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Abstract:  The effective distribution of commodities from several suppliers to numerous consumers while minimising 

transportation costs is the focus of the well-researched optimisation problem known as The Transportation Problem (TP) in 

operations research and logistics. A tactical tool for simulating the costs involved in moving commodities among sources and 

destinations is the Transportation Operation Cost Matrix (TOCM). In order to provide an initial basic feasible solution, the 

TOCM and the Zero Point Minimum Method (ZPMM) are employed in this study to present a novel technique to addressing 

the Transportation Problem. The ZPMM entails finding the least expensive cell in the TOCM that hasn't been allocated and 

giving it the greatest amount of stock. Iteratively repeating this approach until supply and demand restrictions are satisfied 

results in a fundamentally workable solution. The suggested approach tries to offer a quick and easy way to arrive at a 

preliminary answer to the Transportation Problem, which is a key first step for further optimisation methods like the Modified 

Distribution Method or the Vogel's Approximation Method. The Transportation Problem (TP) estimates minimum cost for the 

transportation of goods to different destinations from a number of different sources. This minimum cost is called the optimal 

solution of the transportation problem. Before finding optimal solution, one needs to find an Initial Basic Feasible Solution 

(IBFS). A new method Total Opportunity Cost Matrix-Zero Point Minimum Method for determining IBFS is developed in 

this paper. The results obtained in terms of transportation cost are compared with the Vogel`s Approximation Method (VAM) 

and the optimal solution. Several numerical tests are run on various transport scenarios to gauge the effectiveness of the 

suggested approach. The outcomes show that the developed initial basic feasible solutions are both feasible and optimal, 

opening the door for future improvement utilising cutting-edge optimisation methods. 

Keywords: Initial Basic Feasible Solution; Optimal Solution; Total Opportunity Cost Matrix; Transportation Problem; Zero 

Point Minimum Method; 

 

1. Introduction 

One of the most traditional issues in operations research is 

called the Transportation Problem (TP), which aims to 

maximize profit or minimize overall transportation costs by 

finding the best way to move items from several sources to 

several destinations [1]. It occurs in a variety of sectors, 

including manufacturing, distribution, logistics, and supply 

chain management, where effective resource distribution 

and allocation are essential to the success of the organization 

[2]. The Transportation Problem is essentially about figuring 

out the most economical method to distribute available 

resources, which are usually represented as commodities or 

items, among many providers (sources) and several demand 

locations (destinations) [3]. With choice variables standing 

in for the quantity of cargo moved from each source to each 

destination, the issue is framed as a linear programming 

model. The goal is to fulfil supply and demand restrictions 

while minimising the overall cost of transportation [4]. The 

Transportation Problem (TP) is made up of a number of 

complex elements that are essential to understanding how to 

formulate and approach solutions [5]. To begin with, supply 

points are the places where commodities originate or are 

sourced; each has a limited amount of stock available. In 

order to prevent overuse and resource exhaustion, this 

capacity constraint makes sure that the entire shipment from 

each supply point stays within its resource restrictions [6]. 

Simultaneously, demand points, which specify particular 

requests or requirements, stand in for the locations or 

demand centres that need commodities delivered. Meeting 

these criteria is necessary to satisfy clients and keep 

operations running smoothly [7]. The second part of the 

matrix is the Transportation Costs, which shows the costs 

involved in delivering commodities from every supply 

location to every demand point. These costs, which are 

commonly stated as transportation charges per unit, take into 

account variables like as weight and distance conveyed. In 

order to evaluate the financial effects of various transport 

routes and direct decision-makers towards economically 

viable alternatives, a transport costs matrix is necessary [8]. 

Furthermore, the procedure for transport is made viable and 

feasible by supply and demand constraints. Supply 

limitations prevent resource depletion and logistical 

bottlenecks by limiting the amount of commodities that may 

be sent from each supply location [9]. In contrast, demand 
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limitations guarantee that all of the demand is met at every 

destination, so averting shortages and guaranteeing client 

pleasure. It is crucial to strike a balance between these 

limitations when creating workable transport systems that 

satisfy demand and supply demands [10]. Minimising the 

overall cost of transportation is the main goal of TP 

optimisation. This objective function, which is determined 

by multiplying the total amount of transportation costs by 

the quantity of commodities moved from each supply point 

to each demand point, quantifies the total costs related to 

carrying goods along all routes [11]. Through the process of 

minimising this overall cost function, TP seeks to arrive at 

economical transportation solutions that maximise resource 

efficiency and operational effectiveness [12]. The complex 

relationship among supply and demand points, 

transportation costs, and limitations characterises the 

multidimensionality of the problem of transportation. 

Developing transportation plans and algorithms that 

optimise logistical processes and improve overall 

organizational performance requires a comprehensive 

approach to these components. The network of 

transportation issues is depicted in Fig 1. 

 

Fig 1.  TP’s Network representation 

In order to maximise logistical processes and resource 

distribution inside organisations, the Transportation 

Problem (TP) must be solved. Finding the best, or almost 

best, solution that minimises transportation expenses and 

successfully balances supply and demand needs is the main 

goal. This means figuring out how to distribute and allocate 

items from various sources to various destinations in the 

most economical way. Numerous optimisation techniques 

and algorithms have been developed in order to effectively 

handle TP. Heuristic techniques like the LCM and the 

NWCM offer fast preliminary answers. Although these 

techniques are simple to implement, the most effective 

results could not always be obtained. Conversely, the MODI 

and VAM seek optimal solutions by repeatedly improving 

original answers in light of transportation costs and 

limitations. Even while these identical methods ensure 

optimality, it could need more processing power, 

particularly for bigger issue situations. The importance of TP 

solution goes beyond theoretical optimisation problems to 

practical applications in supply chain and logistics 

management. Businesses may increase overall efficiency, 

cut expenses, and optimise their transportation operations by 

effectively addressing TP. For example, better routes and 

means of transportation can result in shorter delivery times, 

less fuel used, and less wear and tear on the vehicles, which 

can save costs and increase customer satisfaction. 

Additionally, TP solutions provide distribution channel 

optimisation and inventory management, guaranteeing 

prompt product availability and lowering the cost of 

retaining inventory. Through increasing supply chain 

resilience and efficiency, this optimization helps businesses 

react quickly to changing market conditions and 

uncertainties. Furthermore, through providing insights into 

capacity planning, network architecture, and resource 

allocation, TP solutions assist in guiding strategic decision-

making processes. Through the process of modelling various 

scenarios and optimising transportation routes, companies 

may make well-informed decisions that are consistent with 

their overall aims and objectives. This, in turn, increases 

their competitive advantage in the market. In today's 

complicated business environment, operational efficiency 

and competitive advantage are largely dependent on finding 

a solution to the Transportation Problem.  

Efficiently solving transport problems (TPs) requires first 

identifying an IBFS. For optimisation algorithms, an initial 

base file system (IBFS) provides the groundwork for 

successive iterations to converge towards an optimal or 

nearly optimal solution. Optimisation techniques could 

speed up the convergence process and lower the amount of 

computing time and resources needed to arrive at a good 

solution by achieving an IBFS. Furthermore, an IBFS offers 

a workable beginning point that fulfils the fundamental 

specifications of the TP, guaranteeing that variations in the 

future respect supply and demand limitations. Organizations 

have the ability to find cost-effective transportation routes 

and resource allocations more rapidly because to this early 

feasibility, which speeds up the optimization process. 

Acquiring an IBFS additionally assists with decision-

making as it gives information on the health of the transport 

network at the moment, enabling companies to plan ahead 

and solve logistical issues before they arise and run more 

efficiently. Two prominent methods for determining IBFS 

and optimising transportation networks in the field of TP 

optimisation are the Transportation Optimality 

Complementary Method (TOCM) and the Zero Point 

Minimum Method. The TOCM method effectively 

determines an initial viable solution by combining 

complementary pairs of variables. TOCM lowers computing 

complexity and speeds up convergence to an ideal solution 

by taking use of the complimentary nature of choice 

variables. Furthermore, TOCM's durability and adaptability 

make it appropriate for a range of TP situations with distinct 

features and limitations. A crucial element of TOCM is the 
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Zero Point Minimum Method, which focuses on finding the 

transportation cost matrix's minimum cost zero point. The 

cell with the lowest transportation cost, which might be a 

candidate for allocation in the IBFS, is located using a 

methodical evaluation of the cost matrix. The Zero Point 

Minimum Method helps to build an IBFS that minimises 

transportation costs while satisfying supply and demand 

needs by carefully choosing zero points and assigning 

appropriate amounts. Its effectiveness in determining the 

best allocation options is essential for quickening the 

convergence of optimization algorithms and raising the 

standard of the final result. The study's principal 

contributions are listed below: 

 The study provides insights into the importance of 

finding an IBFS for efficient optimization of 

transportation problems, highlighting its role in 

expediting convergence towards optimal or near-

optimal solutions. 

 It elucidates the significance of the Transportation 

Optimality Complementary Method (TOCM) in 

solving transportation problems, showcasing its 

effectiveness in efficiently obtaining IBFS by 

leveraging complementary pairs of variables. 

 Utilising TOCM and the Zero Point Minimum 

Method, the research quickens the convergence of 

optimisation algorithms, lowering the amount of 

computing time and resources needed to provide 

workable transportation solutions. 

 Through the utilization of TOCM and the Zero 

Point Minimum Method, the study enhances the 

quality of transportation solutions by 

systematically identifying optimal allocation 

choices that minimize transportation costs while 

satisfying supply and demand constraints. 

The remaining portions of the paper are arranged as follows: 

Related work is discussed in Section 2. In Section 3, the 

problem statement is covered. Part 4 delineates the 

suggested technique. The experimental findings are reported 

and compared in Section 5. The paper's conclusion and 

future research are discussed in Section 6. 

2. Literature Review 

The cost of moving items from one place to another is known 

as transportation expense. It is crucial to consider the 

expenses of moving goods in order to maximize earnings. In 

the current challenging global market, it is essential for 

businesses to strategically manage their transportation 

systems in order to cut costs. Determining the most efficient 

and budget-friendly way to transport a particular item is a 

choice that managers have to make. This modeling technique 

goes by the name of linear programming in transportation. 

When resolving a transportation problem, it is crucial to 

begin by identifying a basic solution before searching for the 

most effective one. Four commonly used techniques for 

determining a starting point in resolving transportation 

issues. This study proposes a fresh approach to finding initial 

solutions for transportation issues. An evaluation is made to 

determine the success of the new method through 

comparison with other methods. The updated technique is 

efficient in solving transportation problems. The suggested 

approach might face challenges when dealing with complex 

transportation networks or scenarios involving varied types 

of goods. Furthermore, the efficiency of this method may 

vary based on the unique transportation challenges. 

Moreover, the effectiveness of this solution may fluctuate 

according to the particular transport issue. Additionally, the 

success of this approach may be influenced by the specific 

transportation problem at hand [13]. 

The research explores diverse methods for initiating the 

resolution of a transportation challenge. It's crucial to 

determine the most effective starting point in order to find a 

viable solution. This investigation led to the identification of 

23 novel solutions for a specific task, consisting of 18 

entirely new approaches and 5 modified versions of existing 

methods. The effectiveness of 23 new methods, 11 older 

methods, and the best solution from linear programming was 

evaluated using 640 different problems. According to our 

findings, the new IBFS methods occupy the top six positions 

in terms of transportation cost, while the older IBFS methods 

take up positions 7 to 10. In addition, the best outcomes from 

the recently recommended IBFS approaches are very similar 

to the best possible solution, with just a slight deviation of 

0% to 2%. These can be incorporated to tackle complex 

decision-making challenges such as logistics or supply chain 

management. Due to the limited paper size, we cannot 

include the results of the Wilcoxon Signed Rank test [14]. 

Transporting items from one location to another at a minimal 

expense is crucial for effectively controlling the movement 

of merchandise. In the transportation problem, the objective 

is to determine the most economical method of moving items 

between various destinations. When tackling a 

transportation problem, the IFS is used as the initial option 

for identifying the most optimal solution. The decrease in 

IFS means a reduction in the amount of effort required to 

find the most suitable solution. The paper outlines a fresh 

method for tackling transportation challenges, involving the 

application of a customized ant colony optimization 

algorithm known as MACOA. The recommended approach 

is user-friendly and provides optimal solutions with minimal 

trial and error. The algorithm performed effectively during 

tests with various examples, and extensive calculations were 

conducted to evaluate the effectiveness of our revised ant 

colony optimization algorithm. The evaluation indicates that 

both the MACOA and the existing JHM are successful in 

comparison to the approaches outlined in this paper for 

obtaining satisfactory results. When dealing with extensive 

transportation challenges, researchers and workers advise to 

opt for MACOA over JHM, as the latter requires a 

significant amount of time to calculate. This finding is 

significant as it could lead to time and cost savings through 

decreased transportation expenses and enhanced 

transportation procedures. This could also enhance the 
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organization's competitiveness in the market. However, it 

doesn't always ensure the precise lowest possible price [15]. 

Identifying the most economical and effective means of 

moving commodities from their point of origin to their final 

destination is the core of the transportation issue. Although 

there are two steps involved in solving this problem—first 

finding the initial answer and then figuring out the best 

solution—it may be thought of as a linear programming 

framework. It's crucial to identify an effective initial 

solution, particularly for significant issues, as it will 

facilitate subsequent steps. Numerous techniques have been 

developed to discover the initial straightforward answer up 

to this point. This research suggests a fresh method for 

figuring out the initial fix for the problem with 

transportation. It goes by the name of the method for 

minimizing costs. This algorithm is effective due to its 

simplicity and user-friendly interface. Testing problems are 

done using the avoid maximum cost method and are 

compared with six other initial solution methods. The 

evidence suggests that the recommended technique produces 

a stable and highly effective starting point. Moreover, this 

technique can be utilized as a different approach for 

identifying a starting solution in instruction, as opposed to 

the customary methods. The variability in transportation 

costs can be a challenge when using the avoid maximum cost 

method, potentially leading to less-than-ideal starting 

solutions [16].  

Efficiently moving goods from one location to another in the 

supply chain while minimizing transportation expenses is 

highly significant. It is commonly referred to as 

transportation-related challenges. In order to find the most 

effective solution to the problem, each individual begins by 

addressing it with a straightforward approach. With a solid 

initial solution, we can minimize the number of attempts 

needed to find the optimal solution with the lowest cost. This 

paper proposes a novel method for identifying the initial 

basic solution of a transportation problem. This is achieved 

by allocating items to the least costly option in the priciest 

position. The updated method outperforms the old methods 

in obtaining a better initial solution. This approach often 

leads to the most efficient solution in a short amount of time 

and with minimal steps. It is also effective for solving 

significant transportation problems. Furthermore, it has 

presented some thought-provoking contrasts to established 

methods. However, the suggested approach could be limited 

in situations when the capacity of transportation routes is 

restricted that could result in less-than-ideal outcomes [17]. 

The maximum flow problem is a commonly encountered 

problem in optimization theory. It involves determining the 

most effective means of transporting items through a 

network to minimize delivery time. According to the 

investigation, many ways have been devised by humans to 

manage the maximum volume of information that a network 

could sustain. The Dinic's algorithm and the Ford-Fulkerson 

technique are two important techniques for handling these 

kinds of issues. The Max-Flow Min-Cut Theorem, the 

Scaling technique, and the Push-relabel highest flow 

technique ought to all be employed to attain the maximum 

flow in a structure. Using the "max-flow" concept, the paper 

presents a fresh perspective on optimizing the flow within a 

network."  There is a novel method for addressing 

transportation problems, which involves a new algorithm. 

This algorithm is designed to lower transportation expenses. 

It’s essential to understand that this technique is most 

effective after only a few attempts. The approach to 

problem-solving in this study is more straightforward than 

the techniques commonly found in books. It is difficult for 

researchers and practitioners to use conventional methods to 

solve major transportation problems because they involve 

tracing paths [18]. 

In order to minimise costs, the research revealed a number 

of innovative techniques to effectively handle 

transportation-related issues. These techniques, which 

include the Avoid Maximum Cost Method, MACOA, and 

IBFS, showed encouraging outcomes in terms of cost 

reduction and the discovery of first solutions. Still, 

shortcomings were found in all of the methods. Certain 

techniques could fail to work well with intricate 

transportation systems or different kinds of commodities, 

which would restrict their utilisation. Furthermore, although 

several methods provided easy-to-use interfaces and prompt 

resolutions, it sometimes produced less-than-ideal outcomes 

because of variable transportation expenses or capacity 

constraints. Furthermore, certain techniques (e.g., JHM) 

could be computationally intensive, making them 

impractical for large-scale transportation problems. 

Although the Max-Flow Min-Cut Theorem and associated 

techniques provided novel insights into network flow 

optimization, its broad applicability could have been limited 

by the need to carefully evaluate certain circumstances for 

maximum performance. 

3. Research Gap 

The aim of the study is to examine and employ the 

Transportation Optimality Complementary Method 

(TOCM) with the Zero Point Minimum Method in order to 

tackle the problem of effectively optimizing transportation 

operations. The core of the issue statement is that companies 

need to optimize their transportation procedures in order to 

save expenses and guarantee prompt and effective delivery 

of goods. The intricacy of transportation issues and the 

computer power needed for optimisation, however, 

sometimes make it difficult to accomplish this aim.  In order 

to effectively achieve IBFS for transportation challenges, the 

study aims to examine the effectiveness of TOCM in 

conjunction with the Zero Point Minimum Method. The goal 

is to follow supply and demand restrictions while increasing 

convergence towards optimum or nearly optimal solutions. 

The research study attempts to show the benefits and 

practical application of these approaches in real-world 

transportation settings through empirical analysis and 

testing. The primary objective of this endeavour is to provide 
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significant methods and insights for raising operational 

efficiency and refining transportation optimization 

techniques across a range of sectors. 

4. Research Framework  

The TOCM was originally laid out by Kirca and Satir [19]. 

Through adding the row and column opportunity cost matrix 

structures, it transforms the original TP matrices into an 

initial vector. In order to solve the Transportation Problem—

which has to do with estimating the costs of moving 

commodities from one place to another—the Initial Basic 

Feasible Answer (IBFS) is proposed. IBFS is crucial for 

achieving the best outcome. Each component in the row and 

column opportunity cost matrix is subtracted by the least 

expensive one. A workable solution to the transportation 

problem is found using the TOCM. Additionally, it helps 

VAM. The fundamental feasible solution (BFS) to the 

transportation problem may be found using the Total 

Opportunity Cost Table. The problem of transportation in 

the matrix is transformed from its initial state back into its 

original matrix employing TOCM by consist of both 

columns and rows of possibilities. The zero-point method 

provides a systematic approach to transportation problems 

that is simple to use and could be applied to every kind of 

transportation problems, regardless of whether the 

optimization problem is maximised or minimised. It serves 

as a crucial contrivance for decision-makers when they are 

dealing with numerous logistical problems. For a lowered 

transportation cost of transportation problem as well as a 

shortened transportation time, correspondingly, the Zero 

Point approach and TOCM are employed to discover the best 

solution. In order to solve for cost and time minimising 

transportation to decrease the transportation time and cost, 

we are adopting TOCM - Zero-point approach. Here, the 

goal is to compare the zero-point approach with TOCM in 

order to find a workable clarification to the transportation 

challenges while reducing the amount of time it takes. 

4.1 Mathematics Formulation of TOCM-Zero 

Point Method 

In order to minimise the overall expense of Transportation 

Problem, as demonstrated in Equation 1 the goal of TP is to 

identify the unknown variable 𝑦𝑢𝑣. The following is a 

formulation of TP's goal: 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑇 =  ∑ ∑ 𝑟𝑢𝑣𝑦𝑢𝑣

𝑠

𝑣=1

𝑟

𝑢=1

 

𝑊𝑖𝑡ℎ 𝑟𝑒𝑔𝑎𝑟𝑑𝑠 𝑡𝑜 ∑ 𝑦𝑢𝑣 = 𝑃𝑢

𝑠

𝑣=1

 𝑓𝑜𝑟 𝑢 = 1, 2, 3, … … 𝑟} 

∑ 𝑦𝑢𝑣 =  𝑄𝑣 𝑓𝑜𝑟 𝑣 = 1, 2, 3, … … 𝑠

𝑟

𝑢=1

} 

𝑦𝑢𝑣  ≥ 0    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 

Where, 

𝑢  Overall supply nodes 

 𝑣 Overall request nodes  

𝑃𝑢 Sourcing quantity at Supply 𝑢 

𝑄𝑣  Need for Destinations Quantity 𝑣  

𝑟𝑢𝑣 Expense of moving a unit from origin 𝑢 to endpoint 𝑣  

𝑦𝑢𝑣  Quantity of units that will be transported from origin 𝑢  

to destinations 𝑣 

In a time, transportation problem, the amount of time it takes 

to move items from 𝑝 origins to 𝑞 destinations are reduced 

while fulfilling specific constraints for source availability 

and destination needs. Consequently, the transportation 

problem that minimises time is: 

𝑀𝑖𝑛 𝑇′ = [𝑀𝑎𝑥𝑖𝑚𝑢𝑚(𝑎,𝑏) 𝑠𝑎𝑏: 𝑖𝑎𝑏 > 0 ] 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑖𝑎𝑏 = 𝑥𝑎    𝑎 = 1,2,3, … … … 𝑝

𝑞

𝑏=1

 

∑ 𝑖𝑎𝑏 = 𝑦𝑏   𝑏 = 1,2,3, … … … 𝑞

𝑝

𝑎=1

 

𝑖𝑎𝑏 ≥ 0 

Transporting commodities from the 𝑎-th origin, where they 

are available, at time 𝑠𝑎, to the b-th destination, where they 

are needed, at time 𝑠𝑎𝑏, takes place. The time of 

transportation for each specified viable solution, 𝐼 = [𝑖𝑎𝑏 ], 

fulfilling (1) is the maximum of 𝑠𝑎𝑏's among the cells in 

which there are positive allocates, i.e., the time of 

transportation for the solution 𝐼 is: 

[𝑀𝑎𝑥𝑖𝑚𝑢𝑚(𝑎,𝑏) 𝑠𝑎𝑏: 𝑖𝑎𝑏 > 0 ] 

The goal is to cut down on travelling time. These problems 

emerge when perishable products must be transported 

during times of conflict, when food and armaments must be 

transported in the smallest amount of time, and in a variety 

of other scenarios. The suggested method for solving the 

transportation problem is depicted in Figure 2. 
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Fig 2.  Workflow of the proposed work 

4.2 Total Opportunity-Cost Matrix (TOCM) 

Kirca and Satir [20] is the first to present the Total 

Opportunity-Cost Matrix (TOCM). By including the row 

opportunity-cost matrix (ROCM) as well as column 

opportunity-cost matrix (COCM), TOCM converts the 

primary matrix into in the Total Opportunity-Cost Matrix 

(TOCM). 

➢ Row Opportunity-Cost Matrix (ROCM): The 

cheapest price of each row in the supplied 

balanced TP has been deducted from each 

component in that similar row. The ROCM seems 

to be the name given to the ensuing matrix. 

➢ Column Opportunity-Cost Matrix (COCM): 

The cheapest price of each column in the supplied 

balanced TP has been deducted from each 

component in that similar column. The COCM 

seems to be the name given to the ensuing matrix. 

The Matrix Minima Method (MMM) is then effectively used 

by Kirca and Satir, along with certain tie-breaking criteria 

on the TOCM, to come up with a workable resolution to the 

TP. The integration of TOCM as well as modified Total 

Difference Method-1 TDM1 has been known as TOCM - 

Minimal Total (TOCM-MT). The following list is a 

description of the TOCM-MT steps: 

Step 1: Generate a distinctive matrix for the Transportation 

Problem (TP) encompassing costs, suppliers, and demands. 

Introduce placeholder rows or columns if the total supply 

falls short of meeting the entire demand. 

Step 2: Create a row opportunity matrix by determining the 

lowest cost in each row of the initial TP, and then subtracting 

this cost from all other costs in the same row. 

Step 3: Create a column opportunity matrix from the initial 

TP by identifying each column's lowest cost and then 

deducting all other costs from that column. 

Step 4: Create the TOCM with the rows and columns 

opportunity matrices included as entries. 

Step 5: Determine the punishment for each row. The overall 

discrepancy between the least expensive cost and the 

remaining expenses in the row seems to be the penalty. 
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Step 6: Choose the Highest Penalty (HP). Apply the 

appropriate tie-breakers in the correct sequence in the event 

of a tie (i.e., equivalent HP): 

i. Pick HP well with lowest price. 

ii. If (i) is tied, choose the penalty only with highest 

total cost. 

iii. Choose the maximum allocation of penalties if 

there is a tie in (ii). 

Step 7: From the greatest penalty, choose the least cost 

(LC) option. In the event of a tie (i.e., equivalent LC), 

choose the LC well with highest unit allotment. 

Step 8: Verify the LC values. Step 9 becomes the next step 

if LC has been not equivalent to zero; otherwise, choose the 

HP from the initial HP (HP1) or secondary HP (HP2). By 

contrasting every cost cell in HP1 as well as HP2, choose 

the HP. 

Step 9: Give the HP cell with the lowest cost the largest 

number of units. 

Step 10: Make any adjustments to supply as well as desire, 

and then mark the fulfilled rows or columns. 

Step 11: Recalibrate the fine without taking the crossed-out 

columns as well as rows into account. 

Step 12: Continue doing steps 6 through 11 till all columns 

as well as rows have been satisfied. 

Step 13: After integrating TOCM-MT, the fine, and the 

initial TP, determines the Total Cost TP (TCTP). 

4.3 Zero Point Minimum Approach 

procedure 

The zero-point method [6] is an efficient and effective 

method in finding the IBFS and the solution is near to 

optimal of transportation problem, whether the problems are 

balanced or unbalanced, and its effectiveness has been 

proven in many researches when compared to other 

methods.  The following steps outline the zero point 

minimum approach. 

Step 1: Create a table for the specified transportation issue. 

After that, determine if it is equal or not. If the transportation 

issue has been not equal, then resolve it into an equal 

problem. 

Step 2: From each row value of the relevant row, deduct the 

row minimal. 

Step 3: Each value in the relevant column should have the 

column minimal subtracted from it. 

Step 4: If the conditions are met, go on to step 7 right away. 

i. Desire for every column falls below the total 

supply of columns whose decreased cost remains 

zero. 

ii. The total of the requests for the rows whose 

decreased cost has been zero is fewer than the 

number of rows available. 

If not, proceed to step 5. 

Step 5: By creating the least number of horizontal and 

vertical lines possible, every one of the zeros in the 

shortened transportation table have been covered, but certain 

values in the table's rows or columns, which do not comply 

with step 4 have been left unaffected. 

Step 6: The following seems to be a new, decreased TP that 

has been changed. 

i. The decreased cost matrices' lowest entry that isn't 

surrounded by a line was discovered. 

ii. All entries located at the junction of any second 

line have been added to, and the uncovered values 

are removed with these lowest entries.  

Next, proceed to step 4. 

Step 7: A cell was chosen in the decreased transportation 

table where decreased cost seems to be the minimal cost, 

which is shown as (ℎ, 𝑘). If the three have been greater than 

one unit, any among them is chosen. 

Step 8: The smallest amount feasible is allotted to a cell in 

the 𝑘 column or ℎ row of the decreased transport table that 

seems to be the sole one where decreased cost remains zero. 

Determine the cell having the following lowest number if the 

minimal value isn't really present there. Choose any entry 

from the decreased transportation table where decreased cost 

seems to be zero if the following minimal value does not also 

appear. 

Step 9: The decreased transportation table has been 

modified by adding the demand and supply point that are not 

fully employed after the completely employed demand and 

supply point have been removed. 

Step 10: Repeat steps 7 through 9 until all supply points 

have been used and all request points have been satisfied. 

Step 11: This results in the transportation issue being 

resolved. 

4.4 Integrating TOCM and Zero Point 

Minimum Method  

 Kirca and Satir [1] propose the Total Opportunity Cost 

Matrix (TOCM). Introducing column or row opportunities 

transforms the matrix transportation problem into an initial 

matrix from the original matrix. The matrix of the original 

TP is shown in step 3. In every row, a row opportunity is 

found by subtracting minimum cost from each element in 
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that particular row. Similarly in each column, the column 

opportunity is found by subtracting minimum cost from each 

element in that particular column. TOCM is the total of the 

column and row opportunities mentioned in the TOCM 

table. 

Algorithm 1: TOC Matrix & Zero Point Minimum Method 

Step 1:  Verify if the taken into consideration TP is balanced. 

If it isn't balanced, add a dummy row or dummy column to 

make it balanced.  

Step 2: Calculate the TOCM: 

(i) The row opportunity is obtained by deducting 

each element in the row by its lowest cost and put it on right 

top of that element. 

(ii)  The column opportunity is obtained by deducting 

each element in the column by its lowest cost and put it on 

right bottom of that element. 

(iii) TOCM is obtained by the addition of column and 

row opportunity cost matrices. 

Step 3: Apply Zero Point Minimum Method on TOCM 

obtained in step 2. 

            Steps of Zero Point Minimum Method: 

            (i): Subtract row minimum from each row entry of 

the corresponding row.  

            (ii): Subtract column minimum from each column 

entry of the corresponding column.  

            (iii): Directly go to step 3 (vi), if the following are 

satisfied  

a) Every column's demand is equivalent to or lower 

than the total supply of the columns whose lowered costs are 

zero 

b) Every row's supply will be equal to or fewer than 

the total of the requests of the rows for which the lower cost 

is zero.  

             Otherwise go to step 3 (iv). 

              (iv): The reduced transportation table's zeros are all 

covered by creating the fewest possible horizontal and 

vertical lines, leaving certain entries in the table uncovered 

if they don't meet step 3 (iii).  

               (v): The following is the development of the 

significantly redesigned decreased transportation problem.  

a.  The smallest entry of the reduced cost matrices is 

found which is not covered by any line  

b.  The uncovered entries are subtracted with these 

smallest entries and add the same to all the entries lying at 

the intersection of any two lines. Next, go to step 3 (iii).  

 (vi): In the reduced transportation table a cell is selected, 

whose reduced cost is the minimum cost which is 

represented as (h, k). Any one of the cells is selected if there 

are more than one cell. 

 (vii): The reduced transportation table's h row or k column 

is chosen because it contains the single cell with a reduced 

cost of 0 and the smallest feasible amount is allotted to it. 

Locate the cell containing the next minimal value if the 

minimum value does not appear in that cell. If the 

subsequent minimum amount does not also occur, choose 

any cell in the lowered transportation table with a reduced 

cost of zero.  

(viii): The simplified transportation database is modified by 

adding the supply point and demand point that are not fully 

utilized, after the fully utilized supply and demand points 

have been deleted. This changes the transportation problem.  

Step 3 (ix): Until all supply points have been utilised and all 

demand points are received, steps 3 (vi) through 3 (viii) are 

repeated.  

Step 3 (x): Performing this, the transportation issue is 

resolved. 

A transportation table for a particular transportation problem 

is shown in Table 1 and shows the expenses of transportation 

from five supply stations (𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑆5) to three 

demand points (𝐷1, 𝐷2, 𝐷3). A unit of commodities' 

transportation costs from a given supply site to a given 

demand point are shown in each cell of the table. For 

instance, moving commodities from supply point S1 to 

demand point D1 costs 10, whereas moving goods from S3 

to D2 costs 8. The total supply required at each demand 

location and the total supply available at each supply point 

are shown in the table's last row and column, respectively. 

For example, there are 8 units of total supply available at 

supply point S1, and 5 units of total demand at demand point 

D1. To effectively solve the transportation problem, this 

transportation table offers a thorough understanding of the 

expenditures associated with transportation as well as the 

needs of supply and demand. 

Table 1. Consideration of transpiration table of the given 

transpiration problem 

 S1 S2 S3 S4 S5 Supply 

D1 10 15 10 12 20 8 

D2 5 10 8 15 10 7 

D3 15 10 12 12 10 10 

Demand 5 9 2 4 5  

Solution by using TOCM with Zero Point Method 

Solution 

Step 1: 

 Consider TP is balanced ∑𝑆𝑢=∑𝐷𝑣 =25. 

Step 2: Obtain TOCM. 

The row opportunity is calculated by subtracting each 

component in that row with its lowest cost. 

The column opportunity is calculated by deducting each 

element in the column by its lowest cost. 
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Table 3 

 S1 S2 S3 S4 S5  Supply 

D1 5 10 2 2 20  8 

D2 0 5 3 13 5  7 

D3 15 0 6 2 0  10 

Demand 5 9 2 4 5   

Step3: by applying Zero Point minimum method, we get 

Table 4 

 S1 S2 S3 S4 S5 Supply 

D1 
3 8 0 0 18 8 

D2 
0 5 3 13 5 7 

D3 
15 0 6 2 0 10 

Demand 5 9 2 4 5  

Here, using Step 3(iii) (a) and 3(iii) (b) the condition is not 

satisfied in the first row and second row, so we will again 

process it by drawing the smallest number of vertical and 

horizontal lines. 

Table 5 

 S1 S2 S3 S4 S5 Supply 

D1 
6 8 0 0 18 8 

D2 
0 2 0 10 2 7 

D3 
18 0 6 2 0 10 

Demand 5 9 2 4 5  

Here, using Step 3(iii) (a) and 3(iii) (b) the condition is not 

satisfied in the first row and second row, so we will again 

process it by drawing the smallest number of vertical and 

horizontal lines. 

Table 6 

 S1 S2 S3 S4 S5 Supply 

D1 
6 6 0 0 16 8 

D2 
0 0 0 10 0 7 

D3 
20 0 8 4 0 10 

Demand 5 9 2 4 5  

Here, using step 3(iii) (a) and 3(iii) (b) the condition is not 

satisfied in the first row, so we will again process it by 

drawing the smallest number of vertical and horizontal lines. 

 

 

Table 7 

 S1 S2 S3 S4 S5 Supply 

D1 
0 0 0 0 10 8 

D2 
0 0 6 16 0 7 

D3 
20 0 14 10 0 10 

Demand 5 9 2 4 5  

 

Using Step 3(iii) (a) and 3(iii) (b) the condition is satisfied, 

so I using steps 3 (vi) to 3 (x) of zero point minimum method, 

the transportation table is computing total transportation cost 

for the feasible allocations. 

 

Table 8 

 S1 S2 S3 S4 S5 Supply 

D1 

0 0 

                

2 

0  

                    

2 

0 

               

4 

10 8 

D2 

0                           

 

5 

0 

            

2 

6 16 0 7 

D3 

20 0 

                      

5 

14 10 0          

              

5 

10 

Demand 5 

 

9 2 4 5  

 

The original TP table is  

Table 9 

 S1 S2 S3 S4 S5 Supply 

D1 10 15 

                     

2 

10 

              

2 

12             

 

     4 

20 8 

D2 5 

             

5 

10 

               

2 

8 15 10 7 

D3 15 10 

                     

5 

12 12 10 

         

5 

10 

Demand 5 9 2 4 5  

The amount of products carried from each supply location to 

each demand point is multiplied by the associated 

transportation cost, and the results are added up to determine 

the total transportation cost (TC). This time, the entire cost 

of transportation could be determined via the formula below: 

TC = (15×2) +(10×2) +(12×4) +(5×5) +(10×2) +(10×5) 

+(10×5)             

=243 
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The expenses of moving items from five supply sites (S1, 

S2, S3, S4, S5) to three demand points (D1, D2, D3) in a 

transportation problem are shown in the transportation table 

9. The expenses associated with moving one unit of products 

from a given supply site to a given demand point are shown 

in each cell of the table. For instance, moving commodities 

from supply point S1 to demand point D1 costs 10, whereas 

moving goods from S3 to D2 costs 8. Additionally, the table 

shows the entire demand needed at each demand point and 

the total supply available at each supply location, 

correspondingly, in rows and columns. According to the 

provided transportation chart, the total cost of transportation 

for moving products is thus 243 units. This computation 

provides an overall estimate of the cost associated with 

satisfying demand requirements while taking supply 

constraints and transportation efficiency into account. It 

does this by accounting for all transportation expenses 

incurred from each supply point to each demand location. 

This total cost is a crucial indicator for assessing the efficacy 

and affordability of various transport plans. It may also 

guide the process of making decisions that maximise 

transport operations while reducing expenses. 

5. Result and Discussion 

A thorough evaluation of three methods for resolving 

transportation-related issues in nine distinct circumstances is 

shown in Table 10. Every instance is distinguished by its 

size, which is represented by the number of sources and 

destinations (PSize), and is uniquely recognized by a number 

(Transportation Problem). The total transportation cost 

obtained through each strategy for each instance is 

calculated in the table to assess the efficacy of the novel 

approach, Vogel's Approximation Method (VAM), and the 

MODI (Modified Distribution) technique. The widely 

utilised heuristic method Vogel's Approximation Method 

(VAM) is employed to identify preliminary workable 

solutions for transportation-related issues. It compares the 

differences among the two lowest prices for each row and 

column in the cost matrix to determine how it operates. With 

larger or more complicated transportation challenges, in 

particular, VAM could occasionally not be able to provide 

the best answer. As stated previously, the Zero Point 

Minimum way is one possible alternative strategy or 

algorithm that is meant to be referred to as the "new method" 

in the table. Through resolving some of the shortcomings of 

current algorithms, this approach could be superior to more 

established methods.  An optimisation technique called the 

MODI (Modified Distribution) method is frequently 

employed to enhance the first workable solutions that come 

from approaches such as VAM. To further reduce 

transportation costs, iterative adjustments are made to the 

allocations inside the solution. MODI is a useful tool in the 

optimisation of transportation problems because of its 

reputation for improving solutions and maybe achieving 

optimality. Analysis of Table 10's data reveals that the new 

approach and MODI consistently yield the same total 

transportation costs in every case. This indicates that their 

performance is comparable in terms of the quality of the 

answers, suggesting that the new approach may be useful in 

producing optimum or nearly ideal solutions similar to 

MODI. 

Table 10. Comparison of various techniques in solving 

transportation problem 

Transportati

on Problem 

PSize VA

M 

new 

metho

d 

MODI 

1 3×5 249 243 243 

2 3×4 781 776  776 

3 4×4 199 197 197 

4 4×5 829 829 829 

5 5×5 94 94 93 

6 5×6 318 319 315 

7 4×4 262 262 262 

8 3×3 365 365 365 

9 4×5 374 374 374 

In contrast, VAM occasionally leads to somewhat higher 

overall transportation costs than the other approaches, 

suggesting that it might not always identify the most 

economical course of action. However, when comparing 

VAM to more intricate optimisation techniques like MODI 

and the new approach, it is crucial to take into account the 

computational effectiveness and ease of implementation. 

For example, (5×5), the new technique achieves a 

transportation cost total of 93, whereas the cost of combined 

VAM and MODI is 94. This shows that by obtaining a 

reduced overall cost, the novel technique performs better in 

this particular situation than VAM and MODI. These 

findings point to the novel method's possible benefits over 

more conventional approaches in terms of solution quality 

and cost effectiveness. 

Fig 3. Comparison of various techniques in solving transportation 

problem 

In order to solve transportation issues of different sizes, Fig 

3 presents a thorough comparison between VAM, the novel 

technique, and MODI. In order to possibly increase solution 
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quality and gain cost savings in transportation issue 

optimization, it emphasizes the need of investigating other 

methodologies, such as the new method. Extensive research 

and validation of the novel approach's performance in 

various issue scenarios could provide significant insights 

into its efficacy and practicality. 

6. Conclusion 

The optimisation of transport problems (TP) by 

concentrating on locating the Initial Basic Feasible Solution 

(IBFS) has yielded numerous important conclusions in this 

study. The effectiveness of the Zero Point Minimum Method 

in quickly determining IBFS has been shown via practical 

research and testing, which speeds up the optimisation 

process in the direction of optimal or nearly optimal 

transportation costs. The Zero Point Minimum Method is 

important because it may be used to systematically find the 

best allocation options inside the transportation cost matrix. 

Through deliberate zero point selection and matching 

quantity allocation, this approach helps build an IBFS that 

minimises transportation costs while meeting supply and 

demand needs. The effectiveness of this approach lies in its 

ability to identify the best allocation options quickly, which 

in turn speeds up the convergence of optimisation 

algorithms. This enhances the quality of transportation 

solutions and helps make educated decisions. There are 

several directions that future study in this field may go. The 

Zero Point Minimum Method has the potential to become 

more efficacious in addressing intricate and sizable 

transportation issues through more investigation and 

improvement. Furthermore, researching the incorporation of 

artificial intelligence or machine learning methods into 

transportation optimisation algorithms may provide fresh 

perspectives and methods for handling unpredictable and 

dynamic transportation problems. Additionally, 

investigating the implementation of this technique in 

particular sectors or domains, such humanitarian logistics or 

healthcare, may offer insightful information about how to 

handle particular requirements and limitations associated 

with transportation optimisation.  Subsequent research 

initiatives in this field hold promise for enhancing 

transportation optimisation techniques and augmenting 

logistical operations and resource distribution across diverse 

scenarios. 
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