
 

International Journal of 

INTELLIGENT SYSTEMS AND APPLICATIONS IN 

ENGINEERING 
ISSN:2147-67992147-6                                    799www.ijisae.org Original Research Paper 

 

 

International Journal of Intelligent Systems and Applications in Engineering                      IJISAE, 2024, 12(21s), 3354–3367 |  3354 

A Fully Convolutional Neural Network Model Towards Internet 

of Things-Enabled Crack Detection in useful Structure: An 

Application to Structural Health Monitoring 

Surajit Mohanty1*, Subhendu Kumar Pani2 

Submitted: 25/02/2024    Revised: 29/04/2024     Accepted: 15/05/2024 

Abstract: 

A highly advanced fully convolutional neural network (CNN) model is methodically proposed to classify bridge 

cracks. This paper explored Python libraries to create a simulation and training platform for the model. The 

proposed approach is observed to be an outstanding model for identifying bridge cracks effectively having 

comparatively less complex training with accuracy rates well over 90 percent and it is 82 percent efficient than 

the other compared approach. Here, intelligent detection methods have been proposed to optimize the bridge 

safety efficacy mitigating the associated risk factors. Moreover, in this study the significant impact of integrating 

IoT technology in structural health monitoring, especially in bridge crack detection has been highlighted.  
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1. Introduction 

The widespread availability, widespread application 

and many benefits of IoT have been facilitated by 

the development of information technology. These 

advances have particularly influenced the field of 

civil engineering, promoting the development of 

intelligent, complex and interconnected structures. 

Key considerations include crack detection, as 

previous studies show that bridge tragedies cause 

safety problems caused by cracks. Cracking can be 

caused by a number of hazards, such as mining. This 

is particularly worrying given these data. The 

maximum allowable width of 0.3 mm is set as the 

critical limit value for bridge cracks. Exceeding this 

limit can jeopardize the stability of the structure and 

lead to catastrophic collapse accidents. This study 

explores the potential of IoT to monitor bridge 

structures and accurately identify potential cracks. 

The goal is to provide valuable insights that can help 

structural disaster mitigation programs. The research 

begins with careful preprocessing of images of 

bridge cracks to ensure data quality. The intricate 

nature of critical structural frameworks like bridges 

and their process of construction, many risk factors 

in bridge projects are unavoidable. This is because 

of the continual expansion in the density of highway 

networks and the advent of large-span bridges in 

China's transportation industry [1]. There is a 

possibility that these risk factors could result in bad 

impacts and perhaps the collapse of bridges, which 

would threaten both people's lives and their 

property. As a result, a matter of utmost importance 

is to conduct damage detection and generate 

warning for bridge structures in order to swiftly 

monitor their current state of health. With the large 

number of highway bridges in China, many of 

which exhibit structural defects and varied degrees 

of damage [2], the diagnosis of modern bridges’ 

health has been a focal point of research for both 

academia and engineering. This is especially true 

when taking into consideration the fact that the 

majority of these bridges are in China. Despite the 

fact that the significance of health diagnosis has 

been acknowledged since the 1950s, the research of 

the health diagnosis of bridge structures has 

received a greater amount of attention and urgency 

in recent decades. Particular attention has been paid 

to the development of efficient testing methods, 

damage control systems, and safety inspection 

systems [3]. 
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The existing approaches for identifying damage to 

structures can be roughly classified into two groups, 

depending on research and application perspectives: 

Static force-based approaches and dynamic-based 

methods [4]. Both of these groups are based on the 

characteristics of the structures themselves. These 

methods, on the other hand, frequently run into 

difficulties in real applications due to fluctuations in 

the loads that structures endure when they are in 

service and restrictions in algorithms. The 

implementation of Internet of Things (IoT) 

technology in the monitoring of structural security 

has become increasingly common due to 

advancements in intelligent identification terminal 

technology [5]. Through the use of intelligent 

terminals, Internet of Things technology makes it 

possible to do real-time monitoring of building sites. 

This makes it easier to process and analyze 

information in order to provide early warning 

signals for security purposes. Automatic 

identification and tracking, data transmission across 

networks, computerized alerts, digitalization, 

information construction, and complete real-time 

monitoring of the safety state of structures are all 

made possible by the Internet of Things (IoT)[6-8]. 

In recent years, the Internet of Things has emerged 

as the industry that is growing at the fastest rate. 

Plans that have been developed by the government 

indicate that there will be increasing investment in 

IoT technology in the years to come [9,10]. It is 

anticipated that innovations in connected industries 

would be brought about by the improvement of 

Internet of Things technology. As a result, the active 

study of Internet of Things technology applications 

in numerous industries, including engineering 

quality inspection, is gaining attention. This is 

because it improves the accuracy and the efficiency 

of the inspection operations, which represents a 

future development trend[11]. 

The rest part of the paper is organized as section 2 

gives some related research in the domain, section 3 

briefly describe the background of IoT in structural 

monitoring, section 4 illustrate the proposed 

framework, section 5 contain the result, and 

discussion, and finally section 6 highlights the 

conclusion of the research work. 

2. Related Work 

Zhang et. al  [12] studied that Machine Learning 

(ML) based methods have been increasingly utilized 

in various stages of the entire life cycle in recent 

years .Fernández-Gómezet.al [13] said Deep 

Learning is widely acknowledged as a strategy that 

is consistently utilized, particularly in complex 

conditions that necessitate a substantial volume of 

data. Deep learning has gained significant 

importance in the construction sector, leading to 

several research that offer valuable insights into its 

various forms and applications. Panet.al[14] 

conducted a study that provided a summary of 

various architectures used in deep learning and their 

respective applications. The research analyzed seven 

traditional designs, namely Deep Neural Network, 

Convolution Neural Network, Recurrent Neural 

Network, Auto-encoder, Restricted Boltzmann 

Machine, Deep Belief Network, and Generative 

Adversarial Networks. 

Among the various standard deep learning 

architectures that have been evaluated, the 

Convolutional Neural Network (CNN) stands out 

for its capacity to process images, particularly for 

tasks that involve matching images based on their 

width, height, and depth studied by Krizhevsky et.al  

[15]. The study by author Tabernik et.al  [16] 

utilized an advanced deep learning network to 

identify cracks, resulting in enhanced precision in 

crack identification. Zhang et.al [17] conducted a 

study where they utilized a deep architecture of 

Convolutional neural networks (CNNs) to build a 

vision-based system for identifying concrete 

fractures. This method does not require the 

calculation of fault features. The CNN model is 

trained using a dataset of 40,000 photos with a size 

of 256 × 256 pixels. Its purpose is to identify 

fractures by categorizing individual regions 

individually. 

Jeonget.al [18] applied pre-processing to the picture 

using a Naive Bayes ML classifier, and then 

identified fractures using a CNN. Mishraet.al [19] 

used a Deep Convolution Neural Network (DCNN) 

that is trained using the comprehensive ImageNet 

database, which contains a vast number of pictures. 

They applied this training to identify cracks in Hot-

Mix Asphalt (HMA) and Portland Cement Concrete 

(PCC) surfaced pavement images, which also 

encompassed various non-crack abnormalities and 

flaws.Liu et.al [20] introduced an innovative 

network for semantic segmentation that utilizes deep 

convolution layers and is capable of incorporating 

contextual information for accurately identifying 

structural infrastructure cracks across different 

scenarios. The suggested approach utilizes a deep 

semantic segmentation network to accurately 
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separate fractures in images of any size, without the 

need to retrain the network for future predictions. 

Additionally, a fusion technique that takes into 

account the context and utilizes local restrictions 

across different states and spaces is introduced. This 

approach aims to combine the predictions of picture 

patches. Dardouri et.al  [21] utilized the U-Net 

model for the purpose of identifying concrete 

cracks. The evaluation function chosen is the focal 

loss function, and the optimization is performed 

using the Adam method. The trained U-Net has the 

capability to accurately detect the locations of 

cracks in the input raw photos, even under 

challenging settings such as varying illumination, 

cluttered backgrounds, and different crack widths. It 

demonstrates excellent efficacy and resilience in this 

task. 

2.2. Contribution  

In this work the major contributions are  

(i) A fully convolutional neural network model has 

been proposed to classify bridge cracks. 

(ii) Estimated the convolutional layer, gradient for down 

sampling. 

(iii)  Extensive result analysis has been carried out on 

enhanced imagery obtained after applying CNN. 

3. Background of IoT for Structural Health 

Monitoring 

Professor Kevin Ashton of the Massachusetts 

Institute of Technology is the first person to propose 

the idea of the Internet of Things in 1991. In 1999, 

the Center for Automatic Identification at the 

Massachusetts Institute of Technology (MIT) 

created a precise description of the concept behind 

the Internet of Things. This definition includes the 

transmission of all objects by radio frequency for 

intelligent detection and control. Devices that 

transmit information, such as RFID devices, infrared 

sensors, global positioning systems, and laser 

scanners, have been integrated into the Internet of 

Things (IoT) during its development. These devices 

can sense, compute and act, and together they form 

a massive network that connects everything to 

facilitate information transfer, coordination and 

processing in real time. With the ability of the 

Internet of Things to connect the digital and physical 

worlds, the networking of "things and things" can be 

achieved. This is achieved by extending internet 

objects from people to all objects. The structural 

foundation of the Internet of Things comprises four 

tiers: the perception layer, the network layer, the 

processing layer, and the application layer [7]. 

The perception layer, or the physical interface layer 

of the Internet of Things, implements the detection, 

recognition, tracking and data collection of objects 

using various sensors. The network layer brings 

together several different communication networks 

and the Internet, which are responsible for 

facilitating data transfer between the sensor layer 

and the processing layer. The processing layer, 

which is an intelligent processing layer, is 

responsible for the intelligent processing of huge 

amounts of data using units such as the control 

center of the application layer, which is built using 

the perception layer, the network layer and the 

processing layer. . , applications can achieve 

intelligence across the entire IoT ecosystem with a 

resource center, cloud computing platform and 

expert system. This layer also helps to facilitate the 

profound incorporation of information technology 

into a variety of different industries. 

The widespread use of different identification 

technologies and the construction of a network that 

spreads across the Internet are two ways in which 

IoT technology differs from the traditional Internet. 

There are many sensors used in the Internet of 

Things, and they are all sources of information. 

These sensors record a wide variety of data content 

and formats and update their data in real time and 

regularly. The integration of wired and wireless 

networks forms the basis of the Internet of Things, 

which is based on the infrastructure of the Internet. 

This ensures that information about targets is sent in 

real time and accurately. In addition, the Internet of 

Things goes beyond sensor connections, as it has the 

ability to intelligently control objects. This is 

accomplished by integrating sensors with cognitive 

processing and utilizing In order to broaden its 

application domains, the IoT incorporates 

technologies such as cloud computing and pattern 

recognition 

4. Proposed Fully Convolutional Neural Network 

Model towards Internet of Things-enabled Crack 

Detection 

Figure 1 depicts a systematic workflow of the 

suggested framework, highlighting the many stages 

involved in the fully Convolutional Neural Network 

(CNN) architecture designed for detecting cracks in 

structural elements. Figure 2 describe the details of 

the proposed IoT based CNN structure for 
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identifying crack. The several stages have been 

examined as follows: 

1. Network Initialization: Begins with the 

initialization of the Convolutional Neural Network 

(CNN), which involves establishing the structure of 

the network and configuring the necessary 

parameters for the following phases. 

2. Determining Convolution Layers: This step 

involves strategically deciding on the number of 

convolutional layers, which is a crucial factor that 

affects the network's capability to identify complex 

characteristics in the input data. 

3. Selecting Functions and Parameters: The process 

of function and parameter selection involves 

carefully choosing activation functions and fine-

tuning parameters in the CNN architecture to 

achieve optimal information extraction and feature 

representation. 

4. Network Training: The CNN advances to the 

training phase, during which it learns and adjusts its 

parameters by being exposed to a dataset of crack 

images. This process improves its capacity to 

identify patterns that indicate structural 

deterioration. 

5. Network Testing: Afterwards, the trained network 

is subjected to thorough testing using a distinct 

dataset to assess its performance and extend its 

ability to detect cracks in a broader context. 

6. Result Condition Check: After a thorough 

examination, the findings are examined to assess the 

adequacy of the network's crack detection. 

7. Decision Path: If the results satisfy 

predetermined criteria, the process advances to the 

"Mine Phase Diagram Recognition," indicating 

successful identification of cracks and further 

analysis. If the outcomes are not satisfactory, the 

workflow proceeds to the "Convolution Layer 

Adjustment Phase," which requires revisiting the 

design for more improvement. 

8. Phase Diagram Recognition of Mine: Upon 

successful detection of cracks, this step entails 

obtaining useful insights and phase diagrams 

pertaining to the structural conditions, facilitating a 

thorough investigation. 

9. Convolution Layer Adjustment Phase: If the 

results are not satisfactory, this phase comprises 

making changes to the convolutional layers, fine-

tuning parameters, and iteratively enhancing the 

network architecture. 

10. Exit: Marks the end of the workflow, indicating 

the successful completion of the CNN-based crack 

detection process. 

This workflow guarantees a systematic way for 

fracture identification using CNNs, which includes 

iterative modifications and result verification to 

ensure reliable and precise assessments of structural 

health. 

 

Fig 1: Workflow of the proposed fully CNN framework. 
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Fig 2: Details architecture of proposed CNN based IoT enabled crack detection 

4.1 Construction of CNN Framework 

The CNN is a ground-breaking research outcome 

that is  predicated on the notions of artificial neural 

networks and is influenced by the principles of 

biological neuroscience. Due to the fact that it is 

capable of deep learning, it has become an important 

concentrate of research in the field of machine 

learning. CNN has broad adaptability, concurrent 

feature extraction and classification, excellent 

generalization, and global training parameter 

optimization, in compared to older approaches 

because of its capacity to perform all of these tasks 

simultaneously. The local sensation field is formed 

when the convolution neural network is used to the 

task of image categorization. This is accomplished 

by the set of tiny neurons of the network connecting 

with a particular region of the input image. This 

field improves the representation of the original 

image by utilizing groups of flat spreads that 

overlap one another in order to gain a more accurate 

representation of the image. It is because of this 

process that the network is able to accept distortions 

in the input image. This process is repeated 

throughout each layer. 

A sub sampling layer that is referred to as the pool 

layer is also incorporated into the convolution neural 

network. This layer is designed to integrate the 

output of the neuron cluster through the utilization 

of a sub sampling approach. CNN uses the 

convolution operation with weight sharing in the 

convolution layer in order to overcome the issue of 

dealing with billions of parameters in layers that are 

fully connected. By recombining the same weights 

in each pixel of the layer, this method is able to 

effectively reduce the amount of memory that is 

required while also improving performance. When it 

comes to image identification or classification tasks, 

where the output 'tile' of neurons may be readily 

timed for picture analysis, certain time-delay neural 

networks adopt architectures that are comparable to 

those described above. 

When compared to other algorithms for image 

classification, convolution neural networks require a 

comparatively little amount of preparation. This can 

be attributable to the fact that they are utilized in 

filter research, whereas traditional algorithms 

concentrate a large emphasis on the design of 

manual features. The independence of convolution 

neural networks from prior information and the 

relief of the obstacles associated with manual 

feature creation are the primary advantages that 

convolution neural networks have over traditional 

techniques with regard to their use. 

4.2. Estimation of Convolutional Layer 

Within the convolution layer, a learning convolution 

kernel is utilized to carry out a convolution 

operation on the feature map that is generated by the 

previously mentioned layer. Following that, the 

outcome are processed by an activation function, 

which finally results in the formation of a new 

feature map as the output. The output feature maps 

that are generated by various convolutional kernels 

are distinct from one another, and each output 

feature map may be the result of the combined 

convolution of many feature maps. When taking into 

consideration CNN as the proposed model for crack 

detection in bridges, the following is a full 

explanation of the calculation procedure for the 

convolution layer. 
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𝐹𝑖
𝑙 = 𝛼(∑ 𝐹𝑗

𝑙−1 × 𝑋𝑖𝑗
𝑙 + 𝛽𝑖

𝑙
𝑗∈𝑀𝑖

)                                                                                     (1) 

where, 𝐹𝑖
𝑙is the notation that is used in the equation 

to represent the i feature map of layer l. 

In Eq.(1), 𝑋𝑖𝑗
𝑙  is the convolution kernel function, and 

it is represented by the letter X. Applying the 

activation function 𝛼() and activating the sigmoid 

function in classic convolutional neural networks 

are both examples of how the activation function is 

used. It is noted that the bias parameter 𝛽𝑖
𝑙 has been 

integrated, and 𝑀𝑖 represents a collection of selected 

input feature maps. For every output feature map, a 

feature map is chosen from this set to serve as the 

input feature map respectively. There is a bias 

coefficient associated with each output feature map. 

The convolutional cores of each input feature map 

are combined for a particular output-holding graph. 

The sign c indicates that input feature maps of 

output feature graphs a and b have a similar set. On 

the other hand, they are produced from c by means 

of several separate convolutional cores being added 

together. In the context of CNN as the proposed 

model for fracture detection in bridges, this 

explanation provides an overview of the 

components that make up the equation. 

4.3. Estimation of Gradient 

The sequential design involves a convolution layer l 

followed by a subsequent down sampling layer l + 

1. Thus, to adjust the weights in the convolution 

layer, it is imperative to gather the error signal γ for 

each neuron within that layer. This is done in 

accordance with the BP technique that is discussed 

earlier. In order to accomplish this, it is necessary to 

obtain the error signal  𝛾 l+1 of the succeeding layer. 

This is accomplished by adding up the errors 

recorded by neurons in the subsequent layer. This 

error signal is then multiplied by the weights that 

correspond to it, W, additionally, the error signal γ 

arises from the activation function α applied to the 

inputµ of the neuron in the l-layer. 

In the l-layer, it is possible to compute l for each 

individual neuron. The error signals of neurons in 

the down sampling layer following the convolution 

layer are determined by the size of the sample 

window in the output feature map of the convolution 

layer. This is the case in the situation described 

above. As a consequence of this, every neuron that 

is presented in the feature map of this layer is 

related to a single neuron that is presented in the 

feature map that corresponds to the l + 1 layer. It is 

important to conduct a sampling operation in order 

to get the error signal 𝜀 for layer 𝛾, which 

corresponds to the feature map of the sampling 

layer. This method entails matching the findings 

from the previous phase with the error signal 𝛽𝑖
𝑙of 

each feature graph j in the convolution layer. This 

iterative process can be done on a number of 

occasions in order to compute the error signals for 

every feature map within the convolution layer, 

𝛾𝑖
𝑙 = 𝜀𝑖

𝑙+1 (𝛼′(𝑢𝑖
𝑙) ∗ 𝑢𝑝(𝛾𝑖

𝑙+1))                                                                                              (2) 

When a sampling operation is performed, the bias 

gradient is integrated with the error signal within the 

layer by applying the formula that is shown earlier. 

𝜕𝜀

𝜕𝛽𝐼
= ∑ (𝛾𝑖

𝑙)
𝑢𝑣𝑢,𝑣                                                                                                                      (3) 

Ultimately, the weight gradient of the convolution 

kernel can be calculated using the conventional 

backpropagation (BP) algorithm. Due to the 

numerous connections in convolutional neural 

networks being associated with weighted values, a 

gradient must be computed for all connections 

linked to a particular weight, and these gradients are 

eventually summed. 

𝜕𝜀

𝜕𝑋𝑖𝑗
𝑙 = ∑ (𝜕𝑖

𝑙)
𝑢𝑣
(𝑏𝑗

𝑙−1)
𝑢𝑣𝑢,𝑣                                                                                                     (4) 

In this context, 𝑏𝑗
𝑙−1represents a small block that is 

multiplied by the element 𝑋𝑖𝑗
𝑙  during the convolution 

operation on 𝑋𝑗
𝑙−1, where the value at position (u, v) 

of the output convolution feature map is obtained by 

multiplying a small block at the upper (u, v) position 

by an element of the convolution kernel. The 

convolution function in Python can handle this 

process, removing the need to manually track which 

segment of the output feature map corresponds to 

each neuron in the input feature map, thus enabling 

automation without human intervention. 
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𝜕𝜀

𝜕𝑋𝑖𝑗
𝑙 = ∇180 (𝑐2 (𝐹𝑗

𝑙−1, ∇180(𝛾𝑖
𝑙)))                                                                                         (5) 

In this context, the rotation feature map involves 

cross-correlation instead of convolution, and the 

resulting output is rotated back. During forward 

propagation, the convolution sends samples, and the 

convolution kernel operates in the predetermined 

direction. 

4.4. Estimation of Gradient for Lower Sampling 

Layer 

The principle behind the down sampling layer is 

straightforward: each output feature map's size is a 

scaled-down version of the input feature map's size. 

𝐹𝑖
𝑙 = 𝛼(𝜀𝑖

𝑙𝑑𝑜𝑤𝑛(𝐹𝑖
𝑙−1) + 𝛽𝑖

𝑙)                                                                                              (6) 

By using the down() function to do lower sampling 

and setting the sample window as n×n, the feature 

size of the output graph is reduced by a factor of n 

in order to ensure scaling invariance. This is done in 

order to minimize the resolution on the graph. The 

multiplicative offset parameter 𝜀 and the additive 

bias parameter 𝛽 belonging to each output feature 

graph are unique to that particular graph. 

Prior to calculating the error signal of the feature 

map in the down sampling layer, it is necessary to 

establish the correspondence between the small 

blocks in the sensitivity feature map of the current 

layer and the pixels in the sensitivity feature map of 

the subsequent layer. This knowledge enables the 

application of the reverse propagation algorithm for 

computation [13]. 

The erroneous signal of the currently active sub-

sampling layer is obtained by a recursive process by 

employing the error message from the previous 

layer as, 

𝛾𝑖
𝑙 = 𝛼′(𝑢𝑖

𝑙) ∗ 𝑐2 (𝛾𝑖
𝑙 , ∇180(𝑋𝑖

𝑙−1))                                                                                         (7) 

To establish a connection between the convolution 

function and the computations, it is required to do a 

180-degree rotation of the volume kernel prior to 

commencing the calculation. This will enable a 

convolution function to be complete for the whole 

duration of the convolution process. Solve the 

problem of the convolution boundary, which refers 

to the missing pixel needed to complete the value of 

0. Subsequently, you will get a gradient of 'a' and 'b': 

𝜕𝜀

𝜕𝛽𝑖
= ∑ (𝛾𝑖

𝑙)
𝑢𝑣𝑢,𝑣                                                                                                                    (8) 

𝜕𝜀

𝜕𝜀𝑖
= ∑ (𝛾𝑖

𝑙 ∗ 𝑑𝑜𝑤𝑛(𝐹𝑖
𝑙−1))

𝑢𝑣
𝑢,𝑣                                                                                           (9) 

It is possible to achieve the weight update in the 

convolution neural network from time t to t + 1 

instant by using the following calculation form, 

which is quite similar to the implementation of the 

BP algorithm: 

𝜔(𝑡 + 1) = 𝜔(𝑡) + 𝜇𝛾(𝑡)𝑥(𝑡)                                                                                           (10) 

Where 𝜇 represents the rate of learning, 𝑥(𝑡) 

represents the neural input, and 𝛾(𝑡) represents the 

error term. 

4.5 Proposed approach 

Step 1: Collect the crack image data from the IoT 

dataset. Send the testing data to the CNN 

Step 2: The convolutional kernel function generated 

by equation 1 will identify the feature by down 

sampling. 

Step 3: the classified image then feed to fully CNN 

with a weight value W, and error signal γ. 

Step 4: repeat the step 3 to compute the error signals 

for every feature map within the convolution layer. 

Step 5: The weight gradient of the convolution 

kernel can be calculated using the conventional 

backpropagation (BP) algorithm using equation 2. 

Step 6: The convolution function defined in 

equation 4 can handle this process, removing the 

need to manually track which segment of the output 

feature map corresponds to each neuron in the input 

feature map, thus enabling automation without 

human intervention. 

Step 7: send a training data to the fully CNN and it 

will identify the cracked and not cracked image. 

5. Results and Discussions 

In this section, we present the strategies adopted 

over the SDNET dataset [25-28] considered in this 
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study and the experimental outcomes performed by 

making use of python functions to build the 

simulation environment. 

5.1. Enhancement of Imagery 

There are two primary classifications that may be 

applied to the process of image enhancement: the 

approach used in the frequency domain and the 

technique of spatial domain. The first method 

considers the image to be a signal that is only two 

dimensions in size, and it continues the process of 

signal enhancement by using the Fourier transform 

in two dimensions. The application of low-pass 

filtering, which is to say, only the low-frequency 

signal via) approach is able to eliminate the noise in 

the diagram. On the other hand, the high pass 

filtering method is able to significantly improve the 

edge and other high-frequency signals, thereby 

bringing clarity to the previously blurry picture. It is 

possible to eliminate or reduce the amount of noise 

by utilizing the representative algorithm that is 

included in the latter space domain approach. This 

procedure incorporates the technique of calculating 

the local average value, using the median filter 

method (which determines the median pixel value 

within the local neighborhood), and utilizing other 

comparable techniques. 

The process of image enhancement involves either 

adding some additional data pertaining to the 

original picture or transforming the data through 

some means. Image enhancement may encompass 

the selective accentuation of desired features within 

the image or the suppression (concealment) of 

undesirable features. The goal of this process is to 

ensure the picture and its corresponding visual 

reaction characteristics are identical. It is not 

essential to do an analysis of the reason for the 

decline in image quality throughout the process of 

image enhancement, and the image that has been 

processed does not necessarily approximate the 

image that is originally captured. The technology 

that enhances images can be classified into two 

distinct categories: those that are based on the 

spatial domain, and those that are based on the 

frequency field. These classifications are made in 

accordance with the many spaces that are involved 

in the improved processing process. The gray level 

of an image is determined directly by spatial 

algorithm processing. On the other hand, the 

frequency domain algorithm is an indirect 

enhancement technique that modifies the 

transformation coefficients of the image in a certain 

transformation domain. Both of these techniques use 

the frequency domain. 

In order to improve the contrast of the picture, this 

study makes use of a piecewise linear function 

because: 

𝑔(𝑥, 𝑦) =

{
 
 

 
 

ℎ(𝑥,𝑦)

𝑚
, ℎ(𝑥, 𝑦) < 𝑥1

𝑘[ℎ(𝑥, 𝑦) − 𝑥1] +
𝑥𝑖

𝑘
, 𝑥1 ≤ ℎ(𝑥, 𝑦) ≤ 𝑥2

ℎ(𝑥,𝑦)+225(𝑘−1)

𝑘
, ℎ(𝑥, 𝑦) > 𝑥2

                                                        (11) 

The formula uses the notation g(x,y) to represent the 

gray value of the output point and h(x,y) to represent 

the gray value of the input point, and the turning 

point of the two horizontal axes is denoted by 𝑥1, 𝑥2. 

The k value is what defines the overall value of the 

formula. The gradient of the interval function that 

encompasses many segments of the transformation. 

5.2. Experimental Outcomes 

The SDNET dataset for bridge crack detection 

stands as an annotated image dataset meticulously 

designed to facilitate the training, validation, and 

benchmarking of artificial intelligence-based 

algorithms specifically tailored for identifying 

cracks in concrete structures [25-28]. Encompassing 

a vast collection of over 56,000 images, this dataset 

encompasses diverse instances of both cracked and 

non-cracked concrete bridge decks, walls, and 

pavements. Notably, the dataset spans the spectrum 

of crack widths, ranging from a slender 0.06 mm to 

a substantial 25 mm. To enhance the dataset's 

realism and challenge algorithmic capabilities, it 

incorporates various environmental obstructions 

such as shadows, surface roughness, scaling effects, 

edges, holes, and background debris. 

For data acquisition, a total of 230 images capturing 

both cracked and non-cracked concrete surfaces are 

meticulously obtained using a high-resolution 16 

MP Nikon digital camera. The dataset comprises 

images from distinct structural elements, including 

54 bridge decks, 72 walls sourced from the 

Russell/Wanlass Performance Hall building on the 

Utah State University (USU) campus, and 104 

pavements extracted from roads and sidewalks 

within the USU campus. Each image undergoes 

segmentation into 256 × 256 px sub-images, 
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allowing for a granular analysis. The labeling of 

each sub-image is methodically conducted, denoting 

it as 'Cracked' if a crack is present or 'Non-cracked' 

if devoid of any observable cracks. This 

comprehensive dataset serves as an invaluable 

resource for advancing the development of concrete 

crack detection algorithms, particularly those rooted 

in deep learning convolutional neural networks, 

aligning with the evolving landscape of structural 

health monitoring research. 

 

Fig 3 Visualization of cracked and un-cracked structures. 

Figure 3 represents the prediction outcomes for 

cracks identified in the considered SDNET dataset 

after de-noising. 

 

Fig 4: Confusion matrix for RF classifier. 

In Figure 4, the confusion matrix for the RF 

approach has been presented over the considered 

dataset. 
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Fig 5: Confusion matrix for SVM. 

In Figure 5, the confusion matrix for the SVM classifier is provided 

 

Fig 6: Confusion matrix for CNN. 

In Figure 6, the Confusion matrix for the CNN is 

shown. 

In Figure 7 class wise ROC curves for RF is shown. 

In Figure 8 Class-wise ROC curves for SVM is 

shown. In Figure 9,a Class-wise ROC curve for 

CNN is shown. Finally, in Figure 10, we depict the 

accuracy and loss value for the CNN algorithm for 

500 epochs. It can be observed that the CNN shows 

rapid convergence in terms of accuracy after 100 

epochs for both training and test instances. Further, 

the loss value for training and test instances also 

reduces considerably after 200 epochs. 
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Fig 7: Class-wise ROC curves for RF. 

 

Fig 8: Class-wise ROC curves for SVM. 

 

Fig 9: Class-wise ROC curves for CNN. 
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Fig 10: Accuracy and loss values for proposed CNN-based crack detection. 

5.3 Discussion  

In this study, we have compared the outcomes from 

our proposed CNN approach with two other well-

known benchmark approaches like Random Forest 

(RF) and Support Vector Machine (SVM). Finally, It 

can be observed that the CNN outperforms the RF 

and SVM, by providing more accurate predicted 

class label indicating high scores in the confusion 

matrix. The proposed methodology encompasses a 

series of pre-processing steps applied to captured 

images of bridge cracks. These steps involve image 

enhancement techniques to improve image quality, 

wavelet denoising to eliminate unwanted noise, and 

image segmentation to isolate the cracks from the 

background. Subsequently, a meticulously 

formulated bridge crack CNN classification model, 

meticulously constructed using Python libraries, 

demonstrates remarkable capabilities in accurately 

classifying the various types of bridge cracks. The 

feasibility and effectiveness of this scheme are 

demonstrably validated by the real-world detection 

outcomes, exhibiting a loss value below 0.1 and an 

impressive total accuracy exceeding 90%. This 

innovative approach represents a significant stride 

towards enhancing the efficiency of fracture 

diagnosis and substantially reducing risk factors in 

domestic bridge safety inspections, ushering in a 

new era characterized by automation and 

intelligence. 

6. Conclusions & Future work 

This study delves deeply into the practical 

implementation of IoT technology for identifying 

cracks within bridge structures. We unveil a robust 

crack classification application system meticulously 

designed by considering both the inherent attributes 

of IoT and the unique structural characteristics of 

bridges. The proposed approach aims to address the 

prevailing reliance on manual visual inspection and 

outdated risk assessment practices for bridge crack 

detection. By leveraging digital and intelligent 

detection methods, we propose to optimize the 

efficacy of bridge safety diagnostics and 

successfully mitigate the associated risk factors. 

Building upon the promising results of this study, 

future work will focus on exploring the integration 

of diverse IoT sensors, such as strain gauges and 

vibration sensors, alongside image capture 

technology. This multi-sensor approach aims to 

provide a more comprehensive understanding of the 

bridge's health and potential crack development. The 

ultimate goal will be to develop a real-time 

monitoring system capable of continuously 

analyzing sensor data and images to detect 

anomalies in real-time.  
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