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Abstract: Manual identification of the organs of the body specially the ones located in the abdominal cavity is a tedious 

work. The accurate segmentation of the abdominal organs is important from the clinical diagnosis and CAD support 

systems. Recent development in the artificial intelligence have enables us with the cutting edge techniques even for the 

dense semantic segmentation of medical images. This paper presents a method to automatically segment organs of the 

abdominal cavity using cascaded V-Net architecture. In this work, the second V-Net is trained with the output of the first 

stage along with the down sampled original images to provided better contextual details. The model is trained and validated 

using multi atlas labelling beyond the cranial vault challenge abdomen data set. F1 score of about 90% was achieved for 

various organs 
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INTRODUCTION 

Multiple organ segmentation from radiological 

images is necessary for a variety of clinical applications, 

including computer-assisted diagnosis and treatment, 

computer-assisted surgery, and radiation therapy. Due to 

the low contrast and high variation of shape in computed 

tomography (CT) images, it appears to be considerably 

more difficult to segment abdominal organs than it is to 

segment other inner human tissues such as the brain or 

the heart1. The difficulty of segmenting many abdominal 

organs all at once is examined in this study. The 

kidneys, liver, and pancreas are some of the organs that 

fall within this category. Diagnostic interventions, 

therapy planning, and treatment administration are just 

few of the many therapeutic activities that can benefit 

from organ segmentation in abdominal pictures2. 

Computer-aided diagnosis and biomarker measurement 

systems require an organ segmentation technique3. In 

the process of designing radiation treatments, 

segmentations of treatment volumes and organs-at-risk 

play an essential role4. More generally speaking, surgery 

planning and delivery can be supported by 

segmentation-based patient-specific anatomical models 

using intraoperative image-guidance systems. In a 

variety of therapeutic contexts, it is of utmost 

significance to achieve precise segmentation of the 

abdominal organs using medical pictures. Multi-organ 

segmentation of abdominal organs using deep learning 

has gained significant attention in medical imaging 

research. Within the scope of this research, there is a 

method based on deep learning for the multi-organ 

segmentation of abdominal organs. 

 

Abdominal Organs 

The organs of the abdomen are those that are located 

there and serve the portion of the body that is between 

the thorax (chest) and the pelvis. The digestive system, 

the metabolic system, and other key physiological 

activities rely on these organs. The abdominal cavity 

separates the trunk (the thorax) from the legs (the 

pelvis)5. The diaphragm, in addition to various 

musculoaponeurotic walls, and the pelvic inlet make up 

the limits of the abdominal cavity. The abdominal cavity 

is home to many organs that play important roles in the 

processes of digestion, elimination of waste, and 

metabolism. There are nine reference planes, and each 

quadrant of the abdomen has a different colour. The 

internal organs of the abdomen are depicted in Figure 1.  
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Figure 1. Abdominal Anatomy Organs6 

 

The division of this anatomical area into several sections 

allows for the classification of the locations of the many 

organs found within the abdominal cavity.  

Right Upper Quadrant (RUQ): stomach, pancreas, 

liver, intestine (duodenum), gallbladder, right kidney, 

small hepatic flexure. 

Right Lower Quadrant (RLQ): small intestine 

(ileum), cecum, ureter, appendix. 

Left Upper Quadrant (LUQ): liver, pancreas, small 

intestine (jejunum/ileum), spleen, splenic flexure. 

Left Lower Quadrant (LLQ): ureter, sigmoid colon. 

Here is an overview of some major abdominal organs: 

Liver: 

Detoxification, nutrition metabolism, bile generation, 

vitamin and mineral storage, and blood clotting protein 

synthesis are just few of the many jobs performed by the 

liver, the body's biggest internal organ. It is also 

essential for the metabolism of carbohydrates, proteins, 

and lipids7. 

Stomach: 

The digestive process begins in the stomach, a muscular 

organ that breaks down food. The stomach absorbs food 

from the esophagus and then secretes gastric fluids, 

which include enzymes and acid, to help digest the meal. 

Absorption of certain drugs is also helped along by the 

stomach8. 

Pancreas:  

The pancreas performs both endocrine and exocrine 

functions. The enzymes it produces aid in the digestion 

of both protein and fat in the intestinal tract. Also, it 

causes the secretion of hormones like insulin and 

glucagon, which control glucose levels in the blood9. 

Intestines: 

The intestines are divided into the smaller intestine and 

the larger colon. The small intestine plays a crucial role 

in the body by absorbing nutrients from digested food. 

The digestive tract is further subdivided into the 

duodenum, jejunum, and ileum. The large intestine is 

responsible for absorbing water from undigested meals 

and producing stool. The cecal region, colon, rectum, 

and anus make up this region10. 

 

 

 

Multi-organ segmentation of abdominal organs 

The term "multi-organ segmentation of abdominal 

organs" refers to the process of automatically defining 

and separating several organs located inside the 

abdomen area using medical imaging such as CT scans 

or Magnetic resonance imaging (MRI) scans. This can 

be done by dividing the abdominal organs into many 

segments (called "multi-organ segmentation")11. 

Surgical planning, illness diagnosis, and evaluating the 

efficacy of a treatment are just a few of the many 

clinical uses for this work. Several studies have 

presented distinct algorithms and methodologies for 

multi-organ segmentation, each making use of a unique 

combination of machine learning and image processing.  

Convolutional neural networks (CNNs) and other deep 

learning models are common method used for multi-

organ segmentation 12. These networks can efficiently 

represent the complicated spatial interactions between 

different organs because of their ability to autonomously 

learn hierarchical characteristics from the input pictures. 

CNN designs including U-Net, V-Net, and 3D variations 

have been used in several research efforts to address the 

challenging challenge of multi-organ segmentation. 

Segmentation is a crucial part of medical image analysis. 

For many image-processing activities, including visual 

augmentation13, computer-assisted diagnosis and 

therapies14, and the extraction of quantitative indicators 

from pictures, autonomous segmentation of structures 

and organs of interest is a prerequisite. The capacity to 

perform volumetric segmentations by taking into 

account the complete volume content at once is crucial 

due to the widespread usage of 3D images in diagnostic 

and interventional imaging. 

LITERATURE REVIEW 

Many authors have conducted their research in the 

same direction a literature review and their findings are 

presented below: 

Irshad et al., (2023)15 proposed a strategy for better 

abdominal picture segmentation that makes use of 

organ-boundary prediction as an auxiliary job. The 

authors employ multi-task learning to train 3D encoder-

decoder networks to partition abdominal organs and 

their borders concurrently. Two network architectures 

are studied: one in which the tasks share all levels 

except the task-specific layers, and another in which a 

single encoder is used for both tasks, but the decoders 

are kept separate. On two publicly available abdominal 

CT datasets (Pancreas-CT and Beyond the Cranial Vault 

(BTCV)), this method is shown to significantly enhance 

segmentation accuracy, with maximum relative gains of 

3.5% and 3.6% in Mean Dice Score for the two datasets, 

respectively. 

Song et al., (2023)16 presented dynamic loss 

weighting is a class reweighting approach that gives 

higher loss weights to organs that are judged to be more 

difficult to learn based on the available data and the 

network's current condition to improve the performance 

https://saff-tarr.blogspot.com/2021/03/abdominal-anatomy-organs-abdomen-thorax.html
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consistency of a segmentation network. The technique 

uses a second autoencoder to calculate the gap between 

the network's predictions and the truth, and then uses 

that information to update its estimate of the loss weight 

for each organ. This method accurately represents the 

differences in training difficulty among organs, and it 

does so in a way that is not sensitive to either data 

attributes or human biases. Using publicly accessible 

datasets for abdominal organs and head-neck structures, 

the system is tested in two multiorgan segmentation 

tasks, with favourable results from extensive tests 

demonstrating its validity and efficacy. 

Shen et al., (2023)17 introduced a U-Net-based 

segmentation model for reliable multi-organ 

segmentation in abdominal CT images. The key organs 

for hepato-biliary-pancreatic surgery are highlighted in 

the model. The model adapts to different backgrounds 

and organ sizes and shapes by incorporating deformable 

receptive fields and utilizing information about organ 

structures. Deformable convolution blocks use trainable 

offsets to generate suitable receptive fields for shape and 

size changes, while spatial attention blocks emphasize 

organ regions of interest. Multi-scale attention maps and 

semantic knowledge are added to the U-Net's skip-

connection architecture. The proposed model is 

compared against U-Net and its variants in terms of 

segmentation performance, time required, and model 

parameters using The Cancer Imaging Archive (TCIA) 

multi-organ segmentation dataset. The average DICE 

coefficient for segmentation performance is improved 

by 80.46 percent using the proposed model, at the 

expense of an increase of 7.86 percent in model 

parameters. The proposed model outperforms U-Net on 

measures of similarity such as DICE, the Jaccard 

similarity coefficient (JSC), and the Hausdorff distance 

(HD) by 1.65%, 1.79%, and 4.08%, respectively. Thus, 

multi-organ segmentation using the suggested model is 

competitive and promising. 

Kaur et al., (2022)18 examined liver, kidney, and 

spleen, which are more commonly studied, and instead 

focusing on the esophagus, duodenum, and portal vein, 

which are less commonly studied. The magnitude, 

variety of organ classes, and associated difficulties of 

datasets are highlighted, highlighting their significance 

in medical imaging study. The study goes on to describe 

the qualities of several assessment criteria. The 

author discussed obstacles and potential solutions and 

conclude that Dense-Net is the best method for multi-

organ segmentation based on the results of the examined 

studies. The current gold standard employs two-step 

deep learning models in a sequential fashion, 

capitalizing on the strengths of both. Overall, this work 

offers helpful information and direction for future 

studies. 

Kang et al., (2022)19 emphasized computer-assisted 

surgery and diagnosis rely heavily on MRI images, 

highlighting the need of proper segmentation of 

abdominal organs. The feature mismatch between 

shallow and deep features was shown to be a weakness 

in existing approaches that combine the two in an 

encoder-decoder framework. The authors incorporated a 

geographical loss and a semantic loss to bridge the 

feature gap after quantifying it. Deep characteristics 

were improved by the spatial loss, whereas shallow 

features were enriched by the semantic loss. The 

suggested technique effectively integrated 

complimentary data from shallow and deep features by 

constructing and bridging the feature gap. Experiments 

done on two abdomen MRI datasets showed that the 

researchers' method greatly outperformed a baseline 

method with few extra parameters in terms of 

segmentation performance. The suggested approach 

excelled at segmenting organs with hazy borders or at 

low scales, while existing methods struggled. 

Jiaqi et al., (2021)20 introduced Computer-aided 

diagnostic (CAD) systems are offered a fresh strategy 

for automated abdominal multi-organ segmentation. 

Using the Simple Linear Iterative Clustering (SLIC) 

algorithm, the technique extracts super voxels from the 

pictures whose borders are near anatomical edges, 

thereby including spatial information into the super 

voxel classification process. These super voxels have 

their labels predicted using a random forest classifier, 

which considers the spatial and intensity properties of 

the data. The performance of the suggested approach for 

segmenting the spleen, right kidney, left kidney, and 

liver area is assessed using thirty abdominal CT images. 

Experiments show that the suggested strategy improves 

upon the accuracy of segmentation over the model-based 

method that was previously used. 

Rahul et al., (2021)21 presented new deep learning 

architecture for multi-organ segmentation in abdominal 

CT images that does not need registration. The 

suggested technique takes use of U-Net architecture to 

deal with significant inter-individual variability and 

adapt to different organs, as opposed to most existing 

approaches which focus on individual organ 

segmentation and struggle with shape and position 

variability. The approach is multi-staged, with each U-

Net extensively trained around the organs and building 

on the input of the preceding step. Superior performance 

is shown in the evaluation of 50 abdominal CT scans 

compared to conventional 2D segmentation techniques, 

with dice/recall/precision/sensitivity values of 99% 

being achieved for a variety of organs such as the 

spleen, adrenal glands, gallbladder, kidneys, stomach, 

aorta, esophagus, veins, liver, inferior vena cava, and 

pancreas. 

Tang et al., (2021)22 introduced automated multi-

organ segmentation of 3D abdomen CT scans. The 

procedure begins with a basic segmentation utilizing a 

graph partitioning technique, after which spines and ribs 

are eliminated. The accuracy of the segmentation is 

enhanced by employing a refinement technique that 
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makes use of intensity Modeling, a 3D Chan-Vese 

model, and an organ separation algorithm. A pseudo-3D 

bottleneck detection technique corrects boundaries. It 

handles form, location, and weak organ borders 

effectively. Experimental findings on the XHCSU20 

database reveal competitive performance compared to 

state-of-the-art algorithms, with high Dice similarity 

coefficients, Jaccard indices, and low liver, spleen, and 

kidney average symmetric surface distances. The 

approach also has great organ-specific accuracy, 

precision, recall, and specificity. SLIVER07 studies also 

demonstrate its liver segmentation efficiency and 

accuracy. The suggested technique processes a CT 

volume in 6 minutes with minimum training and 

registration. 

 

RESEARCH METHODOLOGY 

The concept of designed architecture is examined in the 

context of research methodology. 
Technique Used 

There are several techniques used in the proposed 

methodology. These techniques are given below: 

Deep Learning (DL) 

DL is a branch of Machine Learning (ML) within the 

broader area of Artificial Intelligence (AI). The 

representation of data at various levels of abstraction 

could be accomplished in DL via the use of many layers 

of abstraction. Despite the significant strides that have 

been achieved in the field of computer science thanks to 

deep learning, identifying, and classifying medical 

pictures remains a significant challenge. A recent 

development in copy-move forgeries is the tendency 

toward improved medical image understanding. The 

identification and classification of pictures are two of 

the most essential applications that could be 

accomplished using deep learning. It does this by taking 

the data straight from the two-dimensional photos and 

then automatically learning from the information that the 

conventional hand-held extraction techniques provide. 

This helps it to avoid a range of inaccuracies that could 

occur. The error is calculated at the backpropagation 

stage of equation 1, which is the first step 23,24. 

 

𝜕𝐸

𝜕𝑊𝑎𝑏
= ∑ ∑

𝜕𝐸

𝜕𝑊𝑖𝑗1

𝜕𝑥𝑖𝑗1

𝜕𝑊𝑎𝑏
 ∑ ∑

𝜕𝐸

𝜕𝑊𝑖𝑗1

𝑁−𝑚

𝑗=0

𝑁−𝑚

𝑖=0

𝑁−𝑚

𝑗=0

𝑁−𝑚

𝑖=0

𝑦(𝑖

+ 𝑎)(𝑗 + 𝑏)𝑙−1 

     

 (1)  

 

Here, E denotes the error function, x denotes the input, 

and y is the output.  ith, jth and mth are filter size, N 

denotes the number of particles in each layer, 1 

represents layer number, and W denotes filter weight 

with a and b indices. There are several hidden layers in 

the structure of deep learning that analyze incoming data 

as seen in figure 2. 

 

 

Figure 2. Deep Learning [24]. 

V-Net 

V-Net, short for Volumetric Neural Network, is a deep 

learning architecture designed for 3D image 

segmentation tasks. V-Net's primary use is in medical 

imaging, where it is used to identify and isolate 

anatomical features from volumetric medical data like 

CT and MRI images. The design takes advantage of 

fully convolutional neural networks (FCNs) to handle 

3D volumes quickly, enabling precise and in-depth 

segmentation of organs, tissues, or anomalies. 

Segmentation is a crucial part of medical image analysis 
25. Figure 3 illustrates the architecture of V-Net. 

 

 

Figure 3. V-Net Architecture 

Automated organ and structure detection and 

segmentation is frequently required for applications 

including visual augmentation, computer-assisted 

diagnosis and intervention, and the extraction of 

quantitative indicators from pictures 26. The V-Net 

architecture can be mathematically represented as Y = 

D(E(X)), where X is the input volume, E is the encoding 

function, D is the decoding function, and Y is the 

segmented output. The network learns the appropriate 
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parameters during training to optimize the segmentation 

performance based on labelled training data. 

Cascaded Network 

The cascaded network where the training images serves 

as the input to the first stage of the network. The first 

stage is optimized using a loss function. The output of 

the first stage along with the processed input images 

serves as the input to the second stage of the network, 

which is optimized by another loss function. This type 

of network has shown better performance as compared 

to single stage architecture. 27 

Windowing 

Windowing, also referred to as grey-level visualisation, 

is the exploitation of the CT image greyscale component 

through CT numbers to alter the image's appearance and 

prioritise specific structures. The image's brightness as 

well as contrast both are varied by changing level and 

width of the window respectively. The density of 

various tissues of the body are measure in Hounsfield 

Unit (HU). The organ of the abdominal cavity are 

having very similar as all are made up of soft tissues, so 

it is suggested that the organs having similar tissues, the 

window of narrow size should be used. This is because 

any minute changes in the details will be amplified over 

the entire grey scale range. A soft tissue window range 

except for lungs is given with as, level: +50 HU; Width: 

350 HU (Range: −125 to +225) 28,29 

 

Figure 4. HU scale for soft organ 29 

METHOD 

This section describes the datasets, pre-processing, 

segmentation process, hardware specification and 

performance assessment measures. 

 
Data Set 

The dataset is from Multi-Atlas Labeling Beyond the 

Cranial Vault - Workshop and Challenge, with project 

storage location as synapse storage and project SynID as 

syn3193805 30. It basically consists of 2 data set, one of 

abdomen and another of cervical. The abdomen data set 

consisting of 30 training sets has been used for the 

training of the model. The 20 test data were not 

available as it was a part of challenge.  

Pre-processing 

The pre-processing techniques that were employed were 

alignment, augmentation, normalization, clipping voxel 

intensities. First the CT scans were aligned to be in the 

same orientation. Utilising normalisation in a model 

enhances the speed of learning and promotes stability in 

gradient descent. The axial spacing was normalized to 

3mm and HU values were truncated between [-250,250] 

HU. Only the slice containing the organ is used for the 

training the model. 

Segmentation 

 

Figure 5.Cascaded V-Net  

As shown in Figure 5, cascaded V-Net is employed for 

the segmentation of the input images. The V-Net is 

trained in the initial stage utilising low-resolution 

images to capture extensive context, down sampled by a 

certain factor, then optimised with the Dice loss 

function. In the following stage, we incorporate the 

forecasted segmentation maps as an additional input 

channel into the V-Net. We train the model on images at 

a higher resolution, which have been reduced in size by 

a specific factor, and optimise it using Dice loss. The 

input for this second level of the pyramid involves up 

sampling the prediction maps from the previous level by 

a factor of 2 and cropping them to align geographically 

with the higher resolution layers. These predictions can 

be combined with the properly cropped image data as a 

secondary channel. Each stage consists of 4 decoder 

stages, 4 encoder stages and one concatenation stage. 

The original 5x5x5 convolution kernel is replaced with 

3x3x3. Dropout was employed except for the first and 

last stage.  A total of 9,332,094 trainable parameters, 

about 9.3 million in each stage. Total of about 18 

million parameters 

 

Conceptually each V-Net block can be represented as 

follows. 

Let V be the V-Net architecture used for multi-organ 

segmentation.  

Let  𝑌 be the segmented images produced by V using 

the training set 𝑋𝑡𝑟𝑎𝑖𝑛 

𝑌 = 𝑉(𝑋𝑡𝑟𝑎𝑖𝑛)                                                                      (2)                                                          

Let Ɵ be the set of parameters of the V-Net model V.  

Let L be the chosen loss function for segmentation, and 

O be the selected optimizer and 𝛩∗be the trained 

parameters. θfinal be the final set of trained and fine tuned 

parameters. 

The training process aims to minimize the loss over the 

training set in each stage:  

 

𝛩∗= argminθ (∑(𝑥𝑖, 𝑦𝑖)𝜖𝑋𝑡𝑟𝑎𝑖𝑛𝐿(𝑉(𝑥𝑖; 𝜃), 𝑦𝑖)              (3) 
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𝛩∗ = 𝑇𝑟𝑎𝑖𝑛(𝑉, 𝑋𝑡𝑟𝑎𝑖𝑛, 𝐿, 𝑂)                                         (4) 

The model is then validated through fine tuning using 

the validation dataset. 

 

Xvalidation and adjusting 𝛩∗ based on the result.  

 

Θfine-tuned = FineTune (𝛩∗,Xvalidation, L,O)              (5) 

Adam, AdamW, RMSprop optimizer were used and the 

initial learning rate was set to 1e-4 and batch size was 

set to 3. 

Hardware 

The hardware configuration used for training the model 

is given below. 

Table1: Hardware configuration 

Graphic Card INNO3D GRAPHIC CARD RTX3060 

12GB DDR6 

RAM CORSIER RAM 64 GB DDR-5 5200MHZ 

CPU INTEL CORE-I9 12900K 

Mother Board GIGABYTE Z790 UD AC MOTHER 

BOARD 

Hard Disk WD 2 TB SATA HDD, WD 250 GB 

SATA HDD 

 

Performance Assessment Measure 

Loss function used for evaluation of performance is 

Dice coefficient or F1 score. Mean dice loss was 

calculated and compared for various epoch and 

optimizers. 

Dice Score =   
2 ∗ |A ∩ B|

2 ∗ |A ∩ B| + |
B
A

| + |
A
B

|

=
2 ∗ |A ∩ B|

|A| + |B|
            (6) 

 

 

Figure 6: Dice Loss  

RESULT  

The model was tested for various epochs for Adam 

optimizer and the average dice loss was compared. The 

model performance was also compared for different 

optimizers at 1000 epochs. 

1) With optimizer = Adam, learning rate = 1e-4, 

Activation function= ReLu. Dataset = synapse, No of 

epochs = 50 

 

  

 
Figure 7: Avg. dice loss for five test patient after 50 epochs 

& Adam optimizer 

2) With optimizer = Adam, learning rate = 1e-4, 

Activation function= ReLu. Dataset = synapse, No of 

epochs = 100 

 
Figure 8: Avg. dice loss for five test patient after 100 

epochs & Adam optimizer 

3) With optimizer = Adam, learning rate = 1e-4, Activation 

function= ReLu. Dataset = synapse, No of epochs = 500 

 

 

Figure 9: Avg. dice loss for five test patient after 500 

epochs& Adam optimizer 

4) With optimizer = Adam, learning rate = 1e-4, 

Activation function= ReLu. Dataset = synapse, No of 

epochs = 1000 
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 Figure 10: Avg. dice loss for five test patient after 1000 

epochs & Adam optimizer 

5) With optimizer = Adam, learning rate = 1e-4, 

Activation function= ReLu. Dataset = synapse, No of 

epochs = 2000 

 Figure 11: Avg. dice loss for five test patient after 2000 

epochs & Adam optimizer 

6) With optimizer = Adam, learning rate = 1e-4, 

Activation function= ReLu. Dataset = synapse, No of 

epochs = 3000 

 Figure 12: Avg. dice loss for five test patient after 3000 

epochs & Adam optimizer 

7) With optimizer = AdamW, learning rate = 1e-4, 

Activation function= ReLu. Dataset = synapse, No of 

epochs = 1000 

 Figure 13: Avg. dice loss for five test patient after 1000 

epochs & AdamW optimizer 

8) With optimizer = RMSprop, learning rate = 1e-4, 

Activation function= ReLu. Dataset = synapse, No of 

epochs = 1000 

Figure 14: Avg. dice loss for five test patient after 1000 

epochs & RMSprop optimizer 

The standard HU values for various organs are given in 

the following table. 

Table 2: Standard HU values for some of the 

abdominal organs 

Organ Standard HU values Reference 

Liver 60 +/- 6 31. 

Kidney +20 to +45 31. 

Gall Bladder 0  to 20 32. 

Pancreas 30 to 50 33. 

Spleen 40 to 60 34. 

 

CONCLUSION 

Referring  table 2 and the outputs of the model w.r.t. 

different optimizer and for different epochs the 

following points were observed. 

• For the same number of epochs, for different 

optimizers, the model was able to segment 

different abdominal organs. 

• For the Adam optimizer as the number of epochs 

increases, different abdominal organs were 

segmented. The organs having HU range on the 

lower side were segmented for less number of 

epochs. As the number of epochs increased, the 

organs with higher HU range were segmented by 

the model. 

• The performance of AdamW optimizer was worst 

as compared to Adam and RMSprop. 

0
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• The model conveges with increses in epochs 

resulting in decrease of mean dice loss however 

the convergence requires a large number of epochs 

and time. 

• The training of segmentation models is a memory 

hungry process, requiring a huge amount of 

memory and more amount of stagnant time for 

training. 
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