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Abstract: This paper presents the transformative impact of Smart Agriculture that focusing on advancements in soil properties 

monitoring, intelligent production strategies among climate change challenges and precision crop recommendations. Investigating the 

integration of Internet of Things (IoT) and Artificial Intelligence (AI) technologies, the study investigates into real-time data analytics for 

informed decision-making that emphasizing water requirements optimization. The review highlights the current state of precision 

agriculture and highlights its potential in addressing environmental concerns. Additionally, the paper discusses future prospects that 

predicting enhanced sustainability, resource efficiency and productivity through continued technological innovations in the field of 

precision agriculture. 
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1. Introduction 

Technological progress has brought about significant 

transformations across various sectors with agriculture 

being no exception. The agricultural domain is typically 

characterized by risk aversion which is undergoing a 

paradigm shift, striving to enhance crop yield and quality 

through improved crop varieties [1]. Traditional methods 

such as mutagenesis, gene editing, breeding and marker-

assisted breeding have long been employed to diversify 

and enhance the genetic pool of crops. However, the 

agricultural sector faces challenges stemming from climate 

change [2] necessitating adaptations and advancements in 

sustainable resource utilization to mitigate environmental 

degradation. 

The agricultural landscape confronts threats to efficiency 

from population pressure that evolving climates and losses 

in crops due to mismanagement [3]. Projections by the 

United Nations estimate a global population of 9.8 billion 

by 2050 with potential growth to 11.2 billion in the next 

70–80 years [4]. To meet the escalating food demand and 

ensure security, a 50% increase in food production is 

imperative. 

Smart farming is also known as smart agriculture, emerges 

as a solution to address these challenges by employing 

sustainable practices while minimizing adverse effects. 

Embraced globally, smart agriculture focuses on resource 

optimization for sustainable outputs, aiming to reduce 

associated costs. This approach integrates technologies 

such as sensors, IoT, AI and robotics to augment 

traditional agriculture that transforming it into a smart and 

sustainable system [5]. 

2. Smart Farming Based Precise Agriculture  

The IoT is a convergence of technologies that holds 

promise in providing modern solutions to agricultural 

issues [6]. Data mining technologies further dissect vast 

datasets—whether agronomic, genomic, or meteorological 

to facilitate informed decision-making that enhancing 

precision and efficiency in farming activities. Soil and 

climatic data are collected through sensors in smart 

agriculture, undergoing automated processing via modern 

methods like spike and slab regression analysis, machine 

learning (ML) [7] and time-series analysis [8]. This 

processed data serves as early warnings for farmers 

regarding impending climatic events, potential pest 

infestations, and the spread of diseases. Equipped with 

these alerts, IoT based agriculture systems that integrated 

with ecological sensing and assisted that empower farmers 

to implement an irrigation, fertilization, and pest control, 

through digital tools and smart applications [9]. 

The IoT not only aids farmers and researchers in crop 

production but also supports decision-making by providing 

comprehensive information on soil, water, pesticides, 

fertilizers, and manures [10]. Addressing global concerns 

like climate change and global warming, the IoT 

contributes to sustainability by concentrating on resource 

management and informed decision-making [11]. 

Moreover, it facilitates effective post-harvest management 

and consumer interactions. 

In precision farming, the IoT is instrumental in utilizing 

technologies such as drones, remote sensing, livestock 

management, smart greenhouses, imaging and climate 

monitoring (figure 1). Data mining modelling are actively 

applied to crops, environmental conditions [12] and their 
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management. A few advanced algorithms are furnished 

with more robust data for enhanced decision-making in 

areas such as fertilizer application, disease monitoring, 

yield predictions, soil moisture detection, and irrigation 

scheduling [13]. 

Recognizing the significance of these smart techniques, 

this study aims to summarize their latest applications 

including estimation of yield, fertilizer and irrigation 

management, disease

  

Figure 1: smart farming components and its applications 

Monitoring and crop production that are especially under 

changing climatic conditions [14]. 

3. Properties of Soil 

- Nitrogen (N): A vital nutrient for plant growth, nitrogen 

is part of the essential "Big 3 (NPK)" supplements. Plants 

require nitrogen the most among nutrients, playing a 

crucial role in protein development [15] which is essential 

for overall plant growth. The soil's nitrogen content is 

crucial in determining suitable crops for cultivation, as 

different crops have varying nitrogen requirements. 

- Phosphorus (P):  Next "Big 3 (NPK)" nutrients named as 

phosphorus is essential for plants' energy storage, 

photosynthesis [16] and overall growth and development. 

Like nitrogen, it needs of crops vary that making soil 

phosphorus values important considerations for successful 

crop cultivation. 

- Potassium (K): As the third of the "Big 3 (NPK)" 

nutrients, potassium contributes to plant immunity and 

increased yield. It also aids in strengthening root systems, 

particularly in challenging conditions. Similar to nitrogen 

and phosphorus [17], different crops require varying 

amounts of potassium for optimal growth. 

- pH: Soil pH is a most influencing attributes that affecting 

growth of the plant. pH impacts the microorganism’s 

behaviour [18] as well as accessibility and solubility of 

nutrients. Most crops thrive when the soil pH is around 

seven, emphasizing the importance of maintaining suitable 

pH levels. 

- Temperature: Among the primary variables in 

agriculture, temperature fluctuations can lead to crop 

failure, fertilizer inefficiency, and various other issues 

[19]. Optimal temperature conditions are crucial for 

achieving both quantitative and qualitative improvements 

in crop yield. 

- Humidity: Indirectly linked to air temperature, humidity 

significantly impacts crop production. Excessive humidity 

can result in root diseases that improved pesticide costs 

and minimised yield [20]. Conversely, minimum humidity 

leads to sluggish growth and increased leaf drop in plants. 
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Figure 2: Climatic change adaptation Technologies 

- Rainfall: It is profoundly influencing crop production 

which is an essential environmental factor [21]. 

Insufficient rainfall can deprive crops, necessitating 

increased artificial watering and escalating production 

costs. Conversely, excessive rainfall may lead to crop 

inundation or reduction of pesticides and fertilizers that 

rendering crops susceptible to diseases. 

- Crop: The dataset provides specific data about crops such 

as rice, concerning the aforementioned seven attributes 

[22]. Given that most crops have acceptance ranges for 

each attribute, the dataset includes multiple entries per crop 

to account for these variations. 

4. Smart Crop Production during Climate Change 

The global agricultural landscape is grappling with the 

severe repercussions of climate change [23]. Escalating 

temperatures, erratic day-night temperature fluctuations, 

and unpredictable rainfall patterns have intensified the 

frequency and severity of droughts and flash floods [24]. 

This climatic shift has also contributed to a surge in the 

incidence of diseases [25]. The efficiency of production 

systems has been compromised, necessitating a strategic 

response to climate change impacts, thus emphasizing the 

crucial need for climate-smart adaptation measures. These 

adaptive strategies are essential to withstand agricultural 

efficiency and ensure accessibility through the year [26]. 

Adaptation measures must span various factors of crop 

production namely dynamics of soil–water, nutrient and 

fertilizer management. These factors enhances in crop 

evaluations, utilization of organic adjustments in soil and 

advancements in fisheries, livestock, fowl and farm 

mechanization as illustrated in Figure 2. As temperature 

emerges as a critical determinant in crop production, the 

adoption of smart technologies becomes increasingly 

imperative to mitigate the challenges posed by a changing 

climate [27]. 

5. Causes of Climatic Change 

The fluctuations in temperature, attributed to both natural 

phenomena and human activities, serve as a catalyst for the 

concentration of greenhouse gases (GHGs) on Earth [28]. 

Anthropogenic activities particularly the emission of 

GHGs like CO2, nitrous oxide, methane alongside ozone 

depletion contributed to environmental challenges [29]. 

Elevated CO2 levels in the atmosphere impacts soil 

bacterial activities that influencing water content and 

triggering nitrous oxide and methane emissions from 

wetlands and upland soil respectively. This phenomenon 

counters the predicted 16.6% justification effect of climate 

change projected by growing global carbon sinks [30]. 

The agriculture sector plays a substantial role in 

contributing to total emissions, primarily through the 

release of methane and nitrous oxide. Predictions indicate a 

potential increase in global non-agricultural greenhouse 

gas emissions until 2055 if dietary preferences and food 

energy consumption remain constant at 1995 levels. Shifts 

towards high-value foods like meat and dairy are 

anticipated to escalate emissions even further [31]. 

Mitigation strategies involving technological interventions 

or reduced meat consumption, or a combination of both, 

can curtail emissions [32]. Notably, the livestock is an 
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emitter of greenhouse gases that accounting for 8–10.8% 

based on IPCC and potentially up to 18% based on 

lifecycle analysis [33]. Also, livestock sector included an 

enteric fermentation, liming, fossil fuels, emissions of 

N2O, fertilizer production and organic farming. The 

nitrogenous chemical fertilizers used to emissions of 

greenhouse gas [34]. 

Effective management of crop production offers avenues 

for emission reduction. By optimizing nitrogen fertilizer 

use, emissions can be lowered by 38%. Improved crop 

management not only reduces input energy consumption 

by 11% but also increases yields by 33%, resulting in a 

20% reduction in greenhouse gas emissions [44]. 

Malhi et al [36] provide a climatic change in agriculture 

survey that exploring its causes, projections, and impacts 

on agricultural physiology, metabolic activities of plants, 

productivity, mitigation strategies and pest infestation. 

King et al [37] utilized a growing degree day to assess the 

global northward shift under 21st-century changes in 

rainfall and potential evapotranspiration. Kukal et al [38] 

evaluated on sorghum, maize and soybean yields that 

emphasizing the need for resilient agricultural practices. 

Aryal et al [39] offered an impacts of climate on crop 

production and available adaptation options that 

highlighting the necessity for strengthened institutional 

setups. Navarro-Racines et al [40] present a global climate 

database developed using the delta method, addressing 

model biases. Sun et al [41] analysed a no-till-induced 

changes in soil carbon and crop yield that highlighting 

benefits in arid regions. Skendžić et al [42] explore the 

effects of rising temperatures and CO2 levels on insect 

pests that anticipating shifts in population dynamics. Datta 

et al [43] presented an Indian farming large-scale 

investments sector and advocate for an integrated approach 

to assess farmers' perceptions and adaptations to changing 

climatic conditions. 

6. Crop Recommended Based on Soil Properties 

Crop recommendation is a critical factor for agriculture 

countries like india where multiple crops can be cultivated 

in a one season [44]. Currently, farmers rely on their 

knowledge to choose crops for plantation, but this manual 

selection may not always result in optimal production. 

Inconsistencies in yield can have detrimental effects on the 

country's economy. Additionally, the government requires 

accurate predictions to estimate crop amounts for the 

upcoming year [45]. To address this, an ensemble machine 

learning (ML) model is designed to predict crop 

production, taking into account environmental factors, 

cultivation area, and previous production parameters [46]. 

Madhuri et al [47] employed an Artificial Neural Networks 

(ANN) for suggesting crops based on soil properties, 

climate parameters and crop behavior. The model achieved 

a high accuracy of 96% with ANN compared to 91.5% 

with decision tree that indicating the efficiency of the ANN 

model. 

Akulwar et al [48] presented an identification of crop 

conditions, disease detection, crop-specific predictions and 

recommendations using ML model. It provides insights 

into how recommender systems are utilized for disease and 

crop prediction. 

PANDE et al [49] explored a farmer’s friendly mobile 

application for connectivity. The system utilizes several 

ML algorithms but Random Forest showed the best results 

with 95% accuracy all the among.  

Mythili et al [50] developed a Deep Convolution Neural 

Networks (DCNN) and Long Short-Term Memory 

(LSTM) networks with ant colony optimization for crop 

predictions. It is aimed to enhance the accuracy of 

predictions. 

Chakraborty et al [51] assisted farmers in crop selection 

based on sowing season, geographical location and soil. 

The ANN model achieved an accuracy of 89.88% that 

aiding farmers in choosing high-yield crops. 

Garanayak et al [52] predicted a future production of crops 

using ML approaches in the Andhra Pradesh region. 

Several ML models are used and random Forest achieved a 

n effective result in crop production forecasting. 

Sharma et al [53] focused on crop recommendation system 

using various ML and DL techniques based on several 

parameters that informed a farmer regarding crop 

selection. 

Moon et al [54] employed a K-nearest Neighbor Random 

Forest Ridge Regression (KRR) to predict major crop 

making. The model demonstrates high accuracy for various 

crops, showcasing its effectiveness. 

Mundada et al [55] used a hybrid LSTM and evolutionary 

algorithms known as enhanced LSTM for crop yield 

prediction. This model outperforms other ML models with 

an accuracy of 85%. 

SSL et al [56] utilized clustering algorithms along with the 

Deep Q Network and k-Nearest Neighbor (KNN) to 

expose hidden patterns. This data is then converted into 

usable information for climate prediction and 

categorization. 

Apat et al [57] present a Cat Boosting model and applied 

the SMOTE data balancing model to attain better results. 

This model performs exceptionally well with high 

accuracy and precision. 

Parameswari et al [58] discussed a decision tree, Support 

Vector Machine and Recurrent Neural Network (RNN) for 

anticipating harvest and increasing profitability for 
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farmers. The results show promising future perceptions 

based on the obtained outcomes. 

7. Water Management In Precise Agriculture 

Precision irrigation stands as a distinctive and sustainable 

agricultural methodology that focused on water and 

nutrients to plants at precise times and locations in 

measured doses to ensure an optimal crop growth [59]. 

Precision water management (PWM) complemented this 

by emphasizing judicious water use to achieve sustainable 

water management [60] that requiring precise application 

at the right time, place and crop growth stage consistently 

across the designated area. 

Garcia et al [61] contributed to water allocation model that 

framing the multi-area irrigation system as a challenge of 

resource allocation. The dynamic priority and feedback 

scheduling models are employed to treat a water 

consumption as the primary optimization parameter. 

Pincheira et al [62] developed an IoT based sensing that 

virtuous behaviours in agricultural practices by retaining 

forced sensing devices as trustworthy data sources. 

Remote sensing, geophysics, and agro-hydrological 

modeling are explored by Pradipta et al [63] which is used 

to provide lateral distribution information, investigate sub-

surface soil, and overcome data limitations in irrigation 

water scheduling for precision agriculture. 

Kamienski et al [64] presented the SWAMP model that 

assessing the platform's scalability and replicability for IoT 

applications. The designed configurations and re-

engineering of components provided an effective 

performance for SWAMP model. 

Nova et al [65] address water safety through contaminant 

identification, pollution monitoring, and early detection of 

waterborne diseases. Drought prediction employed ML 

models based on climate data, satellite imagery and 

meteorological data. Smart water grids influence real-time 

data to optimize water distribution networks which 

reducing water loss. 

Abioye et al [66] developed RNN models for sustainable 

irrigation management, highlighting digital farming 

solutions for smart irrigation processes. They discuss the 

challenges and future directions of research, emphasizing 

the role of remote monitoring and control in reducing 

stress for farmers and researchers. 

Vianny et al [67] utilized LSTM, KNN Gradient Boosting 

and Spearman's rank correlation to predict an irrigation. 

These methods predict consolidated time series values by 

gathering nearest sensing information, predicting real 

values, and assessing correlations. 

Akensous et al [68] surveyed a IoT and ML in agriculture 

that emphasizing their potential to advance the field. It 

explored the virtual water model to address water scarcity 

and essential components for effective smart irrigation 

with a sustainable digital agriculture model. 

Elbeltagi et al [69] compared a several algorithms where 

Random Forest model outperforms other models in terms 

of certain metrics during the testing stage. 

Bakthavatchalam et al [70] utilized a combination of 

multilayer perceptron rules-based classifiers, JRip and 

decision table classifiers to predict high-yield crops in 

precision agriculture. Their approach integrates IoT and 

agricultural measurements that achieving a commendable 

performance of 98.2273% as evaluated by selected 

classifiers. 

Chandra et al [71] automated the labor-intensive process 

by using microcontroller-based system for smart drip 

irrigation that predicting the precise water needs of crops. 

This system guided by weather, soil and crop parameters to 

forecast the appropriate amount of water to be distributed 

through drip irrigation using sensors. This method 

effectively regulates soil moisture in the cultivation field. 

Brar et al [72] facilitated by subsurface drip irrigation and 

fertigation models that demonstrated approximately 30% 

water savings due to reduced drainage losses. Furthermore, 

the 'summer mungbean – maize – wheat' cropping system 

showed increased net returns for farmers compared to 

conventional flood irrigation methods. 

Gupta et al [73] explored Subsurface Drip Irrigation (SDI) 

effects combined with nitrogen management-based maize-

wheat systems (MWS). The results indicated significantly 

higher grain yields for maize, wheat and MWS in the SDI 

with 100% recommended nitrogen that showcasing 

improvements of 15.8%, 5.2%, and 11.2%, respectively. 

Abuzanouneh et al [74] designed artificial algae algorithm 

(AAA) in conjunction with the least squares-support vector 

machine model to determine an irrigation need. It is 

demonstrated a superior performance and achieved a 

maximum accuracy of 0.975. 

Singh et al [75] developed a long-range, low-power (LoRa) 

system for IoT based ML model. It includes the soil and 

weather conditions to predict crop water requirements with 

the linear discriminant analysis model achieving the 

highest efficiency at 91.25% prediction accuracy.  

8. Future Scope 

The future scope of precise agriculture prediction using a 

novel cascade trio GRU (Gated Recurrent Unit) model 

holds tremendous potential in enhancing agricultural 

efficiency, water resource management and crop 

recommendation. In the proposed cascade trio GRU model 

for precise agriculture prediction, the feature extractor 

comprises three GRU units. The first GRU unit captures 

long-term trend features, while the second focuses on 
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short-term change features. The outputs of these two units 

are concatenated and fed into the third GRU unit to 

generate site-specific features. This enhances the network's 

ability to characterize agricultural conditions effectively. 

Here's an exploration of its functions and potential 

benefits: 

Efficient Water Resource Management: provided an 

efficient use of water resources that reducing the 

environmental impact and operational costs associated 

with excessive water use. 

Timely Intervention for Scarcity: quickly identify water 

scarcity conditions and helped farmers implement 

mitigation strategies and minimize crop losses. 

Reduced Wastage and Environmental Impact: Optimized 

irrigation schedules lead to reduced water wastage for an 

environmental sustainability with water conservation 

efforts. 

Precision in Crop Recommendations: precise 

recommendations lead to better yield outcomes and 

economic benefits.  

Continuous Improvement: adaptive in nature continuous 

improvement as it learns from new data that making it a 

valuable tool for long-term agricultural planning and 

decision-making. 

Therefore, novel model of cascade trio GRU model is 

applied for a precise agriculture which has an ability to 

leverage advanced DL architectures for accurate PWM 

predictions, timely scarcity identification and informed 

crop recommendations. This approach contributes to 

sustainable and efficient agricultural practices, addressing 

challenges related to water management and enhancing 

overall crop productivity. 

9. Conclusion 

In this work, the comprehensive review examined an 

intersection between precise agriculture based on its smart 

agriculture, climate change, crop recommendation and 

water requirements. The analysis underscores the 

significance of integrating advanced technologies 

including IoT and ML to enhance precision in agricultural 

practices. The consideration of climate change as a pivotal 

factor in decision-making processes emphasizes the need 

for adaptive strategies in agriculture.  The exploration of 

crop recommendation systems highlights the potential for 

data-driven approaches to optimize crop selection based on 

environmental conditions and historical data. Also, the 

review underscores the critical role of precise water 

management in agriculture, with a focus on efficient 

resource utilization and sustainable practices. Based on the 

findings of this survey, the potential of advanced models 

like the cascade trio GRU in providing accurate and 

insightful predictions. Looking ahead, the identified 

methodologies and insights pave the way for further 

advancements in precision agriculture that contributing to 

sustainable practices and improved decision-making in 

agricultural management. 
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