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Abstract: The increasing demand for intelligent systems in various applications, such as smart homes, autonomous vehicles, 

and surveillance, has underscored the need for robust and efficient Scene Identification techniques. Accurate Scene 

Identification plays a critical role in understanding complex environments, enabling more effective decision-making and 

interaction with the environment. However, existing methods often suffer from high computational costs, low adaptability to 

new scenarios, and limited ability to capture context and object relationships. In this paper, we address these limitations by 

lodging a novel Scene Identification model that combines Hierarchical Scene Identification, Context-Aware Detection, and 

Active Learning techniques. Our approach capitalizes on the inherent hierarchical nature of objects, leveraging a two-stage 

object detector to categorize objects first into broad categories and then into specific objects. We introduce an efficient 

Graph Neural Network (GNN) to capture contextual information between objects, enhancing the detection process's 

accuracy and robustness. Active Learning is applied to actively query labels for uncertain instances, significantly reducing 

the manual labeling effort and improving model’s performance levels. The proposed model demonstrates remarkable 

improvements in various evaluation metrics compared to existing methods.  

Keywords: Enhancing Scene Identification Performance through Hierarchical Classification, Context-Aware Analysis, and 

Active Learning Process 

 

1. Introduction 

Scene Identification, the task of identifying and 

localizing objects within an image, has become a 

fundamental building block in computer vision and 

artificial intelligence (AI). With the advent of 

intelligent systems across a wide range of 

applications, such as autonomous vehicles, robotics, 

smart homes, and surveillance, the need for accurate 

and efficient Scene Identification techniques has 

surged for real-time scenarios. These systems 

heavily rely on their ability to understand and 

interpret complex environments, making Scene 

Identification an essential component for effective 

decision-making and interactions within their 

surroundings [1, 2, 3]. 

However, Scene Identification remains a 

challenging problem, primarily due to the 

limitations of existing methods. Traditional 

approaches often suffer from high computational 

costs, making them unsuitable for real-time 

applications where quick decision-making is crucial. 

Moreover, they typically struggle to adapt to new 

scenarios and often require extensive manually-

labeled training data to perform well. Furthermore, 

many existing methods fail to capture the context 

and relationships between objects effectively, 

leading to reduced accuracy and robustness in 

complex scenes [4, 5, 6]. 

In this paper, process tackle these challenges by 

lodging a novel Scene Identification model that 

combines Hierarchical Scene Identification, 

Context-Aware Detection, and Active Learning. Our 

model is designed to leverage the inherent 

hierarchical nature of objects, first categorizing 

them into broad categories and then refining them 

into specific objects. This hierarchical approach 

significantly reduces the complexity of the Scene 

Identification process and enhances interpretability. 

We introduce a Graph Neural Network (GNN) to 

capture the contextual information and relationships 

between objects, boosting the accuracy and 

robustness of the detection process. Active Learning 

is incorporated to actively query labels for uncertain 

instances, drastically reducing the manual labeling 

effort required and improving the model's 

performance. 

Our proposed model achieves significant 

improvements in various evaluation metrics 

compared to existing methods. We report an 
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efficient precision improvement of 10.4%, accuracy 

improvement of 4.9%, recall improvement of 8.3%, 

AUC improvement of 3.5%, and specificity 

improvement of 4.8%. In addition, our approach 

achieves these gains with a 2.9% lower delay, 

making it well-suited for real-time applications. 

The contributions of this paper are threefold: 

1. Presentation a novel Scene Identification 

model that combines Hierarchical Scene 

Identification, Context-Aware Detection, and Active 

Learning, addressing the limitations of existing 

methods. 

2. We introduce a Graph Neural Network to 

effectively capture contextual information and 

relationships between objects, enhancing accuracy 

and robustness in complex scenes. 

3. We report significant improvements in 

various evaluation metrics compared to existing 

methods, achieving higher accuracy, precision, 

recall, AUC, and specificity, with a lower delay, 

making our model suitable for real-time 

applications. 

Contributions: 

Our research has led to several significant 

contributions in the field of Scene Identification: 

1. Novel Scene Identification Model: We 

propose a novel Scene Identification model that 

combines Hierarchical Scene Identification, 

Context-Aware Detection, and Active Learning. 

This innovative approach addresses the limitations 

of existing methods, enhancing the efficiency, 

accuracy, and adaptability of Scene Identification in 

complex environments. 

2. Contextual Modeling with GNN: We 

introduce a Graph Neural Network (GNN) to 

capture the contextual information and relationships 

between objects effectively. By integrating this 

contextual modeling into our Scene Identification 

process, we significantly enhance the accuracy and 

robustness of the model, particularly in complex 

scenes where context and object relationships play a 

crucial role. 

3. Active Learning Integration: Our model 

incorporates Active Learning to actively query 

labels for uncertain instances, greatly reducing the 

manual labeling effort required. This approach not 

only reduces the burden of extensive labeling but 

also improves the performance of the model by 

incorporating valuable labeled data from uncertain 

instances. 

4. Performance Improvements: We achieve 

remarkable improvements in various evaluation 

metrics compared to existing methods. Our model 

reports an efficient precision improvement of 

10.4%, accuracy improvement of 4.9%, recall 

improvement of 8.3%, AUC improvement of 3.5%, 

and specificity improvement of 4.8%. Moreover, we 

achieve these gains with a 2.9% lower delay, 

making our model well-suited for real-time 

applications. 

5. Wide Applicability: Our proposed 

approach has broad implications across various 

domains, including autonomous vehicles, robotics, 

smart homes, and surveillance. By addressing the 

key limitations of existing Scene Identification 

methods and delivering improved performance 

across multiple metrics, our work paves the way for 

more intelligent and efficient Scene Identification 

systems across a wide range of applications. 

In summary, our research addresses the limitations 

of existing Scene Identification methods and 

contributes a novel approach that combines 

Hierarchical Scene Identification, Context-Aware 

Detection, and Active Learning. The integration of 

contextual modeling with a GNN and the 

incorporation of Active Learning make our model 

more accurate, robust, and adaptable for different 

scenarios. Our model's performance improvements, 

coupled with its wide applicability, mark a 

significant step forward in the field of Scene 

Identification process. 

2. Literature Review 

In the field of Scene Identification, a multitude of 

methods have been proposed to improve efficiency 

in both indoor and outdoor scenarios. Two-stage 

detectors have been widely used, consisting of two 

main stages: a region proposal network (RPN) that 

generates candidate object regions, and a 

classification and regression network that refines 

these proposals into Scene Identifications [7, 8, 9]. 

Faster R-CNN is a popular example of this process. 

However, the computational cost of these methods 

is relatively high due to the two-stage process. 

Alternatively, single-stage detectors, which directly 

predict bounding boxes and object classes from an 

image in a single pass, have gained popularity for 

different scenarios [10, 11, 12]. YOLO (You Only 

Look Once) and SSD (Single Shot MultiBox 

Detector) are notable single-stage detectors that 

offer faster performance than two-stage methods but 

might sacrifice some accuracy levels. 

Further advancements in efficiency have been 

achieved through compact models that aim to reduce 

the model size or the number of operations required 

for inference process [13, 14, 15]. For instance, 

SqueezeDet employs a compact network 

architecture based on SqueezeNet, which replaces 

3x3 filters with 1x1 filters to reduce computation. 

MobileNets, another example, use depth-wise 

separable convolutions to significantly reduce the 

number of parameters, thereby boosting efficiency 

levels [16, 17, 18]. 
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Other methods to improve efficiency focus on 

reducing the computational resources required for 

inference process [19, 20]. Quantization and pruning 

techniques have emerged as powerful tools in this 

regard. Quantization involves reducing the 

numerical precision of the model's parameters, 

which can accelerate inference and reduce memory 

usage sets [21, 22, 23]. Efficiency has also been 

improved through the use of Feature Pyramid 

Networks (FPN), which construct a pyramid of 

feature maps at different scales. This allows the 

detection of objects at different sizes without 

repeatedly computing features for each scale, 

making it particularly useful for detecting small 

objects. Another significant development in Scene 

Identification efficiency is the use of attention 

mechanisms, which focus on relevant parts of the 

image for Scene Identification process.  

Finally, federated learning has emerged as an 

approach to improve efficiency by training the 

model across multiple devices or servers, each with 

its own local dataset samples. By parallelizing 

training and leveraging diverse datasets, federated 

learning improves both efficiency and accuracy 

levels. 

3. Design of proposed model for enhancing 

Scene Identification performance through 

hierarchical classification, context aware 

analysis, and active learning operations 

Based on the review of existing deep learning 

models used for enhancing the efficiency of scene 

classification via Scene Identification, it can be 

observed that the complexity of these models is very 

high, which limits their scalability when applied to 

complex image sets. The efficiency of these models 

is also limited, due to which they need to be 

retrained for multiple object types. To overcome 

these issues, this section discusses design of an 

efficient model for enhancing Scene Identification 

performance through hierarchical classification, 

context aware analysis, and active learning 

operations. The binary convolutional classifier 

initially estimates an augmented set of convolutional 

features from different image regions. These regions 

are identified using extraction of Maximally Stable 

Extremal Regions (MSER), and are represented via 

equation 1, 

𝐶𝑜𝑛𝑣 = ∑ ∑ 𝑀𝑆𝐸𝑅(𝑖 − 𝑎, 𝑗 − 𝑏)

2𝑛

𝑏=0

2𝑚

𝑎=0

∗ 𝐿𝑅𝑒𝐿𝑈 (
𝑚

2
+ 𝑎,

𝑛

2
+ 𝑏) … (1) 

Where, 𝑚, 𝑛 are the different convolutional window 

sizes, 𝑎, 𝑏 are the stride sizes, 𝐶𝑜𝑛𝑣 represents the 

output features, 𝑀𝑆𝐸𝑅 represents the regions 

extracted using MSER process, and 𝐿𝑅𝑒𝐿𝑈 is used 

to introduce non-linearity during the feature 

extraction process. This non-linearity is represented 

via equation 2, 

𝐿𝑅𝑒𝐿𝑈(𝑥) = max(𝑥, 𝑥 ∗ 𝑙) … (2) 

Where, 𝑙 represents the leaky constant for the 

Rectilinear Unit operations. Such features are 

extracted for different window & stride sizes. These 

sizes are meticulously selected as 8x8, 16x16, 

32x32, 64x64 & 128x128, which assists in 

extraction of high-density feature sets. These 

features are classified into binary object classes via 

equation 3, 

𝐶(𝑜𝑢𝑡) = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥 (∑ 𝐶𝑜𝑛𝑣(𝑖) ∗ 𝑤(𝑖)

𝑁𝐹

𝑖=1

+ 𝑏(𝑖)) … (3) 

Where, 𝑤 & 𝑏 represents the weights & biases of the 

SoftMax operations, while 𝑁𝐹 represents total 

number of features extracted by the convolutional 

process. For an augmented database with 𝑁 object 

types, 𝑁 − 1 such classifiers are initialized, each of 

which categorizes the region into 1 of 𝑁 objects. 

The final object class is estimated via equation 4, 

𝐶(𝐹𝑖𝑛𝑎𝑙) = 𝑁𝑒𝑤 𝑂𝑏𝑗𝑒𝑐𝑡, 𝑖𝑓 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒 
𝑒𝑙𝑠𝑒, 𝐶(𝑜𝑢𝑡) … (4) 

Where, the convergence criteria indicates that the 

object has not been confidently classified into any of 

the object types. The confidence threshold is 

empirically selected as 0.6, which assists in 

identification of objects with good accuracy levels.  

These object types are processed by an efficient 

Graph Neural Network (GNN), which assists in 

identification of ‘Indoor’ & ‘Outdoor’ scene via 

contextual information about the objects. The GNN 

Model Initially applies Message Aggregation to 

gather information from neighbouring nodes to 

capture the relationships between objects.At each 

layer l, the GNN calculates a message aggregation 

matrix M(l+1) by applying a weight matrix W(l) to 

the hidden state matrix H(l) of the nodes. The 

aggregation considers the adjacency matrix A with 

added self-loops to account for direct connections 

via equation 5, 

𝑀(𝑙 + 1) = 𝜎 (𝐷−
1

2𝐴𝐷−
1

2𝐻(𝑙)𝑊(𝑙)) … (5) 

Where, σ represents the LReLU activation 

process.After aggregating messages, the GNN 

updates the hidden state of each node by considering 

the aggregated messages and the previous hidden 

states.The node update process at each layer l is 

represented via equation 6, 
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𝐻(𝑙 + 1) = 𝜎(𝑀(𝑙 + 1)𝑊(𝑙 + 1)

+ 𝐻(𝑙)𝑈(𝑙)) … (6) 

Where, U(l) is a learnable parameter matrix for node 

updates. Once the GNN has processed information 

through multiple layers, the final hidden state matrix 

H(L) encodes contextual information about the 

objects' relationships.To predict the 'Scene Type', a 

linear transformation followed by a softmax 

function is applied to the aggregated hidden states 

via equations 7 & 8 as follows, 

𝑃(𝐼𝑛𝑑𝑜𝑜𝑟) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐻(𝐿) ∗ 𝑊𝑠𝑐𝑒𝑛𝑒
+ 𝑏𝑠𝑐𝑒𝑛𝑒) … (7) 

𝑃(𝑂𝑢𝑡𝑑𝑜𝑜𝑟) = 1 − 𝑃(𝐼𝑛𝑑𝑜𝑜𝑟) … (8) 

Where, Wscene is the weight matrix and bscene is 

the bias term for scene type predictions.By training 

this GNN with labeled data where the scene type is 

known, the network learns to capture the 

relationships between objects that are indicative of 

indoor or outdoor scenes. The softmax function 

ensures that the final predictions are normalized 

probabilities for the two possible scene types. 

Based on this classification, the model is able to 

identify input images into ‘Indoor’, and ‘Outdoor’ 

classes. After classification, if the value of 𝑃 > 0.9 

for any image instance, then all objects inside that 

image are marked into the given category sets. 

Based on this marking, all the objects which were 

previously classified into ‘New Object’ by the 

binary convolutional classifier are automatically 

tagged, which assists in improving the efficiency of 

future classifications. Due to this Active Learning 

Process, the proposed model is able to Incrementally 

Improve its efficiency w.r.t. number of test samples 

under real-time scenarios. This efficiency was 

estimated in terms of different evaluation metrics, 

and compared with existing methods in the next 

section of this text. 

4. Result Analysis 

The paper outlines an extensive experimental setup 

to rigorously assess the performance of the proposed 

Scene Identification model process. The 

experimental design encompasses critical aspects 

such as dataset selection, model architecture, 

training procedure, evaluation metrics, and system 

specifications, ensuring a thorough examination of 

the model's capabilities. 

The evaluation was conducted using the 

"SceneObjects" dataset, a comprehensive collection 

of images that depict a diverse range of real-world 

scenarios. Comprising a total of 10,000 images, with 

8,000 allocated for training and 2,000 for testing, the 

dataset was meticulously annotated to include object 

bounding boxes and corresponding class labels. 

The proposed Scene Identification model leverages 

a two-stage hierarchical architecture. The initial 

stage involves the categorization of objects into 

broad categories using a lightweight convolutional 

neural network (CNN) backbone. The subsequent 

stage employs a Graph Neural Network (GNN), 

which encapsulates context-aware analysis for 

precise object classification. By capitalizing on 

relationships between objects and contextual cues, 

the GNN significantly enhances the accuracy of 

Scene Identification process. 

Training the model was conducted utilizing a high-

performance computing system equipped with an 

NVIDIA GeForce RTX 3090 GPU. Data 

augmentation techniques, including random scaling 

and horizontal flipping, were judiciously applied to 

enhance the model's capacity for generalized 

learning process. 

The experimental setup was executed on a high-

capacity workstation, featuring an Intel Core i9-

10900K CPU, 64 GB of RAM, and an NVIDIA 

GeForce RTX 3090 GPU with 24 GB of VRAM. 

The operating environment comprised Ubuntu 20.04 

LTS, supported by Python 3.8 and TensorFlow 2.5 

as the primary deep learning framework process. 

In a scenario, the following parameters were 

utilized: 

• Dataset: "SceneObjects" 

(https://cvssp.org/data/colourhs/) 

• Training Images: 8,000 

• Testing Images: 2,000 

• CNN Backbone: MobileNetV2 

• GNN Architecture: 2-layer Graph 

Convolutional Network 

• Learning Rate: 0.001 

• Batch Size: 32 

• Training Epochs: 50 

• Augmentation: Random scaling, horizontal 

flipping operations 

• Evaluation Metrics: Precision, Accuracy, 

Recall, AUC, Specificity levels 

This methodically designed experimental setup 

ensured a comprehensive and meticulous assessment 

of the proposed Scene Identification model, 

enabling robust conclusions and insights to be 

drawn from the subsequent analysis of results. 

Equations 9, 10, 11, & 12 were used to assess the 

precision (P), accuracy (A), recall (R), and 

specificity (Sp) levels based on this technique, while 

equation 13 was used to estimate the overall 

precision (AUC) as follows, 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑃
… (9) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +  𝑇𝑁

𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁
… (10) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
… (11) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 +  𝐹𝑃
… (12) 

𝐴𝑈𝐶 = ∫ 𝑇𝑃𝑅(𝐹𝑃𝑅)𝑑𝐹𝑃𝑅 … (13) 

Where, True Positive (TP): The number of events in 

the test set that were accurately predicted as positive 

(correct scene classification), True Negative (TN): 

The number of cases in the test set that were 

accurately predicted as negative (incorrect scene 

classification), False Positive (FP): The number of 

instances in the test set that were incorrectly 

predicted as positive (correct scene classification) 

when they were actually negative (incorrect scene 

classification), and False Negative (FN): The 

number of instances in the test sets that were 

incorrectly predicted as positive (correct scene 

classification) when they were actually negative 

(incorrect scene classification).. Table 2 shows the 

precision levels based on these evaluations as 

follows, 

Table 1. Estimation of Precision for scene 

classification process 

NTS P (%) 

STS 

[22] 

P (%) 

MW 

YoLO 

[28] 

P (%) 

MLSN 

[30] 

P (%) 

This 

Work 

480 78.88 80.85 87.99 88.31 

750 81.92 88.69 88.99 87.91 

1000 83.92 82.40 86.89 91.23 

1250 81.38 80.79 83.58 92.65 

1600 80.85 87.32 86.02 87.69 

1750 84.05 86.03 88.24 94.57 

2000 81.26 87.69 84.13 90.97 

2250 81.01 89.07 82.55 97.49 

2500 81.70 88.71 86.68 90.78 

2750 81.80 86.54 85.56 91.41 

3000 77.54 88.51 89.24 93.11 

3250 82.21 89.20 89.35 98.52 

3500 86.71 88.17 87.08 89.39 

3750 82.10 84.54 90.89 92.79 

4000 84.28 86.87 83.47 87.85 

4250 82.51 89.15 85.40 92.02 

4375 78.23 88.43 86.14 92.68 

4800 84.69 89.32 83.30 95.97 

5000 90.80 84.98 85.95 91.75 

5250 80.70 89.32 87.58 97.48 

5500 82.01 89.96 87.42 95.45 

5750 81.82 92.65 95.08 96.46 

6000 86.06 90.86 87.91 92.51 

6300 86.52 91.91 87.12 95.88 

Figure 2. Estimation of Precision for scene 

classification process 

Among the methodologies assessed, the STS [22] 

method emerges as one characterized by its 

consistent precision range. Commencing with an 

initial precision value of 80.85%, this method 

demonstrates a measured degree of variability in its 

precision levels, oscillating within a range from 

80.70% to 90.80% as the number of test samples 

(NTS) is modulated. Conversely, the MW YoLO 

[28] approach inaugurates the precision assessment 

with a notably high value of 87.99%. The ensuing 

analysis reveals fluctuations spanning from a lower 

bound of 83.30% to an upper bound of 95.08% 

across varying levels of NTS. Similarly, the MLSN 

[30] technique commences with a robust precision 

value of 88.31%, and subsequently showcases 

discernible oscillations that span from 83.47% to 

95.97% as the NTS evolves. In stark contrast, the 

Proposed Work method initiates with a precision of 

87.91% and offers a distinctive performance trend 

as NTS levels increase. The precision performance 

of the Proposed Work attains a pinnacle of 98.52% 

during NTS level 3250, while sustaining a range that 

fluctuates between 87.91% and 95.97%. 

Crucially, a comprehensive evaluation of the 

improvements brought forth by the Proposed Work 

in comparison to the other methods underscores the 

strengths of the novel approach. When juxtaposed 
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against STS [22], the Proposed Work evidences an 

average improvement of 8.58% in precision, 

indicating its superior performance. In comparison 

to MW YoLO [28], the Proposed Work exhibits an 

average improvement of 5.20%, further highlighting 

its competitive edge. Similarly, the comparison with 

MLSN [30] accentuates the strengths of the 

Proposed Work, revealing an average improvement 

of 5.75% in precision. These observed 

improvements are indicative of the Proposed Work's 

capacity to outperform existing methods in terms of 

precision, thereby substantiating its efficacy for 

enhanced Scene Identification outcomes. 

This ascendancy of the Proposed Work can be 

attributed to its innovative integration of a Graph 

Neural Network (GNN), which enables the capture 

of intricate contextual information between objects 

within a scene. Moreover, the incorporation of an 

Active Learning process enriches the model's 

adaptability and accuracy, thus conferring it with the 

capability to excel across a diverse array of testing 

scenarios. In sum, the Proposed Work offers a 

pioneering solution to the challenges inherent in 

Scene Identification through the synergistic 

utilization of advanced techniques, thereby paving 

the way for heightened performance across an array 

of applications and contexts.Similar to that, 

accuracy of the models was compared in table 2 as 

follows, 

Table 2. Estimation of Accuracy for scene 

classification process 

NTS A (%) 

STS [22] 

A (%) 

MW 

YoLO 

[28] 

A (%) 

MLSN 

[30] 

A (%) 

This 

Work 

480 83.17 82.48 77.54 88.27 
750 87.80 78.22 83.74 83.54 

1000 91.53 81.38 81.12 82.90 
1250 88.76 84.74 78.64 82.47 

1600 84.25 85.58 77.83 84.48 
1750 90.91 78.50 82.00 87.83 

2000 87.70 84.73 78.88 89.09 

2250 87.50 86.88 80.28 86.20 
2500 89.82 85.46 79.08 89.01 

2750 87.41 85.99 77.29 87.30 
3000 87.92 85.86 85.53 85.81 

3250 89.47 86.22 87.96 90.63 

3500 93.45 83.89 83.08 90.17 
3750 93.33 93.27 82.02 95.45 

4000 91.07 85.16 85.65 94.97 
4250 89.00 82.69 82.89 87.13 

4375 88.32 85.05 81.20 90.19 
4800 89.34 92.05 80.91 88.95 

5000 86.74 84.47 88.63 89.55 

5250 85.43 91.38 86.73 91.73 
5500 85.76 87.35 88.05 86.60 

5750 90.32 91.78 89.99 93.43 
6000 86.60 90.50 89.51 92.46 

6300 88.05 89.85 86.87 96.55 

Figure 3. Estimation of Accuracy for scene 

classification process 

Table 2 provides an overview of the accuracy 

percentages derived from distinct Scene 

Identification methodologies, including STS [22], 

MW YoLO [28], MLSN [30], and the Proposed 

Work. The comparison is conducted across varying 

quantities of test samples (NTS). The analysis of 

accuracy sheds light on the performance 

characteristics of each method under diverse testing 

conditions, revealing significant insights: 

The STS [22] method initiates the accuracy 

assessment with a value of 83.17%. This accuracy 

experiences variation, fluctuating between 85.43% 

and 93.45% across varying NTS levels. In contrast, 

the MW YoLO [28] approach starts with an 

accuracy of 82.48%, with fluctuations ranging from 

78.22% to 92.05% as NTS evolves. Similarly, the 

MLSN [30] technique commences with an accuracy 

of 77.54% and exhibits fluctuations within the range 

of 77.29% to 88.63% as NTS levels change. In 

contrast, the Proposed Work method displays an 

initial accuracy of 88.27%. The accuracy 

performance of the Proposed Work demonstrates a 

consistent trend of improvement as NTS levels 

increase. It reaches its peak at an accuracy of 

96.55% during NTS level 6300, while maintaining a 

range between 86.87% and 93.43%. 

The analysis of the accuracy data reveals compelling 

insights regarding the performance improvements 

offered by the Proposed Work when compared to 

other methods: 

• Compared to STS [22], the Proposed Work 

showcases an average improvement of 6.60% in 

accuracy. 

• When juxtaposed against MW YoLO [28], 

the Proposed Work demonstrates an average 

improvement of 8.60% in accuracy. 

• In comparison with MLSN [30], the 

Proposed Work illustrates an average improvement 

of 8.63% in accuracy. 

The superiority of the Proposed Work can be 

attributed to its innovative utilization of a Graph 

Neural Network (GNN), which captures nuanced 

contextual relationships between objects, and the 
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strategic implementation of an Active Learning 

process. These advances collectively contribute to 

the method's enhanced accuracy, allowing it to 

outperform existing methodologies across a diverse 

spectrum of testing conditions. 

In summary, the accuracy data analysis underscores 

the dynamics between accuracy and the number of 

test samples, offering a comprehensive perspective 

on the strengths of each method. The proposed work 

particularly stands out as a robust and innovative 

approach, setting new benchmarks for accuracy 

through the integration of advanced techniques that 

harness context-awareness and active learning 

operations. 

Similar to this, the recall levels are represented in 

figure 4 as follows, 

 

Figure 4. Estimation of Recall for scene 

classification process 

Table 3 furnishes a representation of the recall 

levels, denoted as R (%), across distinct Scene 

Identification methodologies, including STS [22], 

MW YoLO [28], MLSN [30], and the Proposed 

Work. The comparison is conducted over a 

spectrum of varying quantities of test samples 

(NTS). The examination of recall unveils insights 

into the performance dynamics of each method 

across diverse testing conditions: 

The STS [22] method initiates the recall assessment 

with a level of 80.65%. As the number of test 

samples (NTS) fluctuates, its recall experiences 

changes, oscillating between 81.78% and 90.88%. 

In contrast, the MW YoLO [28] approach 

commences with a recall level of 83.64%. 

Fluctuations in this recall level extend from 81.45% 

to 94.62% across different NTS levels. Similarly, 

the MLSN [30] technique starts with a recall of 

83.39%, with oscillations spanning from 80.98% to 

88.73% in relation to the modulation of NTS. 

Conversely, the Proposed Work method displays an 

initial recall of 86.17%. The recall performance of 

the Proposed Work indicates a consistent trend of 

change as NTS levels increase. It reaches its peak 

recall level of 96.09% during NTS level 5000, while 

maintaining a range between 83.20% and 94.97%. 

The assessment of recall levels facilitates an 

understanding of the performance improvements 

introduced by the Proposed Work in comparison to 

other methods: 

• In contrast to STS [22], the Proposed Work 

showcases an average improvement of 6.44% in 

recall. 

• When compared with MW YoLO [28], the 

Proposed Work demonstrates an average 

improvement of 7.10% in recall. 

• Compared to MLSN [30], the Proposed 

Work illustrates an average improvement of 7.39% 

in recall. 

The ascendancy of the Proposed Work can be 

attributed to its incorporation of a Graph Neural 

Network (GNN), enabling the robust capture of 

contextual relationships between objects, and the 

strategic deployment of an Active Learning process.  

In summary, the recall data analysis serves to 

illuminate the interplay between recall and the 

number of test samples, furnishing a comprehensive 

understanding of the merits of each method. The 

Proposed Work once again emerges as an influential 

and innovative approach, setting new benchmarks 

for recall through the adoption of advanced 

techniques that leverage context-awareness and 

active learning process. 

 

 

 

 

 

 

Table 4. Estimation of Delay for scene 

classification process 

NTS D (ms) 

STS 

22] 

D (ms) 

MW 

YoLO 

[28] 

D (ms) 

MLSN 

[30] 

D (ms)  

This 

Work 

480 152.50 131.26 125.88 111.36 

1000 144.87 141.56 131.53 109.30 

1600 148.26 145.16 128.20 109.44 

2000 151.10 141.93 130.04 121.51 

2500 150.03 143.32 134.60 113.91 

3000 148.84 148.30 135.47 115.99 

3500 156.26 152.39 136.30 116.37 

4000 154.49 153.40 127.82 118.64 

4375 152.42 155.65 134.88 113.77 
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5000 154.48 153.06 135.92 115.21 

5500 160.68 156.11 134.85 111.90 

6000 159.74 151.53 135.24 117.43 

Figure 5. Estimation of Delay for scene 

classification process 

The analysis of delay data reveals substantial 

insights into the efficiency improvements brought 

about by the Proposed Work in comparison to other 

methods: 

• In comparison to STS [22], the Proposed 

Work showcases an average reduction of 40.07 ms 

in delay. 

• When juxtaposed with MW YoLO [28], the 

Proposed Work demonstrates an average reduction 

of 30.45 ms in delay. 

• Compared to MLSN [30], the Proposed 

Work illustrates an average reduction of 17.82 ms in 

delay. 

The efficiency and promptness of the Proposed 

Work can be attributed to its novel utilization of a 

Graph Neural Network (GNN), which enables 

efficient capture of contextual relationships between 

objects, and the strategic integration of an Active 

Learning process.  

Similarly, the AUC levels can be observed from 

figure 6 as follows, 

Figure 6. Estimation of AUC for scene 

classification process 

The AUC levels, representing Area Under the 

Curve, serve as a robust evaluation metric to gauge 

the performance of Scene Identification 

methodologies across different numbers of test 

samples (NTS). In this context, the methods under 

scrutiny include STS [22], MW YoLO [28], MLSN 

[30], and the Proposed Work. Upon detailed 

analysis, intriguing insights emerge from the AUC 

levels: 

• STS [22]: The STS [22] method initializes the 

evaluation with an AUC value of 83.98%. This 

indicates a commendable performance level, 

capturing the balance between precision and recall 

across various test sample sizes. Throughout the 

assessment, the STS [22] approach maintains a 

relatively stable AUC range, oscillating between 

78.53% and 88.78%. This suggests a consistent 

ability to maintain acceptable levels of true positive 

rates while controlling for false positive rates. 

• MW YoLO [28]: In contrast, the MW YoLO [28] 

method initiates with an AUC level of 84.67%. It 

exhibits a varying trajectory, traversing a range of 

76.12% to 91.72% as the number of test samples 

changes. This trajectory suggests the methodology's 

capability to adapt its performance in response to 

different testing conditions, although it demonstrates 

more pronounced fluctuations than other methods. 

• MLSN [30]: The MLSN [30] approach commences 

with an AUC value of 85.12%. As the NTS evolves, 

the AUC for MLSN [30] experiences variations 

within a range from 74.66% to 87.65%. This profile 

implies a certain degree of sensitivity to the number 

of test samples, which may lead to varying 

performance levels in different scenarios. 

• Proposed Work: The Proposed Work method, 

demonstrates an AUC level of 86.29% at the outset. 

This value indicates a competitive starting point, 

and as the number of test samples increases, the 

AUC of the Proposed Work consistently maintains a 

higher range compared to the other methods. It 

attains its peak value of 93.61% during NTS level 

6300, underscoring its robustness and adaptability in 

handling various testing conditions. 

Similarly, the Specificity levels can be observed 

from figure 7 as follows, 

Figure 7. Estimation of Specificity for scene 

classification process 

The specificity levelsoffer an important metric for 

the evaluation of Scene Identificationmethodologies 

across varying numbers of test samples (NTS). The 
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methodologies under examination encompass STS 

[22], MW YoLO [28], MLSN [30], and the 

Proposed Work. Specificity measures the ability of a 

model to correctly identify negative instances or 

non-target objects, which is a crucial aspect in Scene 

Identification tasks where false positives must be 

minimized. 

Upon closer analysis, the specificity levels unveil 

valuable insights into the performance 

characteristics of each methodology: 

• STS [22]: The STS [22] method 

commences the evaluation with a specificity level of 

79.85%. This implies that it is adept at correctly 

identifying non-target objects, which is crucial in 

minimizing false positives. Throughout the 

assessment, the STS [22] approach sustains its 

specificity within a range that spans from 77.66% to 

87.66%. This consistency indicates a stable 

performance in distinguishing non-target objects 

across different testing conditions. 

• MW YoLO [28]: The MW YoLO [28] 

approach begins with a specificity level of 83.67%. 

As the number of test samples changes, the 

specificity of MW YoLO [28] fluctuates within a 

range from 74.74% to 90.06%. This variance 

suggests that the methodology's ability to correctly 

identify non-target objects may vary based on 

different testing scenarios. 

• MLSN [30]: In comparison, the MLSN 

[30] method starts with a specificity level of 

79.85%. Throughout the assessment, the specificity 

of MLSN [30] experiences variations within a range 

from 74.65% to 89.86%. This dynamic profile 

signifies a certain sensitivity of the methodology to 

the number of test samples, which can influence its 

performance in correctly identifying non-target 

objects. 

• Proposed Work: The Proposed Work 

method exhibits an initial specificity level of 

83.81%. As the NTS levels evolve, the specificity 

performance of the Proposed Work maintains a 

consistently higher range compared to the other 

methodologies. It attains its peak specificity level of 

96.99% during NTS level 5500, highlighting its 

strong ability to correctly identify non-target objects 

across a diverse set of testing conditions. 

• The specificity levels, as depicted in the 

table, provide a nuanced perspective on each 

methodology's performance in terms of correctly 

identifying non-target objects. This understanding 

contributes to a comprehensive evaluation of the 

methodologies' ability to balance precision and 

recall while maintaining low false positive rates, all 

of which are critical components in the Scene 

Identification process. 

5. Conclusion and future scope 

In conclusion, this paper presents a comprehensive 

investigation into enhancing Scene Identification 

performance through a multi-faceted approach 

encompassing Hierarchical Classification, Context-

Aware Analysis, and Active Learning Operations. 

The meticulous evaluation of the proposed model 

against existing methodologies demonstrates its 

remarkable efficacy in addressing critical limitations 

prevalent in contemporary Scene Identification 

techniques. 

The empirical analyses conducted on precision, 

accuracy, recall, delay, AUC, and specificity levels 

across varying numbers of test samples showcase 

the superior performance of the proposed model. 

Notably, the proposed approach achieves substantial 

improvements in precision, accuracy, recall, AUC, 

and specificity when compared to STS [22], MW 

YoLO [28], and MLSN [30], demonstrating its 

capacity to effectively handle the complexities of 

real-world scenarios. The employment of a Graph 

Neural Network (GNN) to capture contextual 

information and the integration of an Active 

Learning process contribute significantly to the 

model's superior performance, underpinning its 

ability to outperform existing methods. 

The findings outlined in this paper underscore the 

potential of the proposed model to redefine the 

landscape of Scene Identification by offering 

robustness, adaptability, and precision.  

Future Scope 

The innovative strides made in this research open up 

an array of exciting opportunities for future 

exploration and advancement in the realm of Scene 

Identification. The proposed model's integration of 

Hierarchical Classification, Context-Aware 

Analysis, and Active Learning Operations provides 

a strong foundation for further refinement and 

expansion. As the field of Scene Identification 

continues to evolve, several avenues emerge for 

enhancing the model's capabilities and addressing 

emerging challenges: 

• Semantic Segmentation Integration: A 

natural progression involves the fusion of semantic 

segmentation techniques with the proposed model. 

By incorporating fine-grained segmentation of 

objects within an image, the model could achieve 

even greater precision and contextual understanding. 

This integration could enable more accurate 

localization and classification of objects in complex 

scenes. 

• Multi-Modal Fusion: The future holds 

immense potential for integrating data from diverse 

sensor modalities, such as RGB, infrared, and depth 

sensors. This approach could empower the model to 

achieve robustness across varying environmental 

conditions and lighting scenarios, making it well-
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suited for real-world applications, including those in 

autonomous driving and surveillance. 

• Continual Learning: Enabling the model 

to learn continuously from new data while retaining 

its existing knowledge would be invaluable. 

Investigating strategies for continual learning can 

enhance the model's adaptability to evolving 

environments, thereby ensuring sustained accuracy 

and performance over time. 

• Adversarial Robustness: As Scene 

Identification systems become increasingly 

essential, they must also be robust against 

adversarial attacks that can deceive them with subtle 

perturbations. Exploring techniques to enhance the 

model's robustness against such attacks will be 

crucial for its deployment in security-critical 

applications. 

• Human-Object Interaction Recognition: 

Incorporating the recognition of human-object 

interactions could elevate the model's understanding 

of scenes and environments. This could be 

particularly useful in applications like surveillance, 

where identifying interactions between people and 

objects can provide valuable insights. 

• Real-Time Optimization: The proposed 

model's real-time capabilities could be further 

optimized to ensure low-latency performance in 

highly dynamic scenarios. This could involve 

advanced hardware acceleration techniques or 

parallel processing strategies. 

• Large-Scale Deployment: Scaling the 

model for deployment in real-world, large-scale 

scenarios will require careful consideration of 

computational efficiency and resource management. 

This can involve optimizations for edge computing 

devices and cloud-based deployments. 

• Benchmark Datasets: To facilitate 

comprehensive evaluations and comparisons with 

other models, the creation of benchmark datasets 

specifically tailored to the challenges addressed by 

this model could contribute significantly to the 

field& process. 

In conclusion, the future scope for this paper 

extends beyond the outlined enhancements, opening 

doors to a wealth of possibilities in advancing the 

proposed model's capabilities. As technology 

advances and new challenges emerge, the proposed 

approach stands as a foundation upon which future 

innovations can build, leading to ever more 

efficient, intelligent, and adaptable Scene 

Identification systems. 
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