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Abstract: The liver is an important organ in the human body, performing numerous vital functions that are essential for overall health and 

well-being. Accurately identifying lesions in medical CT scans has long been one of the most difficult problems in the field of medical 

image analysis. Appropriate treatment and management strategies can be implemented to address the underlying liver condition and 

optimize patient outcomes. The proposed method for Liver Lesion Detection, utilizes the DeepLeison dataset which contains many 

biomedical CT scan images with a variety of liver pathologies. The method proposes Quad-YOLOv5 which is based on popular driven 

object detection deep learning model called YOLOV5 (You Only Look Once) model. We build up the medical image dataset of Liver 

Lesion by collecting 6335 CT images by augmentation. To enhance the performance of the Quad-YOLOv5 model, we have implemented 

data augmentation techniques and conducted extensive experiments using the DeepLeison dataset. Our findings demonstrate that the 

model exhibits strong performance coupled with remarkable interpretability. Through meticulous experimentation, we have refined the 

model's capabilities, ensuring that it delivers superior results in lesion detection tasks while maintaining a high level of interpretability. 

Our model is trained and evaluated based on its performance. The precision and recall for the model are 96% and 93%.  It is obtained that 

Quad-YOLOv5 model is with Mean Average Precision (mAP50) of 97%. The model increases the efficiency and accuracy of diagnosing 

and treating liver lesions. It can be incorporated into existing clinical workflows to aid radiologists in the interpretation of CT scans. 
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Introduction 

The liver is one of the most crucial organs in the human 

body, performing a variety of critical functions. Accurate 

detection of the Liver Lesion from medical imaging scans 

is crucial for diagnosis and for treatment. However manual 

detection of the liver lesion is a laborious and time taken 

job and the task is to develop an automated liver detection 

algorithm using deep learning techniques, which can 

accurately and robustly classify and detect the liver lesion 

from medical imaging scans such as CT scan. The 

algorithm should be able to handle variations in image 

quality, patient anatomy, and imaging modality, and 

should be computed on a huge collection of datasets of 

medical imaging scans. The main goal is to execute high 

accuracy, precision, recall, and Probability similarity 

scores for liver lesion detection. The algorithm trained is 

scalable and efficient and can process large volumes of 

medical imaging data in a reasonable amount of time. 

Adaptive threshold method was used to isolate the liver 

from the rest of the body, and spatial fuzzy clustering was 

used to segment the cancerous lesions in the liver. The 

informative characteristics were extracted from the 

segmented cancerous region and classified into two 

categories of liver cancers using two different 

classification algorithms i.e., multilayer perceptron and 

C4.5 classifiers and had a comparative study [4]. The Fully 

Convolutional Network model (FCN) was to enhance 

segmentation by incorporating a self-supervised contour-

guiding mechanism. This pioneering approach 

amalgamated shape and contour characteristics to achieve 

precise delineation of the target object. Notably, the 

network adeptly learned contour features to demarcate the 

complementary contour region through a self-supervising 

framework [8]. Leveraging domain knowledge in medical 

imaging data can greatly enhance the development of 

robust lesion detection networks. DKMA-ULD, a novel 

framework, aims to detect lesions across multiple organs 

with heightened sensitivity compared to existing methods. 

By integrating insights from medical expertise into its 

design, DKMA-ULD surpasses current state-of-the-art 

techniques. This approach allows DKMA-ULD to adapt to 

diverse imaging modalities and clinical scenarios, enabling 

comprehensive lesion detection with improved accuracy 

and reliability [10].  

The use of deep learning algorithms for medical image 

localization tasks has gained significant attention in recent 

years. Previous studies have utilized various deep learning 

algorithms such as Convolutional Neural Networks 

(CNNs) for liver lesion classification. However, there are 

still challenges in achieving accurate liver segmentation 

and lesion detection due to factors such as variations in 

lesion size, shape, and appearance. 
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LITERATURE SURVEY 

Few related works done on Lesion Detection and 

Segmentation using deep learning approaches are briefly 

discussed. A weakly supervised segmentation method has 

been devised to efficiently transform extensive collections 

of RECIST-based lesion diameter measurements, archived 

within hospitals' digital repositories, into comprehensive 

3D lesion volume segmentations and measurements. This 

approach, while simple in its implementation, yields 

remarkable efficacy [3]. Liver lesion segmentation in CT 

scans serves various critical purposes such as quantifying 

tumor burden, devising treatment strategies, forecasting 

clinical responses, and monitoring progression. To tackle 

this challenge, a Hybridized Fully Convolutional Neural 

Network (HFCNN) has been introduced specifically for 

liver tumor segmentation and detection. This model offers 

a promising approach to address the pressing issue of liver 

cancer. [7]. To obtain accurate lesion structure, the 

segmentation was performed on high contrast CT scan 

images and Liver extraction using adaptive thresholding 

[5]. An innovative semi-automatic RECIST labeling 

technique employs a cascaded Convolutional Neural 

Network (CNN) architecture, which consists of an 

improved Spatial Transformer Network (STN) and Spatial 

Hierarchical Network (SHN). Enhancements to the STN 

include multi-task learning and the integration of a 

supplementary coarse-to-fine pathway to enhance the 

accuracy of transformation parameter prediction [2]. The 

proposed method for lesion segmentation got 75.2% of 

Dice using ensemble method [9]. Liver segmentation by U 

net and multi-scale candidate generation method to obtain 

the blocks. Active contour model (ACM) is used to refine 

the tumour segmentation [6]. The 3D Context Enhanced 

Region-Based CNN (3DCE) is designed to harness the 3D 

context for lesion detection in volumetric data. Its 

implementation consistently enhances detection accuracy 

on the Deep Lesion dataset [1]. The proposed method 

RCNN got 97.4% of Dice for SLIVER07 dataset and 

96.55% of Dice for 3Dircadb dataset [11]. The proposed 

paper used DefED-Net for Dice Coefficient of liver and 

liver segmentation with 96.30 and 87.52 respectively [12].  

Previous studies have demonstrated the potential of deep 

learning algorithms for liver lesion segmentation in 

medical images. However, deep learning-based detection 

methods still have room for improvement, and more 

research is needed to overcome their limitations and 

challenges. One major challenge is the requirement of a 

large amount of annotated data for model training, which 

can be time-consuming and expensive. Another challenge 

is the need for careful selection and tuning of model hyper 

parameters to achieve optimal performance. 

PROPOSED METHOD 

Deep learning techniques have demonstrated considerable 

utility in clinical settings and have achieved notable 

successes. Despite this, there has been a scarcity of deep 

learning methods specifically tailored for the identification 

and classification of liver lesions on CT images. This gap 

arises from the absence of openly accessible CT image 

datasets focused on liver lesions for training and validating 

these models. Consequently, there is a growing interest in 

leveraging deep learning methodologies to address the 

challenges associated with identifying and classifying liver 

lesions on CT images. 

3.1 DeepLesion  

The DeepLesion Dataset by NIH is a large-scale, multi-

institutional dataset of radiology studies, consisting of over 

32,000 CT studies from more than 10,000 unique patients. 

The dataset is primarily focused on the detection and 

classification of lesions within the body, and contains a 

wide range of lesion types, including lung nodules, liver 

lesions, bone tumours, and more. One of the key features 

of DeepLesion is its large size and diversity. This dataset is 

specifically focused on lesions within the thoracic and 

abdominal regions. The radiologist manually verifies the 

CT images and its fatigue for them to predict the lesion and 

its location. The dataset was created from different 

institutions, to determine location of lesions. 

3.2 Data Visualization 

 

                      Figure 1. - Data Visualization of DeepLesion 

A portion comprising 15% of the DeepLesion dataset is 

depicted in visual form. The scatter map illustrates lesion 

locations, with the x- and y-axes representing the x- and z-

coordinates of each lesion's relative position within the 

body, as indicated in Figure 1. DeepLesion encompasses a 

vast dataset containing 32,735 lesions distributed across 

32,120 CT slices derived from 10,594 studies involving 

4,427 individual patients. Each CT image typically 
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contains 1 to 3 lesions, each accompanied by bounding 

boxes and size measurements, totaling 32,735 lesions 

overall. The dataset encompasses a diverse array of lesion 

types, including those related to bone, abdomen, 

mediastinum, liver, lung, kidney, soft tissue, and pelvis, 

among others. From 32,120 CT slices, we've identified and 

extracted 1,284 CT images featuring the liver and liver 

lesion. Subsequently, we augmented these images using a 

variety of techniques, including noise injection, translation, 

brightness adjustment, and contrast enhancement. 

Furthermore, adjustments were made to the lesion 

coordinates respective to their augmentation during this 

process. Figure 2 represents the Liver CT Images with 

bounding boxes shown the lesion position. 

 

Figure 2: CT image represents the Liver Lesion 

Segmentation 

Dataset. The experimental data set used here is obtained as 

follows:  

a. Collecting 1284 CT images with livers lesion from 

32,120 CT slices.  

b. Among the 1284 CT images, 17 images are with same 

image name and with two lesion bounding boxes, it‟s 

difficult for training. Hence, removed those images and 

considered 1267 CT images for Augmenting and training a 

model. 

c. With the Liver CT images, augmented the images with 

Noise, Contrast, Translate and Brightness. Total merged 

Dataset have 6335 CT images. 

d. 6335 CT images were labelled with bounding box of the 

lesion position in csv file, which consists of all the 

augmented data with image names in a column File_name 

and along with their lesion coordinates in a column 

Bounding_boxes.  

e. Dataset and labelled coordinates in a CSV file were 

used. Among them 80% of data used to train the Quad-

YOLOv5 model and computed the precision, recall and 

mAP50 (Mean Average Precision). 

Quad-YOLOv5 Model 

Overview of YOLOv5 Model 

YOLOv5 represents a notable leap forward in object  

detection technology, building upon the success of its 

predecessor, the YOLO (You Only Look Once) model, 

renowned for its real-time performance and accuracy. This 

latest iteration introduces significant enhancements aimed 

at further improving real-time object detection capabilities. 

Key components include CSP-Darknet53 (Cross Stage 

Partial Network) as the backbone, Spatial Pyramid Pooling 

(SPP), and Path Aggregation Network (PANet) in the 

model's neck, along with the head architecture from 

YOLOv4.The advancements of YOLOv5 are grounded in 

addressing the challenges associated with information loss 

in deep neural networks. The Information Bottleneck 

Principle and the innovative utilization of Reversible 

Functions are pivotal to its design, ensuring that YOLOv5 

maintains high efficiency and accuracy while overcoming 

limitations inherent in previous architectures. This 

amalgamation of cutting-edge techniques propels YOLOv5 

to the forefront of real-time object detection, setting new 

benchmarks in performance and capability. 

     CSP-Darknet53 

Quad YOLOv5 uses CSP-Darknet53 as its backbone. 

Darknet-53 is a convolutional neural network architecture 

used as a backbone or feature extractor in various 

computer vision tasks, particularly in object detection 

models like YOLOv3. It consists of 53 convolutional 

layers and is known for its ability to capture high-level 

features from CT images effectively. Developed as part of 

the Darknet framework, Darknet-53 serves as a robust 

feature extractor, enabling more accurate and efficient 

object detection compared to earlier versions of YOLO. 

YOLO, a deep network, employs residual and dense 

blocks to facilitate information flow to its deepest layers 

and mitigate the issue of vanishing gradients. However, 

the utilization of dense and residual blocks can lead to 

redundant gradients. CSPNet addresses this challenge by 

truncating the gradient flow, thereby aiding in gradient 

optimization. 

 Spatial Pyramid Pooling (SPP) 

The SPP block aggregates input information and outputs a 

fixed-length representation, as depicted in Figure 3. This 

design offers the benefit of substantially expanding the 

receptive field and isolating crucial contextual features, all 

while maintaining network speed. 

 

          Figure 3: Structure of the SPP block. 
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  Path Aggregation Network (PANet) 

 PANet serves as a feature pyramid network designed to 

aid in precise pixel localization for mask prediction tasks. 

Quad-YOLOv5 

The framework of Quad-YOLOv5 is depicted in Figure 4. 

We have tailored the original YOLOv5 architecture to 

specialize in handling the DeepLesion dataset. Through 

training our model on the DeepLesion dataset [12] with a 

carefully crafted data augmentation strategy. Our model's 

key enhancement lies in the addition of an extra prediction 

head, allowing it to effectively handle lesions of varying 

sizes. This four-head structure, combined with the existing 

prediction heads, enhances the model's ability to localize 

and detect lesion positions accurately. Quad-YOLOv5 is 

implemented using PyTorch 2.2.1, and model training and 

testing are conducted on NVIDIA GPUs. During the 

training phase, we utilize parts of the pre-trained 

YOLOv5s model, as Quad-YOLOv5 shares most of its 

backbone (blocks 0 to 8) and some portions of its head 

(blocks 10 to 13 and blocks 15 to 18) with YOLOv5. 

Additionally, we incorporate one additional head into our 

model architecture. In the realm of object detection, YOLO 

plays a crucial role as a one-stage detector. In this paper, 

we introduce an enhanced model, Quad-YOLOv5, which 

builds upon the foundation of YOLOv5 to offer improved 

performance in lesion detection tasks. The detection 

pipeline of Quad-YOLOv5 is illustrated in Figure 4. In this 

architecture, we employ CSPDarknet53 as the backbone 

and the path aggregation network (PANet) as the neck, 

following the original design. In the head part, we 

introduce an additional head specifically for detecting tiny 

objects. Quad-YOLOv5 comprises four detection heads, 

each dedicated to lesion detection, thus enhancing its 

capability to accurately identify lesions across various 

sizes. 

 

                   Figure 4: Quad-Yolov5 Architecture 

IMPLEMENTATION & RESULTS 

While implementing the Quad-yolov5 model the image 

input size was set to 640x640, with an learning rate of 

0.01. The training utilized the SGD optimization 

algorithm, with a batch size of 16. The merged dataset of 

6335 CT images were trained on Quad-YOLOv5 model 

with labelled data with 80% of training and 20% is for 

testing. The modelled trained for 100 epoch with precision 

of 96 % and recall of 93%. Since there are several 

categories to identify the accuracy, i.e., mean Average 

precision mAP50 is a well criterion to evaluate the result 

of lesion recognition is of 97% for our model. The 

equation to compute the target coordinates bx, by, bw and bh 

for the bounding boxes is shown below. 

bx= (2* (tx) - 0.5) + cx 

by = (2*  (ty) - 0.5) + cy 

bw = pw * (2*  (tw))
2
 

bh = ph * (2*  (th))
2 

The bounding boxes are detected and computed the Loss 

function. tx,ty are the center point of the bounding box and 

tw, th are the height and width of the bounding box. cx, cy is 

the grid scaled by grid width and height. pw, ph are anchor 

width and height. Quad-YOLOv5 provides three outputs: 

the detected object classes, their corresponding bounding 

boxes, and the objectness scores. To calculate the loss, it 

employs the Binary Cross Entropy (BCE) method for both 

the classes and objectness components. Classes Loss 

measures the error for the classification task. The 

Objectness Loss evaluates the discrepancy in determining 

the presence of an object within a specific grid cell. 

Meanwhile, the CIoU (Complete Intersection over Union) 

loss is employed to gauge the localization error, assessing 

how accurately the object is positioned within the grid cell. 

In object detection models, each bounding box prediction 

comprises a confidence score indicating the model's 

certainty regarding the presence of an object of interest 

within the bounding box. The confidence threshold is a 

value between 0 and 1, and any bounding box with a 

confidence score below this threshold is discarded. Setting 

a higher confidence threshold typically results in fewer but 

more reliable detections. The final loss is determined by 

the following equation: 

Loss =    1Lcls+  2Lobj+  3Lloc 

Environments: 

Quad-YOLOv5 run in the following verified environments 

(with all dependencies and python preinstalled packages) 

1. Notebooks with GPU –  

a. Kaggle with RAM utilization of 14.8 GB 

and GPU Memory utilization of 15 GB 

and Disk space of 5.7 GB. 
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b. Colab Pro with GPU Memory utilization 

of 22 GB, Disk Space of 38 GB. 

Results: 

Few samples of detected lesion position are marked and 

representing the prediction score of each CT image. The 

Loss function is shown in below fig. representing the loss 

and precision, recall, Mean Average Precision (mAP50) is 

computed at an Intersection over Union (IoU) threshold of 

0.5, mAP95 is computed at an IoU threshold of 0.95. If the 

IoU between a predicted bounding box and a ground truth 

bounding box exceeds a certain threshold, the predicted 

bounding box is considered a true positive. Otherwise, it's 

considered a false positive. Figure 5 showing the 

performance of Quad-Yolov5 model for 65 epochs and 

Figure 6 show the detection of lesion and its score. 

 Precision      =          TP 

                                       TP+FP 

                      Recall       =              TP 

                                                     TP+FN 

   Mean Average Precision   =      1/N  i=1
N
APi  

IOU        =           Intersection 

     Union 

 Evaluation Metrics: 

The model's accuracy is evaluated based on various 

metrics, each measuring distinct aspects of its 

performance. Precision quantifies the proportion of 

predictions made by the model that are accurate, while 

recall evaluates the percentage of relevant data points 

correctly identified by the model. Table 1 represents  the 

comparative study of original YOLOv5 Model and our 

proposed Quad-Yolov5 Model.  

Table 1- Evaluation Metrics for Quad-YOLOv5 Model 

  
  

   

   

   

Figure 6: Liver Lesion detection in Quad- YOLOV5 

Model 

 

Figure 5: Represents the Loss, Precision, Recall and mAP 

for Quad-Yolov5 Model 

CONCLUSION AND FUTURE SCOPE 

Liver Lesion Detection is a crucial step in liver disease 

diagnosis and treatment planning. In this paper, we have 

Metrics 

YOLOv

5 Model 

(50 

Epoch) 

Quad-

YOLOv

5 Model 

(50 

Epoch) 

Quad-

YOLOv

5 Model 

(65 

Epoch) 

Quad-

YOLOv

5 Model 

(80 

Epoch) 

Quad-

YOLOv

5 Model 

(100 

Epoch) 

train/box_los

s 

0.0282 0.0250 0.0250 0.0230 0.0212 

train/obj_los

s 

0.0083 0.0075 0.0073 0.0068 0.0064 

val/box_loss 0.0268 0.0218 0.0216 0.0198 0.0180 

val/obj_loss 0.0055 0.0046 0.0045 0.0042 0.0039 

Precision 0.83 0.90 0.91 0.95 0.96 

Recall 0.84 0.87 0.89 0.91 0.93 

mAP50 0.89 0.94 0.94 0.95 0.97 

mAP95 0.59 0.67 0.72 0.76 0.80 
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explored the performance of the Yolov5 architecture on the 

DeepLesion dataset for liver lesion detection. We have pre-

processed the dataset by resizing the images, augmented 

images and splitting them into training and validation sets. 

We evaluated the performance of our model using standard 

evaluation metrics, such as Precision & Recall and 

visualized the predicted liver lesion regions. Our results 

suggest that our model performs well on cases with clear 

liver lesion boundaries with a minimum loss. The model 

can also be adapted for detection of other organs lesions or 

other medical imaging modalities. Future work can focus 

on further improving the accuracy and generalization of 

our model, as well as exploring its applications in other 

medical imaging tasks. 
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