

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 3555–3559 |3555

A Study on the Classification of Hand Gesture

for Mobile Virtual Reality with MediaPipe

Beom Jun Jo1, Seong Ki Kim*2

Submitted: 05/02/2024 Revised: 13/03/2024 Accepted: 20/03/2024

Abstract: Virtual devices’ mobile application processors continue to evolve, and technologies are emerging accordingly. Although the

virtual reality with hand tracking enables to manipulate the contents without a controller, the devices support only the limited actions, and

the hand tracking can be used only for the simple games. However, hand tracking can provide users with an intuitive, comfortable feeling

of operation and preventing accidents by using their hands right away. To track hands, there is a MediaPipe from Google that enables hand

tracking with a normal webcam. This paper describes how to use a new motion for the virtual reality contents using MediaPipe for utilizing

the advantages of hand tracking as a user interface. The implementation is a game using a hand gesture only. Also, this paper compares

three implementations with different implementation methods of MediaPipe: ported from C++ to C#, using tflite, using Barracuda.

Comparisons were made on both PC and mobile. On PC, Barracuda was the fastest with a maximum of 208 frames per second, but on

mobile, Barracuda was the slowest with a minimum 12 frames per second. For this reason, this may vary depending on the project, it seems

that it is still difficult to apply Barracuda to mobile contents.

Keywords: Augmented Reality, Barracuda, MediaPipe, Virtual Reality

1. Introduction

Virtual Reality (VR) with a hand tracking provides users with the

controlling methods of the game character’s movements without

using a controller. Due to its importance, Apple's Vision Pro leads

in advocating for the use of hand tracking, and PICO also

acknowledges the technology's significance in the future. While

hand tracking currently has limitations for gaming purposes, it

offered convenience to users and could be utilized to control the

virtual reality, mixed reality (MR), and extended reality (XR). As

a result, many companies developed the hand gesture. And Fig. 1

illustrates the supported gestures by Meta’s devices as an example.

In Fig. 1, three gestures are depicted: Point and Pinch for selecting

something, Pinch and Scroll for scrolling, and Palm and Pinch for

bringing the user back to the Meta Home Menu. Besides the Meta’s

devices, other VR and XR devices support the hand tracking with

their own gestures. These supported gestures place a limitation on

the supported actions, thus current hand tracking technology can

support casual games. As an example, there is a game named

Cubism that player solves block puzzles using hands. Despite its

limited actions, hand tracking expands the scope of manipulation

to non-virtual devices, offering players greater intuitiveness and

convenience. For example, players don't have to find a controller

if hand tracking is the main control method. Moreover, it has

potential in a range of fields outside of gaming, including

rehabilitation and sign language.

This study aims to address the issue of limited hand gestures by

expanding recognizable hand movements. In this paper, we

implement a game that can recognize various hand postures and

tried to recognize a sword-wielding motion as an example. For the

purpose, MediaPipe is employed to track the hand. Also, we

compare their performance with other MediaPipe

implementations.

The contributions of this paper can be summarized next. First, this

paper shows a game using MediaPipe implemented using

Barracuda in Unity. Second, this paper is the first study that

compares a method through Barracuda and the method without it.

This paper is organized as follows: Section 2 shows related works.

In Section 3, we implemented a game using hand gesture. In

Section 4, we compared MediaPipe’s implementation. Section 5

concludes this paper.

Fig. 1. Three hand tracking gestures of Meta’s devices.

The images in turn are Point and Pinch, Pinch and Scroll, and Palm and Pinch.

1 Department of Game Design and Development,

Sangmyung University, Seoul, 03016, KOREA

ORCID ID : 0009-0006-3967-1372

2 Department of Computer Engineering,

Chosun University, Gwangju, 61452, KOREA

ORCID ID : 0000-0002-2664-3632

* Corresponding Author Email: skkim@chosun.ac.kr

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 3555–3559 |3556

2. Related Works

2.1. MediaPipe

MediaPipe [1] is a machine learning solution created by Google.

MediaPipe has been developed since 2019 for ease of use by

researchers or other developers. Because it combines computer

vision, natural language, and audio, it provides a wide range of

functions, including vision functions such as object and face

detection, image segmentation, pose tracking, text-related

functions such as character classification, text embedding,

language detection, audio classification and embedding. As shown

in Fig. 2, MediaPipe provides 21 landmarks.

MediaPipe [2] has been used in many research studies. For

example, [3] implemented detection of Vietnamese sign language

using a recurrent neural network (RNN) with MediaPipe. [4]

proposed a system that recognizes human body movements in

video using Blazepose of MediaPipe, body tracking solution, for

the field of sports and compared it with an Inertial Measurement

Unit (IMU)-based motion capture.

2.2. Barracuda

Unity has two libraries using AI: one is ML-agent for

reinforcement learning and the other is Barracuda [5] for

inferencing in this paper. Barracuda first came out in 2019 and

continue to being developed under the name “Sentis”. In the case

of Sentis, it is a preview version, so this paper uses the stable

Barracuda.

Barracuda is an inference library for Unity using neural network

and uses Open Neural Network eXchange (ONNX) [6]. ONNX is

specialized in inferencing and a system designed to make models

developed in different frameworks compatible with each other as

shown in Fig. 3. Thus, one of the advantages of ONNX is a

framework interoperability. Another is a shared optimization,

which allows you to optimize based on the intermediate

representation of ONNX.

Because of the above advantages, it can be run anywhere if the

device supports it. In the case of Unity, Barracuda is what makes

ONNX run. Also, the current Unity supports many devices such as

desktop, mobile, and VR. And this also expects to support the

visionOS for Apple Vision Pro that hasn’t been released yet. Just

as Unity is a cross-platform, Barracuda supports cross-platform

[7].

[8] uses Barracuda to integrate an object detector. Using this, the

paper implements detecting interactions between human hands and

objects. [9] also used Barracuda to create models using Pytorch

and its operate in Unity. [10] created traditional culture-based

metaverse content by recognizing human movements in Unity and

mapping them with lion mask avatars. Barracuda was used in this

process. [11] mentioned that they used to run a separate machine

learning server and set up to use mobile as a client, but with

Barracuda, they could run it on the client without an ML server. As

such, studies using Barracuda can be found in recent papers.

3. Implementation

Fig. 2. 21 Hand Landmarks available by MediaPipe

Fig. 3. Existing device discovery in Remote Device Management (RDM)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 3555–3559 |3557

In this research, we developed a game that recognize the hand

gesture of holding a knife (fist) in Unity as an example. In the

game, players can earn points by slicing fruits that rise from the

bottom with their hand gesture.

𝐴𝐵⃑⃑⃑⃑ ⃑ = (𝑏𝑥 − 𝑎𝑥, 𝑏𝑦 − 𝑎𝑦, 𝑏𝑧 − 𝑎𝑧) (1)

𝑐𝑜𝑠𝜃 =
𝑐∙�⃗�

|𝑐||�⃗�|
 (2)

In (1), 𝑎 and 𝑏 are one of the 21 points in Fig. 2. The two vectors

obtained using (1) become 𝑐, 𝑑 of (2) and use them to obtain 𝜃.

The implementation operates according to the flowchart of Fig. 4.

And the process is as follows:

 1. When the game turns on, MediaPipe works at the same time.

 2. MediaPipe tracks hand through the camera.

 3. When a hand appears on the camera, the hand landmark

coordinates are obtained as shown in Fig. 2.

 4. Then implementation classifies whether the gesture is

necessary for the game with the corresponding data.

 5. Repeat 3 and 4 until the app turns off.

In the 4th process, the distance between the two points and the

angle between them can be obtained according to the (1) and (2).

The folding of each finger was implemented when each angle of

𝑝1𝑝5⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑ (the vector of point 1 and point 5 in Fig. 2.) and 𝑝6𝑝7⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑, 𝑝1𝑝9⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑

and 𝑝10𝑝11⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑, 𝑝0𝑝13⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑ and 𝑝14𝑝15⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑, 𝑝0𝑝17⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑ and 𝑝18𝑝19⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑ is above 𝜋/2. In

other words, the application recognizes the user’s fist when the

angle obtained in front of all fingers exceeds 90°. Additionally,

when using the angle between 𝑝5𝑝17⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑ and the y-axis determines that

his fist is raised vertically with the back of hand facing outward as

holding a knife, the slicing starts. And if the angle of one finger

becomes smaller than 90° and the fist is loosened, the slicing stops.

Fig. 5 shows the example that our algorithm recognized a hand.

As shown in Fig. 5, our algorithm recognized the hand. As stated

in this section, when the user moves his fist, he can slice fruits in

the game. However, because swift swinging motion is not yet

recognized in real-time tracking, the game can’t recognize if the

user make an action like brandishing a knife quickly for getting a

lot of points at once.

Fig. 5. Playing game with a recognized hand

4. Comparison

In this study, MediaPipe was used and we implemented the game

in three ways. First, there is a MediaPipe ported to C#. The original

MediaPipe is available in Java on Android, Objective-C on iOS,

Python, and C++. This version ported C++ to C#, the language of

Unity. Second, there is a implementation that uses tflite. Tflite is a

tensorflow library for mobile and smaller devices, and MediaPipe

had versions using tflite. And this is what makes the tflite work in

Unity to do hand tracking. Finally, the last one is the version that

uses the Barracuda. Barracuda is Unity's own inference library,

which allows unity to read and run ONNX models. In this way,

each of the three MediaPipes show their own implementation

methods, and there will be a difference.

The next tables compare the performance that can be expressed in

numbers. A laptop with an AMD Ryzen 7 4800H and a GTX 1660

TI and a Galaxy Z Flip5 with Qualcomm Snapdragon 8 Gen 2

customized for Galaxy are used as the comparison environment.

Table 1 and Table 2 show the time taken to display the next frame

and the FPS calculated from the time taken on a PC and a mobile

environment, respectively. The time it takes to output the next

frame is the one that takes for MediaPipe to find a hand and to draw

a picture on the frame from a single frame that enters the camera.

The way to obtain FPS is to divide the time to display for the frame

to come out by a one second. Since the unit of time utilized in

tables above is milliseconds, FPS was calculated by dividing 1000

msec by the time taken for the frames to appear and rounding it.

As shown in Table 1, Barracuda provides similar speeds to the

Fig. 4. The flowchart of implementation.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 3555–3559 |3558

ported version, with the lowest being 4.8 msec. On the other hand,

the implementation using tflite showed 3 FPS as the lowest FPS,

which would not be acceptable for gaming, even on a PC.

Table 1. Comparison of time

taken to output the next frame and FPS on PC

 Min. time

(msec)

Min.

FPS

Max. time

(msec)

Max.

FPS

Ported 5.2 192 14.1 71

Tflite 155.9 6 347.4 3

Barracuda 4.8 208 8.4 119

However, Table 2 contradicts the results in Table 1. MediaPipe

with Barracuda was the slowest. Barracuda's fastest frame output

moment was 65.1 msec, which is 15 FPS, but that's only half of the

other projects. On mobile, the ported one was the fastest.

Additionally, the ported version and tflite version show 30 FPS

when it is the fastest, which does not seem to go below 30 FPS by

camera setup. If the resolution can be lowered and the framerate of

the camera can be raised, it will show faster speed.

Table 2. Comparison of time

taken to output the next frame and FPS on mobile

 Min. time

(msec)

Min.

FPS

Max. time

(msec)

Max.

FPS

Ported 33.5 30 36.8 27

Tflite 33.5 30 68.2 15

Barracuda 65.1 15 80.4 12

Fig. 6 describes the captured data of the hand that can be obtained

when recognizing the hand like the image in row (a) in each model.

In turn, (b), (c), and (d) are the ported version, the version using

tflite, and the version using Barracuda. All versions are

recognizable, but the case of (c) has difficulty recognizing the first

(a)

(b)

(c)

(d)

Fig. 6. Comparison of hand gesture recognition in three directions between

three MediaPipe (a) hand as input data (b) Ported (c) tflite (d) Barracuda

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 3555–3559 |3559

direction.

5. Conclusion

This paper described how to use a hand for the gesture interface

and recognize a hand with a knife shape. We used a MediaPipe to

track hands and a heuristic to recognize hand gestures and

compared the three implementations. However, there is still a limit

to hand tracking so far because we cannot keep up with your hand

when you make a quick motion like swinging. Although Barracuda

showed the fastest performance on PC, it was the slowest on

mobile when compared to the other implementations. The other

two models may be faster by mobile camera setup. Using

Barracuda, which is a lightweight cross-platform library that works

on Unity, it may be useful to implement other projects including

MediaPipe on PCs, but it does not appear to have performance yet

for mobile.

As future work, if there is only a camera without device

constraints, we are working on improving the operation sensibility

through manipulation using hand tracking and aim to improve

stability and apply AI rather than heuristic.

Acknowledgement

This work was supported by the National Research Foundation of

Korea (NRF) grant funded by the Korean government (MSIT).

(NRF-2023R1A2C1005950). To increase the understandability of

this paper, the authors have created a video and uploaded it to

https://youtu.be/tHM8f78mBd8.

Author contributions

BeomJun Jo: Conceptualization, Methodology, Implementation,

Writing-Original draft preparation SeongKi Kim:

Conceptualization, Validation, Writing-Reviewing and Editing,

Funding.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] F. Zhang et al., “MediaPipe Hands: On-device Real-time Hand

Tracking,” arXiv, Jun. 2020. doi: 10.48550/arXiv.2006.10214.

[2] C. Lugaresi et al., “MediaPipe: A Framework for Building Perception

Pipelines,” arXiv, Jun. 2019. doi: 10.48550/arXiv.1906.08172.

[3] B. Duy Khuat, D. Thai Phung, H. Thi Thu Pham, A. Ngoc Bui, and S.

Tung Ngo, “Vietnamese sign language detection using Mediapipe,” in

Proc. of the 2021 10th International Conference on Software and

Computer Applications (ICSCA ’21). New York, NY, USA:

Association for Computing Machinery, Jul. 2021, pp. 162–165. doi:

10.1145/3457784.3457810.

[4] A. S. B. Pauzi et al., “Movement Estimation Using Mediapipe

BlazePose,” in Advances in Visual Informatics, 2021, pp. 562–571.

doi: 10.1007/978-3-030-90235-3_49.

[5] Unity Manual “Introduction to Barracuda.” Accessed: Apr. 11, 2024.

[Online]. Available: https://docs.unity3d.com/Packages/com.unity.ba

rracuda@3.0/manual/index.html

[6] ONNX documentation, “Introduction to ONNX.” Accessed: Aug. 28,

2023, [Online]. Available: https://onnx.ai/onnx/intro/

[7] Unity Japan, “Multi-platform operation of ONNX neural network

model using Unity Barracuda - CEDEC2021”, Aug. 2021. Accessed:

Sep. 04, 2023, [Online]. Available: https://www.youtube.com/watc

h?v=dMgm4ZYfaUI

[8] M. Mazzamuto, F. Ragusa, A. Resta, G. Farinella, and A. Furnari, “A

Wearable Device Application for Human-Object Interactions

Detection,” in Proc. of the 18th International Joint Conference on

Computer Vision, Imaging and Computer Graphics Theory and

Applications, Lisbon, Portugal, 2023, pp. 664–671. doi:

10.5220/0011725800003417.

[9] R. C. Castanyer, S. Martínez-Fernández, and X. Franch, “Integration

of Convolutional Neural Networks in Mobile Applications,” arXiv,

Mar. 2021. doi: 10.48550/arXiv.2103.07286.

[10] J. Kim, J. Lee, M. Kim, and D. Kim, “Design and development of

traditional lion mask avatar mapping and animation system based on

the user motion recognition using deep learning technology,” in Proc.

HCI Korea 2023, 2023, pp. 5–9.

[11] G. Garg and S. Shivani, “Controller free hand interaction in Virtual

Reality,” in 2022 OITS International Conference on Information

Technology (OCIT), Feb. 2022, pp. 553–557. doi:

10.1109/OCIT56763.2022.00108.

