely used. The computing environment's complexity 

continues to impede SCMAs' ability to work in real-time. 

System performance has gradually improved as a result of 

DL techniques in a variety of industries. Deep learning, an 

advancement in machine learning, has made great progress 

and is now used in a variety of sectors. Recurrent Neural 

Networks (RNNs) are used for voice recognition, language 

modelling, and text production, while Conventional Neural 

Networks (CNNs) are used for image analysis, and Deep 

Neural Networks (DNNs) are used for pattern 
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identification and classification [6]. CNNs are designed 

particularly for image and video data, but DNNs can 

handle a wide range of data sources, including time series 

data, audio signals, and text. Its high classification and 

identification characteristics make it ideal for dealing with 

wireless communication system difficulties such as 

synchronization, channel estimation, iterative decoding, 

and multi-user decoding. Because DNNs can cope with 

multidimensional values with nonlinear characteristics, 

they are also helpful for analysing the receiver signal and 

creating the SCMA codebook. With the SCMA system, 

DL has been employed to overcome codebook design and 

decoding problems [4,5]. The performance of DL-based 

techniques in terms of BER is encouraging. 

NOMA could be combined with other wireless 

communication technologies in the future to meet needs 

for massive connectivity, high spectral efficiency, 

improved energy efficiency, significant achievable data 

rates, low latency, exceptional user fairness, high 

throughput, ultrahigh reliability, and adherence to a variety 

of Quality Standards (QS) [7]. The SIC used at the receiver 

influences error propagation and receiver complexity based 

on the number of UEs [8]. We present an SCMA-DL 

technique for improving MIMO NOMA system 

performance by successfully reducing complexity and 

decoding the received signal. The benefits include 

enhanced communication system performance and a 

reduction in reference signal overhead, which boosts 

downlink system throughput.  

In NOMA, superposition coding is employed at the 

transmitter so that the SIC receiver can distinguish 

between users in the uplink and downlink channels [9]. 

Other signals in the area frequently distort received signals. 

This problem is addressed by the "SIC" algorithm. The 

intra-beam interference in NOMA is eliminated by using 

the SIC technique to decode the combined signals received 

at the receiver. The idea behind SIC is the successive 

decoding of the superposed signals. When two or more 

signals are received simultaneously by the SIC in a UE 

receiver, the strong signal is initially decoded, after which 

it is subtracted from the superposed signal, and the weak 

signal is then recovered. Knowing which UE will conduct 

SIC on the downlink is crucial. NOMA is occasionally 

thought of as the decoding direction. In a nutshell, the UEs' 

rising channel gains from a specific BS determine this 

orientation. Based on the sequence [10], the Near User 

(NU), who has a high channel gain, decodes the signal 

from the Far Users (FUs), who have a low channel gain. 

After signal decoding, NU employs SIC to remove 

pointless signal data. The concept of NOMA using SIC for 

downlink is illustrated in Fig. 1. 

 

Fig. 1. NOMA using SIC for downlink 

According to speculation, NU does not fully comprehend 

the specifics of the FU signal. As a result, it is anticipated 

that the NU cannot completely remove the FUs' 

interference. If the decoding procedure is flawless, a 

waveform accurately relating to only that particular 

transmission can be generated by subtracting the signal 

that is first decoded from the signal that was received [11]. 

You keep doing this until you find an accurate signal. The 

serial input converter repeats this procedure until it finds 

the desired transmission. NOMA implementation in 

wireless networks requires a lot of computer resources for 

the SIC and power allocation processes. The following are 

the primary contributions of this study: 

1. To the best of our knowledge, we developed the DL-

based downlink MIMO-NOMA detecting system. Instead 

of using a SIC receiver, the proposed system may directly 

process the conventional MIMO-NOMA signal. We make 

full use of DNN's capacity to handle higher dimensional 

data. The DL-based technique has the potential to improve 

detection efficiency. 

2. The MIMO-NOMA-DL system can decode the signal 

after estimating the channel characteristics. Instead of 

thinking about channel estimation and signal detection as 

independent processes, they can be combined. 

2. Proposed System  

This system will learn how to use DL-based techniques to 

identify various channel restrictions when using various 

channels and take performance into account while using 

various channel configurations. By transmitting the known 

pilot signal and using these pilot symbols, the Channel 

Estimation technique is put into practice [12]. The 

remaining channel response is then interpolated. In this 

case, channel estimation is performed using deep learning 

techniques. We recommend using a DL detector to find 

MIMO-NOMA signals. Without further signal processing, 

the received signal is transmitted directly to the MIMO-

NOMA-DL detector. MIMO-NOMA-DL [13] is the 

simplest and most efficient solution to replace the SIC 

receiver. The pilot signal, which is a known signal, is 

transmitted by the transmitter to the receiver together with 

the data signal. Pilot signals are unique to each user and 

can be easily separated from the data signal. These signals 
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can be used to estimate the channel coefficient, which 

depicts the magnitude and phase of each user's transmitted 

and received signals. For the purpose of decoding the 

user's data signals, the channel coefficient is offered [14]. 

2.1. SCMA Over SIC  

The received signal is continuously processed in SIC 

receivers in order to eliminate the interference brought on 

by individual users. The multi-user detection approach is 

employed in the SCMA detector. 

Better Spectral Efficiency: SCMA delivers higher spectral 

efficiency than SIC, allowing more users to send data over 

the same frequency. 

Complexity and Latency: In SIC, complexity rises with the 

number of users because SIC decodes the signals of each 

user individually, which is time-consuming, but the SCMA 

decoder can decode the signals of many users concurrently, 

which reduces latency. 

Flexibility: SCMA increases performance by assigning a 

particular codebook to each user based on the user's 

transmission characteristics. However, in SIC, the receiver 

occasionally needs each user's signal structure, which is 

impossible.  

Our primary goal is to create SCMA decoders. The DL-

based decoder for an SCMA system produces outputs 

tailored for J users and components using k resources. The 

labels or symbols associated with each output correspond 

to the numbers 1, 2,..., K. Our goal is to predict the input 

symbol bi for m = 1, 2,..., I in the received signal. This test 

is really challenging because the channels are fading and 

loud. The DL technique is used to decode the SCMA 

signals. We propose a neural network that learns its model 

parameters from training data and applies them to 

anticipate the symbols in the input data. In Fig. 2, the 

SCMA model is depicted. 

 

Fig. 2: Proposed SCMA-DL model 

The transmitted signal vector 𝐱 represents a linear 

combination of the sparse code vectors for each user: 

𝐱 = ∑ 𝐬j𝐛j ---(1) 

where 𝐬j is the sparse code vector for user j, and 𝐛j is the 

modulated symbol for user j. 

The equation for mapping the user’s message bits onto the 

sparse code is expressed as: 

X = f(B)       ---(2) 

where X is the sparse code matrix with dimensions K x M, 

where K is the number of users and M is the number of 

code words in the codebook; B is the message bit vector 

with dimensions L x 1, where L is the number of message 

bits per user. 

The equation for SCMA in MIMO-NOMA can be 

expressed as: 

y = 𝐇x + 𝐧      ---(3) 

where 𝐲 is the vector of received signal, 𝐱 is the vector of 

transmitted signal, 𝐧 is the noise vector, and 𝐇 is the 

channel matrix [15]. 

The decoded signal is obtained by estimating the 

transmitted signal vector x by using the received signal y 

and the channel matrix H, and then the message bits are 

recovered from the estimated transmitted signal vector x. 

The equation (4) for the estimated transmitted signal vector 

x in a MIMO-NOMA system can be expressed as: 

x = argmax ||y - Hx||^2 + lambda * ||x||_1        ---(4) 

where argmax is the argument that maximizes the 

expression, ||.|| is the Euclidean norm, lambda is the 

regularization parameter, and ||.||_1 is the L1 norm. 

The message bits are obtained by de- mapping to the 

estimated transmitted signal vector x. This can be 

expressed as: 

b = f^-1(x) ---(5) 

where f-1(.) denotes the inverse mapping of the codebook, 

and b is the recovered message bits. 

2.2. MIMO-NOMA DNN Model 

The three essential components of the MIMO-NOMA-DL 

system are the training, testing, and DNN detection blocks. 

For a number of users, DNN and the data are trained and 

tested [16]. Fig. 3 below provides an illustration of the 

MIMO-NOMA-DL standard's structure. The DNN's 

training block generates the MIMO-NOMA signal with 

labels. The testing block is used to simulate real-time 

MIMO-NOMA transmission. first detecting block When 

the online operating block is disabled during a training 

program, the offline training block is enabled. Two 

components make up the input to the DNN training 

system: the observed data provided by the labels, which 

aid the DNN in optimizing its parameters, and the input 

layer provided by the received NOMA signal for the DNN 
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system. Input, output, and hidden layers are included in the 

DNN model for the detection of MIMO-NOMA signals. 

The input layer detects the MIMO-NOMA signal. To get 

around the vanishing gradient problem with the sigmoid 

function, the entirely connected layers are what make up 

the hidden layers. By combining the output layers, the 

signals from numerous antennas are decoded in a single 

slot. 

 

Fig. 3: MIMO-NOMA DL model 

2.3. SCMA-DL 

We take into consideration that J denotes the SCMA 

system's available users and K denotes the resource blocks 

available for the downlink SCMA system. Due to the 

sparse form of the system, each user is given a sparse code 

that extends to K resource blocks. The SCMA system may 

experience overload if the user-to-resource block ratio, 

denoted as λ=J/K, is too high. A constellation diagram 

rotation mechanism is used at the transmitter to create a 

special user codebook in order to address this. At the 

receiving end, the received signal is decoded using DNN. 

Utilizing the DNN’s hyperparameters, it is able to study 

the channel parameters and MIMO-NOMA decoding 

technique. The DNN detecting block should contain the 

number of layers, activation function, loss function, and 

optimization criteria iteration method as part of it. The first 

two sections deliver channel labels and signals, while the 

final block restores the original data [17]. In light of this, 

the detection procedure can be split into two phases: 

Phase 1: Training Scheme: 

At the receiver, the received signal r can be expressed as 

the sum of the channel vectors hj and codewords tj of each 

user j, as well as additive white Gaussian noise n with zero 

mean and variance σ2 [18]. 

r =      --- (6) 

We observe that an encoder (codebook) created the 

codeword tj from the user j's input data symbol bj. The aim 

of the SCMA decoder is to reconstruct the input symbol bj 

for each user from the received signal r. A DNN consists 

of several layers called "neurons" which are composed of 

nodes. The computation takes place at a node, that can 

express as: 

y = φ (wTx + b) ---(7) 

y represents the output of a neuron in the DNN. φ 

represents the activation function, which helps us decide 

whether the neuron should excite or not i.e., whether its 

output should be a 1 or a 0. w represents the weight 

assigned to each input signal. In the MIMO NOMA 

system, each input signal is a different user's signal. x 

represents the input signals sent by each user. In other 

words, x is a vector that contains the signals sent by each 

user. b represents the bias term, which is added to the 

weighted sum of  the input signals before the activation 

function is applied. A DNN consists of more than one 

hidden layer in addition to input and output layers. The 

architecture of DNN includes layers, where each layer is 

made up of Nl,o nodes that connect to the previous layer 

with Nl,i nodes. This layer can be mathematically 

represented  as: 

yl = φl (WlTxl + bl)            ---(8) 

where in a DNN, each layer has an input vector x1 ∈ R Nl,i 

and an output vector y1 ∈ R Nl,o. The layer's weight 

matrix is denoted by W1 ∈ R Nl,i × Nl,o, and the bias 

vector is represented by b1 ∈ R Nl,o. The DNN structure is 

illustrated in Fig 4. 

Phase 2: Testing Strategy: 

Following DNN training, testing mode is turned on. In 

phase 2, the offline block is suspended and the online 

operating block is given access to the DNN system. The 

process' efficacy is assessed at this stage. 

 

Fig. 4: Structural layers of DNN 
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2.4. Algorithm 

The user information is produced for transmission. Each 

user receives a subcarrier according to their channel 

circumstances. 

Each user is given a distinct sparse code, and the weight 

given to each user is multiplied by the code's value. 

The sparse code is then modulated using the QPSK 

modulation technique. 

After that, an SCMA encoder is used to encrypt the 

modulated signals. 

Each user is given a certain amount of power and time 

slots according to the channel requirements. After the 

signals are multiplexed and mapped onto a channel, the 

receiver uses a pilot system to estimate the channel 

conditions. 

Each user's received symbols are processed, and the data is 

then decoded in order to identify the user's sparse code. 

3. Results and Discussion 

Continue to discuss the simulation results and performance 

comparisons of different channels with NUs and FUs for 

AWGN, Rayleigh, and Rician channels using SCMA-DL 

and comparison of SCMA-DL with SIC and MMSE. 

Table 1: Parameters and respective values used for the 

simulation 

PARAMETERS VALUES 

Number of UEs 2 

Modulation QPSK 

Number of Subcarriers 64 

Channel 
AWGN, Rayleigh, 

and Rician 

Input and Output layers 1 

Hidden layers 3 

Number of training 

samples 
6,000 

SNR 10–20 dB 

Mini batch size 4000 

Max Epochs 50 

 

Table 1 provides various parameters and their respective 

values for a neural network model trained to perform a 

specific task. 

3.1. Simulation Results 

Fig. 5 displays the simulation output of SCMA-DL method 

for Rician fading channel. The simulated results indicate 

that UE 1 which is NU is produces a BER of  0.0004 for 

the SNR value of 16 dB whereas the UE 2 which is FU 

produces BER of  0.0114 for the SNR value of 28 dB. 

 

Fig. 5: BER vs. SNR analysis of the Rician Channel 

 

Fig. 6: BER vs. SNR analysis of the AWGN channel 

Fig. 6 displays the outcome of the SCMA-DL approach for 

the AWGN channel. In this scenario BER performance is 

evaluated for two users UE 1 and UE 2. The simulation 

results show that UE 1 which is NU produces BER of 

0.000066 at SNR value 20 dB and UE 2 which is FU 

produces BER of  0.036 at SNR value of 28 dB. 
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Fig. 7. BER vs. SNR analysis of Rayleigh Channel 

Fig. 7 displays the outcome of the SCMA-DL approach for 

the AWGN channel. In this scenario BER performance is 

evaluated for two users UE 1 and UE 2. The simulation 

results show that UE 1 which is NU produces BER of 

0.000066 at SNR value 20 dB and UE 2 which is FU 

produces BER of  0.0036 at SNR value of 28 dB. 

Table 2: The value of BER and SNR of the Rayleigh, 

Rician, and AWGN channels 

Channel 

UE 1 (NU) User 2 (FU) 

SNR 

(dB) 
BER 

SNR 

(dB) 
BER 

Rayleigh 20 0.00013 28 0.087 

Rician 16 0.0004 28 0.0114 

AWGN 20 0.000066 28 0.0036 

 

The Rician fading channel, AWGN channel and Rayleigh 

fading channel are commonly used in wireless 

communication systems. These three channels represent 

different propagation conditions which are useful in 

analyzing communication systems. Table 2 shows the 

performance each channel under different constraints. The 

AWGN channel performance is better due to fading effects 

are negligible compared to Rician and Rayleigh channel. 

 

Fig. 8. BER vs. SNR Comparison of MMSE, SIC, and 

SCMA-DL 

Simulation results of SNR vs BER for the AWGN channel 

using MMSE, SIC, and SCMA-DL methods is shown in 

Fig.8. It is observed that both UE 1 and UE 2 performance 

using SCMA-DL method outperform SIC and MMSE 

methods. MMSE method is used to mitigate the effects of 

noise and interference in communication systems. 

However, in the comparison with SCMA-DL, it appears to 

have lesser BER values, indicating inferior performance in 

the AWGN channel. SIC is a multi-user detection 

technique commonly used in wireless communication 

systems to decode multiple users' signals in an 

interference-limited environment. However, the simulation 

results show that the SIC method performs worse than the 

SCMA-DL method for both UE 1 and UE 2 in the AWGN 

channel, as evident from the higher BER values. The 

SCMA-DL method is a combination of SCMA, a non-

orthogonal multiple access technique, and deep learning 

algorithms to improve the performance of the 

communication system. Table 3 shows the SNR & BER 

values of MMSE, SIC and SCMA-DL methods. 

Table 3: The value of BER and SNR for MMSE, SIC and 

SCMA-DL in AWGN Channel 

Method 

UE 1 (NU) User 2 (FU) 

SNR 

(dB) 
BER 

SNR 

(dB) 
BER 

MMSE 20 4e-05 28 0.133 

SIC 20 1e-05 28 0.088 

SCMA-

DL 
22 

1e-05 
28 

0.037 

 

4. Conclusion 

The potential benefits of DL-aided communication 

motivated us to conduct research on a cutting-edge DL-
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based strategy to enhance SCMA systems' BER 

performance.  The combination of DL-based method in 

MIMO-NOMA and simultaneous channel estimation opens 

up new possibilities for efficient and robust 

communication systems. The experiments conducted in 

Rayleigh, Rician, and AWGN channels demonstrate that 

DL-based method outperforms previous methods. This 

improvement in BER performance indicates that this 

approach is effective in mitigating the effects of fading and 

noise in the wireless channels. This eliminates the need for 

complicated algorithm design and manual fine-tuning, 

making the implementation and deployment proposed 

method is easier. The channel estimation and signal 

detection processes can be completed simultaneously using 

the proposed method. According to the simulation results, 

both UE 1 and UE 2 achieve better BER values using the 

SCMA-DL method compared to the MMSE and SIC 

methods. This suggests that SCMA-DL provides superior 

performance in the AWGN channel, possibly due to its 

ability to better handle interference and noise in a multi-

user scenario. In future, MIMO-NOMA can enhance 

spectral efficiency and capacity, while DL-based signal 

detection can further improve performance, resulting in an 

advanced and high-performance communication system. 
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