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Abstract: The identification and classification of skin cancer lesions are crucial due to their profound health implications. The paper 

presents web application based a deep learning model to address the skin cancer detection. This proposed system aimed to fine-tune well-

established models for skin lesion classification. Ensemble learning techniques were applied by combining thoroughly fine-tuned 

Inception V3 and DenseNet201 models to improve classification accuracy. In this web based model development, the front end model is 

developed to provide user interface for skin cancer classification using Python, JavaScript, HTML, CSS and Flask framework. The 

proposed scheme is compared to other standard models such as VGG-16, Inception V3, Inception ResNet V2, and DenseNet201. In the 

experimental part, the proposed scheme achieves higher accuracy rate of 88.5% than compared to Baseline CNN model with 75.64 %, 

VGG-16 with 79.65 %, Inception ResNet V2 with 82.50 %, with HAM10000 dataset, showcasing the efficacy of our methodology in 

precisely categorizing skin cancer lesions. 
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1. Introduction 

Skin cancer presents a significant public health concern, 

impacting individuals globally. Its prevalence has been 

consistently rising, warranting significant attention in 

public health discussions.[1] Basal cell carcinoma, 

melanoma, and squamous cell carcinoma emerge as the 

most frequently diagnosed forms of skin cancer, each 

posing distinct challenges in terms of diagnosis and 

treatment. 

Prompt identification and precise categorization of skin 

lesions play a pivotal role in facilitating timely 

interventions and improving patient prognosis. 

Traditionally, dermatologists have relied on visual 

inspection and histopathological analysis for diagnosing 

skin cancer. Yet, this method may involve subjectivity, 

consume considerable time, and be susceptible to errors, 

emphasizing the necessity for objective and efficient 

diagnostic methods. 

Recent progress in deep learning and computer vision has 

ushered in a new era of automated systems, enabling the 

precise and swift analysis of medical images, such as skin 

lesions, with remarkable accuracy. Convolutional neural 

networks (CNNs) have developed as particularly effective 

tools for image classification tasks, leveraging their ability 

to extract intricate patterns and structures from images 

through hierarchical feature analysis. Our proposed work 

leverage deep learning techniques for the accurate 

classification of skin lesions using the HAM10000 dataset 

comprises an extensive assortment of dermatoscopic 

images encompassing diverse pigmented skin lesions. One 

of the key challenges in analysing dermatoscopic images is 

the presence of artifacts such as hair, which can obscure 

the underlying lesion and hinder accurate classification. 

Our study implement a pre-processing step to address this 

challenge to remove hair from the images. By mitigating 

the impact of artifacts such as hair, our pre-processing 

approach aims to improve the quality of input data for 

subsequent classification tasks. Our proposed work 

hypothesize that cleaner and more refined images will 

enable our deep-learning models to extract relevant 

features more accurately. 

In this context, our research endeavours to leverage the 

capabilities of deep learning and Convolutional neural 

networks (CNNs), to solve the challenges associated with 

skin cancer detection and classification. By fine-tuning 

pre-trained CNN models, such as VGG-16, Inception V3, 

Inception ResNet V2, and DenseNet201, Our proposed 

work aim to develop a reliable model for automatic 

identification and categorizing skin lesions. 

Furthermore, our study explore the potential of ensemble 

learning techniques to enhance the performance of our 

classification system by combining multiple models and 

leveraging their complementary strengths. Additionally, 

our study develop a user-friendly web application to 
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democratize access to skin cancer classification, providing 

a seamless interface for healthcare professionals and 

individuals alike. 

2. Literature Survey 

Doaa Khalid Abdulridha Al-Saedi and Serkan Savaş [2] 

Compared skin cancer classification using DenseNet, 

Xception, InceptionResNetV2, ResNet50, and MobileNet 

on dermatoscopic image datasets, notably the ISIC dataset. 

Augmenting photos addressed dataset imbalances, 

resulting in 98.35% accuracy with modified DenseNet121. 

Challenges include dataset imbalances and variable model 

performance based on dataset size. Despite hurdles, deep 

transfer learning networks hold promise in skin cancer 

classification, prompting ongoing research to address 

dataset imbalances and optimize model performance. 

Karar Ali et al [3] done skin cancer classification utilizing 

EfficientNets surpassed dermatologists visually. Their 

approach involved a pre-processing pipeline, transfer 

learning, and fine-tuning the Pre-trained models. The 

methods encompassed pre-processing image pipelines for 

hair removal, dataset augmentation, resizing, transfer 

learning, and fine-tuning CNNs. EfficientNet B4 achieved 

an 87% F1 Score and 87.91% Top-1 Accuracy, with 

intermediate complexity models like B4 and B5 exhibiting 

superior performance. However, limitations included 

varying batch sizes due to computational constraints and 

the absence of universal standards for evaluating 

classification model performance. 

Pallabi Sharma et al [4] the study highlighted centres on 

melanoma detection using advanced deep neural network 

models. It proposes adversarial training to enhance 

accuracy with limited annotated data, achieving notable 

success with ResNet101 at 84.77% accuracy. Methods 

employed included adversarial training, comparative 

analysis of pre-trained models like VGG16, VGG19, 

Densenet121, and Resnet101, and the utilization of GAN 

for automatic classification of melanoma skin cancer. 

Results showcased ResNet101's achievement of 84.77% 

accuracy in melanoma classification, demonstrating the 

efficacy of adversarial training in enhancing accuracy with 

limited data. However, limitations persisted due to the 

restricted availability of annotated skin cancer images for 

training. 

Aqsa Saeed Qureshi and Teemu Roos [5] focuses on skin 

cancer detection through an ensemble-based CNN 

architecture. Their proposed method enhances skin cancer 

detection accuracy, as evidenced by superior F1, AUC-PR, 

and AUC-ROC values compared to seven benchmark 

methods. The study's contributions include demonstrating 

these benefits using a dataset comprising dermoscopic 

images. However, limitations stem from the limited 

availability of qualified dermatologists and variations in 

dataset characteristics affecting method performance. The 

ensemble-based CNN architecture, leveraging pre-trained 

and trained models, showcases promise in advancing skin 

cancer detection methodologies. 

Gourav Ganesh Ganesh and K Somasundaram 

Somasundaram [6] focuses on melanoma skin cancer 

detection via a deep-learning CNN model. They propose 

an enhanced CNN model with reduced computational cost, 

comparing it with pre-trained models like ResNet and 

DenseNet. Superior results were achieved by utilizing the 

HAM10000 dataset. Methods involve customizing the 

CNN model, adjusting activation functions and network 

architecture, and leveraging pre-trained models. Strategies 

for handling data uncertainties, including random sampling 

and noise reduction, were applied. Results show that the 

proposed CNN model outperforms pre-trained 

counterparts, highlighting its efficacy in melanoma 

detection using the HAM10000 dataset. 

Hediye Orhan and Emrehan Yavsan introduces [7] an AI 

model for skin cancer diagnosis using deep learning 

techniques, contributing a model leveraging algorithms 

like AlexNet, MobileNet, ResNet, VGG16, and VGG19. 

Their proposed model developed on a dataset of 8,598 

images, showcased superior performance. Notably, 

MobileNet achieved 84.94% accuracy. Which involve 

integrating the model with a desktop application and 

envisioning developing a mobile application for melanoma 

detection at home. The study's ethical standards were 

adhered to, with no human participants or animals 

involved, underscoring the model's potential for aiding 

melanoma diagnosis. 

H.L. Gururaj et al [8] explores skin cancer detection using 

CNN models with the MNIST: HAM10000 dataset, 

contributing to early detection with models like 

DenseNet169. Data pre-processing techniques such as 

sampling, dull razor, and segmentation were employed for 

practical model training and transfer learning with 

ResNet50. Results showcased the utilization of 

DenseNet169 and ResNet50 for model training, alongside 

data pre-processing. This study underscores the 

significance of early skin cancer detection through the 

application of CNN models, supported by meticulous data 

pre-processing and transfer learning methodologies. 

N. Priyadharshini et al [9] the study has introduced a new 

method for detecting skin cancer, specifically focusing on 

early detection of melanoma to improve treatment 

outcomes. The study proposes a hybrid algorithm, which 

combines the Extreme Learning Machine (ELM) and 

Teaching-Learning-Based Optimization (TLBO) 

algorithm, to accurately detect melanoma with higher 

precision and in less time than other methods. The study 

evaluated the accuracy of the proposed algorithm for 

disease prediction, as well as its computation time. The 
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results demonstrate that the ELM-TLBO algorithm has 

significantly improved melanoma detection accuracy. The 

study explains about the experimental findings and future 

directions for further research. 

Krishna Mridha et al. [10] focus on applying deep learning 

techniques to improve the precision and efficacy of skin 

cancer diagnosis in order to reduce the workload for 

medical personnel. They have addressed concerns of class 

imbalance, developed deep learning models for the 

categorization of skin cancer, and proposed a novel end-to-

end healthcare aid system using a mobile application. The 

work develops an explainable artificial intelligence (XAI)-

based skin lesion categorization system for explanations 

and evaluates the efficacy of deep learning approaches 

with six classifiers. Techniques include experimenting with 

different activation functions and optimising CNNs 

(convolutional neural networks) utilising Adam and 

RMSprop functions. As evidenced by the results, which 

show a low loss accuracy of 0.47% and a high 

classification accuracy of 82%, the suggested approach is 

helpful in diagnosing skin cancer.  

Maya V Karki and Santosh inamdar [11] explores skin 

cancer classification employing deep networks for precise 

diagnosis. The study employs transfer learning with pre-

trained models like VGG16, VGG19, and ResNet50 on 

dermoscopy skin images. Their contributions encompass 

proposing an algorithm utilizing transfer learning with 

these models. The methods involve transfer learning, 

which utilizes knowledge from pre-trained models, and a 

technique called black top-hat filtering for hair removal to 

improve classification accuracy. The study emphasizes the 

significance of hair removal and deep networks in skin 

cancer classification. 

Jinen Daghrir et al [12] study focused on melanoma 

detection through a fusion of deep learning and machine 

learning methodologies. Focusing on CNN utilization for 

effective melanoma lesion detection in skin images, the 

paper contributes by automating melanoma lesion 

detection and exploiting CNN efficiency. The research 

uses techniques like hair removal and lesion segmentation 

to leverage a dataset comprising 640 skin lesion images. 

Methodologies encompass deep learning with CNN, 

hairline detection via 2-D derivatives of Gaussian, and 

lesion segmentation through thresholding and 

morphological dilation. The study concludes that 

combining deep learning and classical ML techniques 

augments melanoma skin cancer detection.  

Mahamudul Hasan et al [13] developed a skin cancer 

detection system utilizing Convolutional Neural Networks 

(CNN) for early diagnosis and treatment. The system 

attained an impressive 89.5% accuracy, evaluated via 

precision, recall, specificity, and F1 score metrics. 

Leveraging techniques such as image processing, feature 

extraction, and CNN classification, the study showcased 

promising results with 89.5% accuracy and 93.7% training 

accuracy. This research shows major contributions 

obtained in skin cancer detection, offering a valuable 

resource for early diagnosis and treatment strategies. 

The study by Titus J. Brinker et al [14] compares the 

classification accuracy of artificial intelligence (AI) and 

dermatologists in identifying melanoma images. AI 

exhibited superior precision in this task compared to 

dermatologists, underscoring its potential in dermatology. 

Leveraging Convolutional Neural Networks (CNN), the 

research trained on 4204 biopsy-proven melanoma and 

nevi images, incorporating innovative deep learning 

techniques for refined classification. Results revealed that 

deep neural networks outperformed dermatologists in 

accurately classifying melanoma images. Furthermore, the 

study's integration of novel deep learning techniques 

further enhanced classification, signifying the promising 

role of artificial intelligence in advancing dermatological 

diagnostics. 

Maria Colomba Comes et al [15] developed a deep 

learning algorithm aimed at forecasting disease-free 

survival among individuals diagnosed with cutaneous 

melanoma, aiming to optimize personalized treatments for 

aggressive forms of melanoma. The study addressed the 

critical need for reliable prognostic indicators in melanoma 

patient management by extracting prognostic biomarkers 

from whole-slide histological images. Leveraging deep 

learning on whole-slide images, the researchers extracted 

high-dimensional features for tasks, to get promising 

results. The model successfully predicted 1-year disease-

free survival, achieving a median AUC of 69.5% and an 

accuracy of 72.7%. Validation cohorts confirmed these 

results, underscoring the potential of deep learning to 

enhance prognostic capabilities in melanoma patient care. 

A study on melanoma detection was conducted by Sarah 

Ali Alshawi et al [16] the study aimed to enhance 

classification accuracy by using ensemble classifier 

models. They utilized ensemble transfer learning 

approaches to address identification errors, overfitting, and 

imbalanced classification. The researchers implemented 

classifiers like Adaboost, random forest, voted CNN and 

Boosted SVM, which resulted in high classification 

accuracy. The study demonstrated the effectiveness of 

ensemble classifier models and transfer learning methods 

in mitigating imbalanced classification issues. Evaluation 

of 19 classifiers through standard performance metrics 

emphasized the efficacy of these approaches in improving 

melanoma detection accuracy and handling classification 

challenges. 

3. Proposed Methodology 

3.1. Overall Workflow 
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Fig.1. depicts the overall workflow for the study's 

detection and classification of skin lesions using deep 

learning techniques. The HAM10000 dataset, which 

includes 10,015 different skin lesion photos, is initially 

prepared for analysis. The dataset is subsequently prepared 

for model training using image pre-processing techniques 

such as data augmentation and splitting. The pre-trained 

models, which include VGG-16, Inception V3, Inception 

ResNet V2, and DenseNet201, are then loaded for further 

processing. Model training begins with the creation of an 

initial CNN architecture, followed by fine-tuning the pre-

trained models using techniques like transfer learning to 

improve performance. Evaluation metrics, including 

accuracy, are utilized to assess the effectiveness of the 

trained models.  

Additionally, ensemble learning techniques combine fully 

fine-tuned Inception V3 and DenseNet 201 models to 

enhance classification accuracy further. Finally, a user-

friendly web application is developed using HTML, CSS, 

JavaScript, and Python, providing an intuitive interface for 

skin lesion classification. 

 

Fig. 1.  Proposed Scheme workflow 

3.2. Dataset Description 

The HAM10000 training set comprises 10,015 

dermatoscopic images. [17] These images represent 

pigmented lesions from diverse populations, with Austrian 

patients often referred to a specialized European center for 

early melanoma detection. In contrast, Australian patients 

typically exhibit severe chronic sun damage due to their 

residence in high skin cancer incidence areas. 

Lesions in chronic sun-damaged skin often display 

multiple solar lentigines and ectatic vessels, with the 

occasional presence of small angiomas and seborrheic 

keratosis around the centrally located target lesion. Various 

imaging devices and dermatoscopic techniques, including 

polarized and non-polarized methods, were used to capture 

these images, ensuring a comprehensive representation of 

practical clinical scenarios. 

The dataset covers 95% of lesions seen in clinical practice, 

aiding clinicians in making accurate diagnoses crucial for 

treatment. Lesions vary from benign to potentially 

cancerous, excluding non-pigmented variants. Of the 

10,000 examples, 8,000 are benign, and 2,000 are 

malignant, with a focus on melanocytic nevi, comprising 

around 7,000 instances. Melanoma poses severe health 

risks, while basal cell carcinoma and actinic keratosis can 

progress to cancerous conditions. 

Notably, the dataset is skewed towards melanocytic nevi, 

with nearly 7,000 examples can be seen in Fig. 2. The 

types of skin lesions present in dataset and their description 

can be seen in Table 1, below. 

Table 1. Dataset Description 

Class Number of 

samples 

% of class samples 

Actinic 

Keratoses 

327 3.27% 

Basal Cell 

Carcinoma 

514 5.13% 

Begnign 

keratosis 

1099 10.97% 

Dermatofibro

ma lesions 

115 1.15% 

Melanocytic 

Nevi 

6705 66.95% 

Malignant 

Melanoma 

1113 11.11% 

vascular skin 

lesions 

142 1.42% 
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Fig. 2.  Distribution of skin lesion categories. 

3.3. Image Pre-Processing 

The image pre-processing phase is essential in this study, 

primarily for removing unwanted elements and 

emphasizing the cancerous parts for accurate detection. 

Initially, RGB cancer images from the dataset are 

transformed into grayscale images to maintain crucial 

intensity information necessary for digital analysis [18]. 

Subsequently, a median filter is used to eliminate 

unwanted noise and enhance the overall image quality 

[19]. Detecting hair presence on the skin surface presents a 

notable challenge in cancer detection, necessitating 

additional processing steps. To address this challenge, 

hairy images are identified through a bottom hat filter, 

followed by the application of a specialized hair removal 

technique to effectively eliminate the detected hair portions 

from the images. 

Black Hat-Top filtering, a technique widely used in 

morphology and digital image processing, plays a crucial 

role in extracting intricate components and details from 

images. It encompasses two fundamental transforms: the 

top hat and the black hat. The top-hat transform discerns 

the disparity between the input image and its opening, 

while the black-hat transform distinguishes the difference 

between the closing and the original image. These 

transformations are pivotal in various image-processing 

tasks, including feature extraction, background 

elimination, and image enhancement. 

A novel technique has been introduced to tackle the issue 

of identifying and removing hair from dermoscopic 

images, enhancing the accuracy of classifying skin lesions. 

Unlike current methods, this innovative approach offers a 

simpler and more economical solution. By combining 

image filtering techniques with morphological operations 

applied to each input image, significant improvements can 

be made. The proposed method involves converting colour 

areas, performing basic kernel operations, applying 

morphological closing, and using image inpainting to 

reconstruct skin images that include hair. 

The dataset utilized in this study comprises a diverse array 

of images, thereby complicating the detection process. 

However, by effectively addressing hair and various 

artifacts such as rulers and markers, optical diagnosis is 

streamlined. These procedures are meticulously executed 

through a series of steps. 

3.3.1.  Conversion of RGB Images into grayscale image 

RGB images are converted to grayscale, emphasizing the 

red channel for its crucial information. This process 

condenses the image from three channels to one as shown 

in Fig. 3. 

 

Fig. 3.  Conversion of RGB image into grayscale image. 

3.3.2. Identification of hairy regions 

Hair regions are identified using a black-hat morphological 

operation, emphasizing larger and darker visual features 

compared to the surroundings. This technique employs 

morphological treatments, including gap, closing, erosion, 

and dilation, with a structuring size of 17 * 17 to detect 

hair contours as depicted in Fig. 4. 

 

Fig. 4.  Identification of hairy regions. 

3.3.3. Enhancement of the contoured hairs 

The intensity of hair contour images is enhanced by 

applying binary thresholding to increase the grayscale 

intensity of detected hair areas, as represented in Fig .5. By 

the following Equation (1). 

 

 (   )  {
         (   )             
                                       

  

 (1) 

 

Fig. 5.  Enhancement of the contoured hairs. 
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3.3.4. Detection of dark corners 

Skin lesion images often exhibit dark, rounded edges, 

which may have similar pixel intensities to skin lesions 

themselves, potentially impacting categorization accuracy. 

These dark corners are identified and masked using Otsu 

thresholding. This technique optimizes threshold selection 

by iterating over various thresholds to minimize variance 

between foreground and background classes, as depicted in 

Equation (2). 

 

  
 ( )  ∑  ( )( )   

  

   
( )   ∑  ( )   

  

     
( )

 (2) 

3.3.5.  Image inpainting 

Total variation inpainting is employed to restore images 

obscured by hair. This technique is extended to 3D images, 

encompassing RGB data, to enhance skin lesion visibility 

[20]. By leveraging the original image's hair contours, the 

recovered image is obtained, as illustrated in Fig. 6. Using 

the equation (3). 
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(3) 

 

Fig. 6. Image inpainting. 

3.4. Data Pre-processing 

In the data pre-processing phase, the hair-removed images 

transform into a format suitable for training machine 

learning models. This involves resizing the images to a 

standard size and performing normalization to ensure 

consistent model input. The following steps outline the 

data pre-processing pipeline. 

3.4.1.  Image resizing 

The hair images are resized to fit the input requirements of 

the models. For the baseline Convolutional Neural 

Network (CNN) model, images are resized to 64x64 pixels 

using Lanczos resampling. Similarly, images are resized to 

256x192 pixels for pre-trained models using the same 

resampling technique. 

3.4.1.1 Lanczos resampling 

Lanczos resampling is a high-quality method for resizing 

images while preserving details and reducing artifacts. It is 

based on a convolution kernel defined by the Lanczos 

window function. The resampling function is represented 

by the following equation (4). 

 ( )  {
   (  )    (

  

 
) (    )          

           
 (4) 

Where a is the filter radius parameter, typically set to 3, 

Lanczos resampling applies this function to each pixel in 

the original image to compute its new value in the resized 

image. 

3.4.2. Data normalization 

After resizing, the pixel values of the images are 

normalized to enhance model convergence and stability 

during training. Two different normalization techniques are 

employed based on the type of model being used. 

3.4.2.1 Data normalization for Baseline CNN model 

The mean (μ) and standard deviation (σ) of the pixel values 

across all images are calculated. The pixel values are then 

normalized using the following equation (5) 

            
   

 
                                                           ( ) 

3.4.2.2 Data normalization for Pre-trained models 

The pixel values are first converted to the float32 data type 

to ensure compatibility with the model architecture. 

Subsequently, the pixel values are scaled to the range [0, 1] 

using the following equation (6). 

        
 

   
    (6) 

3.5. Data augmentation 

In medical image analysis, where annotated datasets are 

often scarce and acquiring new information can be 

resource-intensive, data augmentation provides a powerful 

method to expand the available dataset and improve the 

performance of AI models. By generating diverse 

variations of existing medical images through 

transformations such as rotation, scaling, flipping, 

cropping, and more, data augmentation enables models to 

learn from a broader and more representative range of 

examples. Table 2 presents an overview of the data 

augmentation techniques utilized in this study, their 

descriptions and the corresponding parameters applied to 

train the model. This table facilitates an understanding of 

the specific image alterations applied and the impact of 

each technique on the augmentation process. 

Table 2. Data augmentation applied on images 

Technique Description Value Action on 

the Image 
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Rotation Rotates the 

image by a 

specified 

angle. 

60 Counter 

clockwise 

rotation 

by the 

given 

angle. 

Width Shift Shifts the 

width of the 

image. 

0.2 Horizontal 

shift by a 

fraction of 

the image 

width. 

Height Shift Shifts the 

height of the 

image. 

0.2 Vertical 

shift by a 

fraction of 

the image 

height. 

Shear Applies shear 

transformation 

to the image. 

0.2 Shearing 

along one 

axis while 

keeping 

the other 

axis fixed. 

Zoom Zooms the 

image in or 

out. 

0.2 Zoom in 

or out of 

the image 

by the 

specified 

factor. 

Fill Mode Specifies how 

to fill the 

empty space 

created by the 

transformation. 

Nearest Filling 

empty 

space with 

the nearest 

pixel 

value. 

 

3.6. Splitting of the data 

Data splitting is a standard general method in most 

machine learning models; it helps to split a dataset into 

training and testing sets. Here, the images and labels are 

divided into training and testing sets, with test size=0.1, 

meaning 10% of the data is used for testing. Table 3 shows 

the shapes and descriptions of the arrays resulting from the 

splitting of the images as shown in Fig. 7. 

Table 3. Data augmentation applied on images 

Splitting of 

Data 

Shape Description 

Xtrain (1−t) 

×n 

Input features for 

training set from 

dataset 

Xtest t×n Input features for 

testing set from 

dataset 

ytrain (1−t) 

×1 

Labels for training set 

from dataset 

ytest t×1 Labels for testing set 

from dataset 

 

Where  

Xtrain∈R(1−t)×n (Training set features) 

Xtest∈Rt×n (Testing set features) 

ytrain∈R(1−t)×1 (Training set labels) 

ytest ∈Rt×1 (Testing set labels) 

 

 

Fig. 7. Images given for training the models. 

3.7. Model building 

Our study uses the Keras library for model construction, 

leveraging its robust functionalities for deep learning tasks. 

From Keras, Proposed study import essential modules such 

as Dense, GlobalAveragePooling2D, and Dropout, 

complementing our model architecture. Additionally, we 

explore and assess the performance of several pre-trained 

models, including VGG16, DenseNet 201, Inception V3, 

and Inception ResNet V2. These pre-trained models have 

undergone extensive training on huge datasets like 

ImageNet, imparting them with valuable feature extraction 

capabilities. We fine-tune these models using our dataset 

for our skin lesion detection task, aiming to achieve 

optimal accuracy. The weights of these pre-trained models 

are imported from ImageNet, ensuring the transfer of 

learned representations for effective feature extraction. 
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Widely employed across various domains, including image 

classification, object detection, and segmentation, these 

pre-trained models offer versatility and robust 

performance, making them suitable candidates for our 

research. 

3.7.1.  Baseline Model 

Before fine-tuning deep convolutional neural networks 

(DCNNs), a small CNN was constructed as shown in Fig. 

8. The CNN architecture is based on heuristics, adhering to 

conventions observed in well-known DCNNs. The 

architecture incorporates three convolutional layers, with 

each followed by max-pooling layers aimed at decreasing 

the spatial activation size. The initial convolutional layer 

utilizes 16 kernels of size three, employing padding to 

preserve the image size. This is followed by a max-pooling 

layer with a 2x2 window, which shrinks the feature map by 

a factor of two. In the second convolutional layer, 32 

kernels of size 3 are used, with padding to preserve spatial 

dimensions. The feature map size is then reduced further 

by applying another max-pooling layer. The third 

convolutional layer consists of 64 kernels of size 3, with 

padding to preserve spatial dimensions, followed by a final 

max-pooling layer. Data augmentation is employed during 

model training to introduce variation and ensure model 

generalization. The training begins with the Adam 

optimizer and a learning rate of 0.01. To optimise training, 

the learning rate lowers if the validation accuracy is 

constant for three epochs in a row. Each time this happens, 

the learning rate is cut in half. The training method takes 

35 epochs in total. 

The output Y (7) of a convolutional layer is calculated by 

convolving the input X with a set of filters W, followed by 

adding a bias term b, and applying an activation function f: 

   ((   )   )    (7) 

Max pooling down samples the input tensor by selecting 

the maximum value from each region of the input using 

equation (8). 

           (        )    (8) 

 

Fig. 8. Baseline CNN architecture. 

3.7.2.  VGG-16 

Despite the availability of newer and more sophisticated 

DCNN models, VGG16 is chosen for fine-tuning due to its 

simplicity and ease of implementation. The VGG16 

architecture shown Fig. 9. Featuring modified 

convolutional blocks with four convolutional layers in the 

third, fourth, and fifth blocks, achieves impressive 

accuracies on ImageNet: 90.1% for top-5 classifications 

and 71.3% for top-1 classifications. 

For our skin lesion classification task, the top fully 

connected layers of VGG16 are replaced with custom 

layers tailored to the specific task. These include a global 

max-pooling layer, a fully connected layer with 512 units, 

a dropout layer with a rate of 0.5, and a softmax activation 

layer for classifying seven types of skin lesions. 

To ensure effective fine-tuning, the initial training phase 

involves freezing all layers of VGG16 for feature 

extraction, followed by unfreezing the final convolutional 

block for fine-tuning. Training occurs over 20 epochs after 

three epochs of feature extraction, utilizing a learning rate 

of 0.001 and the Adam optimizer. During training, similar 

to the baseline model, strategies such as data augmentation 

and learning rate decay are employed. The VGG16 model 

is fine-tuned for a total of 30 epochs to better suit the skin 

lesion classification task. 

 

Fig. 9. VGG-16 architecture. 

3.7.3.  Inception V3 

Inception V3, renowned for its outstanding performance on 

ImageNet with accuracies of 93.7% for top-5 

classifications and 77.9% for top-1 classifications, features 

Inception modules that enable decision-making at each 

layer regarding the convolution type to apply. These 

modules encompass various convolution sizes, allowing 

the model to dynamically select the most suitable option. 

Additionally, Inception architecture efficiently facilitates 

the extraction of local and high-level features. 

In the experimentation with Inception V3, two approaches 

were tested: fine-tuning from the last two inception blocks 

and fine-tuning the entire pre-trained model. This was 

motivated by considerations of Keras's Batch 

Normalization implementation. Keras's Batch 

Normalization implementation utilizes mini-batch statistics 

during training and previously learned statistics during 

inference, potentially leading to mismatched scaling 

between training and inference data if only the top layers 

are fine-tuned. 

To tackle this issue, two fine-tuning strategies were 

investigated: fine-tuning all layers of Inception V3, and 
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fine-tuning the top two inception blocks while setting all 

Batch Normalization layers to trainable. Both approaches 

were executed for 35 and 20 epochs, respectively. 

Inception-ResNet, another top performer on ImageNet, 

incorporates residual connections essential for training 

deep convolutional models. Fine-tuning strategies similar 

to those employed for Inception V3 were applied to 

Inception-ResNet V2, with the top layers fine-tuned for 30 

epochs. 

Batch normalization normalizes the activations of a layer 

by subtracting the batch mean μ and dividing by the batch 

standard deviation σ followed by scaling by learned 

parameters ϒ and β (9): 

    
   

√    
 

           ( ) 

3.7.4. DenseNet 

DenseNet, a novel DCNN architecture, has emerged as a 

top performer on ImageNet with impressive accuracies of 

0.936 for top-1 and 0.773 for top-5 classifications. 

Compared to Inception V3, DenseNet achieves competitive 

performance with fewer parameters, approximately 20 

million compared to Inception V3's 23 million. DenseNet 

201, a variant of DenseNet, comprises four dense blocks, 

each characterized by a unique architecture. 

Within a dense block depicted as Fig. 10, each layer 

receives inputs from all preceding layers and passes its 

feature maps to all subsequent layers, promoting feature 

reuse and information flow throughout the network. Unlike 

ResNet, which sums features, DenseNet concatenates 

features, explicitly distinguishing between added and 

preserved information. Each layer within a dense block 

carries out a composite function that includes three main 

steps: batch normalization, ReLU activation, and a 3x3 

convolution operation. 

Two experiments were conducted on DenseNet 201: fine-

tuning the last dense block, which consists of 32 layers, 

and fine-tuning the entire network. The same training 

strategy used in previous sections was applied to both 

approaches. This involves fine-tuning the top layers of 

DenseNet 201 where it spans 27 epochs while fine-tuning 

the entire DenseNet 201 model lasts for 20 epochs. During 

fine-tuning, weights are initialized from the original pre-

trained models on ImageNet for both DenseNet 201 and 

Inception V3. 

 

Fig. 10. Five Layer DenseNet Block. 

3.7.5. Ensemble model 

Constructed an ensemble comprising thoroughly fine-tuned 

Inception V3 and DenseNet 201 models using ensemble 

learning techniques. Leveraging the strengths of both 

models, the ensemble aimed to enhance classification 

performance. 

3.7.6. Web Application 

The major and final step left in the completion of this study 

is to utilize the Ensemble model and to integrate with an 

application which can be used by the society easily. An 

interactive, simple and user-friendly Web UI is created 

which can be seen as Fig.11 using HTML, CSS, JavaScript 

and Flask. The saved model is then integrated with the 

Flask framework. Each time the user uploads an image 

from the frontend UI, the CNN based classification model 

is called which extracts the lesion from the segmented 

image, parses through it and classifies it as Melanoma, 

Nevus, and Seborrheic Keratosis etc. The classification is 

then displayed along with the accuracy of prediction. 

Based on the convenience of the user, the app would also 

request for the user location and then suggest nearby 

hospitals and clinics which offer suitable treatment. 

 

Fig. 11. Web application interface. 

4. Experimental Results 

In the experimental phase, VGG-16, Inception V3, 

Inception ResNet V2, and DenseNet 201 were subjected to 

fine-tuning. Initially, the top layers were frozen while the 

remaining layers were trained to adapt to the skin lesion 

classification task. By leveraging pre-trained 
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representations for lower-level features and enabling the 

adaptation of higher-level representations, the models 

underwent fine-tuning using a pre-processed dataset as 

depicted in Fig. 12. 

4.1.  Performance Metrics 

Assessing the model is crucial to gauge its effectiveness 

and reliability in classifying skin cancer lesions. Accuracy 

serves as the primary metric to measure the model's 

performance. 

Accuracy, as a metric, quantifies the overall correctness of 

the model by determining the ratio of correctly classified 

instances to the total number of instances. 

        

 
                                         

                         
     

In Table 4, the results of the experimentation process are 

detailed, showcasing the validation accuracy, testing 

accuracy, and test loss for each model. 

 

Fig. 12. Sample images for skin lesion classification. 

 

Table 4. Fine tuning top layers of models 

Model Validation 

Accuracy 

Testing 

Accuracy 

Test 

Loss 

Depth 

Baseline 

Model 

76.53% 75.64% 0.69 11 

layers 

VGG 16 79.83% 79.65% 0.71 23 

layers 

Inception 

V3 

81.15% 82.33% 0.81 315 

layers 

Inception 83.03% 82.50% 0.82 784 

ResNet V2 layers 

DenseNet 

201 

84.47% 85.02% 0.73 711 

layers 

 

5. Results 

In the pursuit of accurate skin cancer detection, our 

research delved into addressing the challenging aspect of 

hair presence on the skin surface, which significantly 

impacts the reliability of detection algorithms. By 

implementing additional pre-processing steps, we aimed to 

mitigate this challenge and enhance the effectiveness of 

our detection model. Furthermore, leveraging the power of 

fine-tuning pre trained models, including VGG16, 

Inception V3, Inception ResNet V2, and DenseNet 201, 

enabled us to adapt these architectures to the intricacies of 

skin lesion classification. Through ensemble learning 

techniques, integrated the strengths of these models to 

achieve superior accuracies, as evidenced by the results 

showcased in Table 5. Our approach not only demonstrates 

the efficacy of our methodology but also underscores the 

importance of comprehensive pre-processing and model 

optimization strategies in advancing skin cancer detection 

technology. 

Table 5. Fine tuning top all layers of models 

Model Validation 

Accuracy 

Testing 

Accuracy 

Test 

Loss 

Inception V3 86.91% 86.83% 0.62 

DenseNet 201  86.70% 87.72% 0.56 

Ensemble Model 88.50% 88.52% 0.41 

 

Table 6. Comparison between the proposed model and the 

states of arts 

Study Training 

algorithms  

Dataset Accuracy 

 

A.A Nugroho, 

I. Slamet et al. 

[21] 

CNN HAM 

10000 

78% 

Khan Adil & 

Iskandar et al. 

[19] 

Alex Net ISIC 

Dataset 

84% 

Hediya 

ORHAN, 

Emrehan 

YASAN. 

[7] 

mobile Net Kaggle 

Dataset 

(8598) 

 

84.94% 

K.Ali, Z.A 

shaikh et al. 

[3] 

EfficentNet 

B4 

HAM 

10000 

87.9% 
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Proposed 

model 

InceptionV3 

and  

DenseNet 201 

(Ensemble 

Model) 

HAM 

10000 

88.5% 

 

By integrating meticulous image pre-processing, precise 

fine-tuning of pre-trained models, and strategic ensemble 

learning, our proposed methodology achieved an 

impressive accuracy of 88.5% than other other’s work as 

shown in Table 6. This holistic approach optimized data 

quality, model architectures, and training strategies, 

resulting in superior performance in skin lesion 

classification. 

  

 

Fig. 13. Images used for proposed model training. 

In our proposed study, pre-processed images were utilized 

for model training, contrasting with the approach of [18] 

and [7], who relied on the Ham10000 dataset for their 

research. This decision allowed us to optimize the quality 

and consistency of our training data, ensuring enhanced 

model performance and robustness as shown in Fig.14, 

Fig.15, Fig.16, and Fig17. 

 

Fig. 14. Inception V3 Training and Validation accuracy 

graph. 

 

Fig. 15. Inception V3 Training and Validation loss graph. 

 

Fig. 16. DenseNet201 Training and Validation accuracy 

graph. 

 

Fig. 17. DenseNet201 Training and Validation loss graph. 

 

Fig. 18. Web application interface to detect skin lesion. 

In the "Detect Cancer" section of our web application, 

shown in Fig. 18. Users can actively engage in the process 

of skin cancer detection by uploading photos of skin 

lesions. Leveraging the power of Flask, a Python micro-

framework, we have seamlessly integrated our ensemble 

model into the backend, enabling real-time prediction of 

the lesion type based on the uploaded image. Through 
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sophisticated machine learning algorithms and ensemble 

learning techniques, our model accurately classifies skin 

lesions as depicted in Fig. 19, Fig. 20, Fig. 21, Fig. 22, Fig. 

23, Fig. 24, and Fig. 25. Providing users with valuable 

insights into potential health risks. The user-friendly 

interface ensures a seamless experience, guiding users 

through the process step by step and presenting the 

prediction results in a clear and understandable format. By 

democratizing access to advanced diagnostic tools, our 

web application empowers individuals to take proactive 

steps towards early detection and treatment of skin cancer, 

ultimately contributing to improved health outcomes and 

well-being. 

 

Fig. 19. Actinic keratoses detection. 

 

 

Fig. 20. Basal cell carcinoma detection. 

 

Fig. 21. Benign keratosis detection. 

 

Fig. 22. Dermatofibroma detection. 

 

Fig. 23. Melanocytic nevi detection. 

 

Fig. 24. Melanoma detection. 

 

 

Fig. 25. Vascular lesion detection. 

 

Fig. 26. Hospitals recommendation using user location. 

In the "Seek Help" section of our web application, shown 

in Fig.26. Users can effortlessly locate nearby hospitals 

and medical facilities by simply inputting their location. 

Utilizing the capabilities of JavaScript, we've integrated 

dynamic functionality that retrieves and displays relevant 

hospital information based on the user's provided location. 

This feature enhances accessibility to essential healthcare 

services, facilitating prompt medical attention for 

individuals concerned about skin cancer or seeking 
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professional advice. By harnessing the power of 

technology to bridge the gap between users and healthcare 

resources, our web application empowers individuals to 

make informed decisions about their health and well-being. 

6. Conclusion and Future Work 

Fine-tuning all layers of the models proved to be a superior 

strategy compared to fine-tuning only the top layers, 

yielding better outcomes while requiring less time. 

Surprisingly, fine-tuning all layers was accomplished in a 

shorter duration than fine-tuning just the top layers, owing 

to the shorter epoch duration of 20 epochs compared to 30 

epochs for the latter. This observation highlights the 

efficiency and effectiveness of fine-tuning the entire 

model, enhancing final performance and expediting the 

convergence process. 

Future work addresses persistent overfitting issues, with 

current experiments showing 10-13% overfitting on 

training data despite attempted mitigation strategies. 

Further research into advanced methods for overfitting 

reduction is imperative to enhance model generalization 

and overall performance. Additionally, expanding the 

project to develop an end-to-end application for skin lesion 

detection and management is recommended. This 

application could include features for storing patient 

details, enabling comprehensive patient management and 

longitudinal monitoring of skin conditions. Such efforts 

aim to improve healthcare outcomes by facilitating early 

detection, accurate diagnosis, and personalized treatment 

planning for skin lesions. 
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