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Abstract: In contemporary research architectures, the efficient allocation of computational resources is paramount to meet the dynamic 

and diverse demands of tasks and applications. Traditional resource allocation policies often struggle with adaptability to varying workloads 

and underutilize historical allocation data. To address these limitations and enhance Quality of Service (QoS) in research environments, a 

rank-based data node allocation system is imperative. This research introduces a novel firefly-based Swarm Intelligence (SI) algorithm, 

meticulously tuned to strike a balance between resource overutilization and underutilization while upholding essential Service Level 

Agreements (SLAs). The contributions of this work encompass algorithm design, the delicate equilibrium between resource usage and 

SLA adherence, the establishment of a robust evaluation framework, and systematic comparisons with state-of-the-art resource allocation 

methods. Furthermore, this study takes into account different load factors, providing a comprehensive analysis of resource allocation 

efficiency across varying workloads. The algorithm's performance is evaluated based on QoS metrics, including power consumption and 

SLA adherence, and compared with existing allocation methods. The results underscore the algorithm's superiority in enhancing resource 

allocation efficiency and SLA adherence in Big Data Scheduling Architectures. 

Keywords: Resource Allocation, Swarm Intelligence, Quality of Service, Service Level Agreements, Big Data Scheduling, Optimization, 

Efficiency, Load Factors, Computational Resources, Dynamic Workloads. 

 

 Introduction 

In today's digitally driven world, we are experiencing an 

exponential explosion of data generation and consumption, a 

phenomenon commonly referred to as "big data." The era of big 

data is marked by an overwhelming influx of data from various 

sources, including social media, sensors, mobile devices, and the 

Internet of Things (IoT) [1]. These data streams have evolved into 

massive reservoirs of information, with volumes ranging from 

terabytes to zettabytes, characterized by the relentless flow of data, 

and encompassing a wide spectrum of formats and types. Big data, 

with its tremendous potential, offers unprecedented opportunities 

for organizations across diverse sectors [2, 3]. It promises 

transformative insights, informed decision-making, and ground-

breaking innovations. However, the journey from data to 

actionable insights is laden with formidable challenges, and one of 

the most fundamental among them is the effective allocation of 

resources in the context of big data due to diverse application and 

user base seeking to use big data architecture [4, 5].  
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Fig 1: Job Scheduler in Big Data  

Resource allocation involves the judicious distribution and 

management of computing resources such as processing capacity, 

memory, storage, and network bandwidth to enable the efficient 

processing and analysis[6, 7] of big data. This crucial facet of big 

data analytics ensures that computational tasks are executed 
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seamlessly and within defined time frames [8]. 

Power aware allocation has been a part of Big data scheduling 

architectures since 2010 and different power consumption models 

have been introduced since then. The power consumption of the 

scheduling process depends upon two factors namely the static 

consumption and the dynamic consumption defined in eq(1) and 

(2).  

𝑆𝑃𝑐 =
𝐽𝑅𝑝

𝐸𝑥𝑐𝑝
∗ Uc      (1) 

𝐷𝑃𝐶 =
𝐽𝐶

𝐸𝑥𝑐𝑝
∗ Uc     (2) 

Where 𝐽𝑅  is the remaining job 𝑖𝑛 𝑝𝑡ℎ buffer 𝐸𝑥𝑐𝑝 is the execution 

capacity of the executer for particular buffer p and Uc is the unit 

cost of execution in watt. 𝐽𝐶  is the current job list. The scheduling 

environment can be defined as follows. 

Definition 1: The big data scheduler (BDS) is a scheduler that 

handles users 𝑈 = {𝑢1, 𝑢2, . . 𝑢𝑛}  with multiple locations 𝐿 =
{𝑙1, 𝑙2, 𝑙3 … . 𝑙𝑛} with varying job request with different priorities 

P={p1,p2,….pn} with the minimization of the overall power 

consumption PC={pc1,pc2….pcn} so that neither the system is 

underutilized or overutilized and minimum Service Level 

Agreement(SLA) is met. 

Minimize ∑
PCi

SUi

n
i=1  ×

SLAi

pi
     (3) 

Lemma: In the context of the Big Data Scheduler (BDS), the 

system should achieve a balanced allocation of resources to meet 

user demands while minimizing overall power consumption. This 

requires that the system utilization (SU_i) for each user u_i 

satisfies the constraint: 

𝑀𝑖𝑛𝑆𝑈 < 𝑆𝑈𝑖 < 𝑀𝑎𝑥𝑆𝑈      (4) 

Where: 

SU_i represents the system utilization for user u_i. 

SLA_i signifies the Service Level Agreement requirement for user 

u_i. 

The SLA violation(SLA-V) is calculated in terms of power 

consumption as defined in eq(5) as follows. 

𝑆𝐿𝐴 − 𝑉 =  𝒵/𝐶      (5)  

Where Z is the total number of occurrences when the data node is 

consuming more energy than the desired energy threshold and C is 

the total number of allocations in the allocation table. The 

allocation table also contains the details of the allocation of the 

migrated users as the migrated users have to be reallocated as well.  

 Problem Statement 

In contemporary research architectures, the efficient allocation of 

computational resources plays a pivotal role in meeting the diverse 

and dynamic demands of tasks and applications. Traditional 

resource allocation policies, such as minimum cost allocation, 

often lack adaptability to varying workloads and do not utilize 

historical allocation data for improved decision-making. To 

address these limitations and enhance the Quality of Service (QoS) 

in research environments, there is a pressing need to develop a 

rank-based data node allocation system.  

The evolution of swarm intelligence has significantly influenced 

rank generation in Big Data Scheduling Architectures. Inspired by 

the collective behaviours of social organisms, swarm-inspired 

algorithms have introduced dynamic, self-organizing, and adaptive 

mechanisms for creating rankings within these architectures [9–

12]. These algorithms enable data nodes to autonomously assess 

their performance, adapt to changing conditions, and refine their 

rankings based on real-time feedback. This evolution has improved 

resource allocation, enhanced Quality of Service (QoS), 

minimized power consumption, and ensured efficient resource 

utilization in the ever-evolving landscape of big data processing, 

all while promoting scalability and resilience in large-scale 

architectures. Swarm intelligence continues to play a pivotal role 

in shaping the future of distributed computing and data analytics 

[10, 13, 14]. 

 Contributions of the Research 

This research explores the design of a novel firefly-based 

(SI) algorithm, meticulously tuned to strike a balance 

between resource overutilization and underutilization, all 

while upholding essential (SLAs). The contributions can be 

listed as follows. 

• "Design and development of a firefly-based Swarm 

Intelligence (SI) algorithm with a tuned fitness function 

for optimized resource allocation." 

• "A delicate balance between resource overutilization and 

underutilization while preserving (SLAs)." 

• "Establishment of a robust evaluation framework for pre 

and post-implementation assessment of the proposed 

algorithm." 

• "Demonstration of the algorithm's superiority through 

systematic comparisons with state-of-the-art resource 

allocation methods." 

• "Enhanced resource allocation efficiency and SLA 

adherence in Big Data Scheduling Architectures." 

The rest of the paper is organized in the following manner. 

Section2 represents the literature survey that mainly focuses on the 

SI based algorithm architecture that has been applied in the same 

context. Section 3 presents the proposed work algorithm and its 

illustration and Section 4 presents the evaluation of the proposed 

work and a comparison of proposed work with other state of art 

algorithms. The paper is concluded in section 5.  

 Related Work  

The literature review includes a thorough examination of several 

optimisation methodologies in the context of big-data cloud 

computing. Numerous studies have been presented in the research 

community to address the challenges of resource scheduling for 

big data in cloud environment for efficient management and 

deployment of various applications [15–17]. In the present work, 

researcher seeks to provide a comprehensive overview of the 

approaches used in the quest of efficient resource utilisation within 

big data scheduling structures by assessing the unique 

contributions and insights contained within this publication. To 

start with Wang et al. (2018) proposed a hybrid multi-objective 

firefly method optimised for big data. To address the complexity 

inherent in huge data processing, the study used both firefly 

algorithms and multi-objective optimisation techniques. The 

authors used popular programming languages and frameworks to 

develop their algorithm, emphasising its versatility in dealing with 

various optimisation targets. The algorithm's performance review 

indicated its ability to achieve many goals at the same time. The 

study did, however, admit the need for additional research into 

parameter adjustment for maximum performance [18]. Li et al. 

(2019) suggested a fault-tolerant replica management policy that is 

energy-efficient and designed for edge-cloud scenarios. To 

guarantee optimal resource utilisation, the study focused on 

meeting both deadline and budget restrictions. To create the policy, 

the authors used mathematical modelling and optimisation 

techniques. They used simulation and validation techniques to 

demonstrate the usefulness of the proposed policy in improving 

energy efficiency and fault tolerance. However, drawbacks include 
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the mathematical model's reliance on certain assumptions and the 

need for additional empirical validation in real-world edge-cloud 

environments [8]. Jayaraj (2019) employed a nature-inspired 

firefly method with K-means clustering to optimise processes in 

big-data cloud centres. K-means clustering was used to add an 

extra layer of optimisation. When compared to traditional 

approaches, performance evaluation indicated enhanced process 

optimisation. The study did, however, highlight the algorithm's 

sensitivity to parameter values, indicating the necessity for careful 

adjustment [19]. Senthilkumar and Ilango (2020) developed an 

energy-aware work scheduling approach in big data environments 

based on a hybrid firefly-genetic algorithm. The research used 

evolutionary algorithms to improve the exploration-exploitation 

balance during the optimisation process. The authors used 

simulation tools to develop the algorithm and evaluate its 

performance. When compared to standard methods, the hybrid 

approach revealed enhanced energy-aware job scheduling. 

However, the study acknowledged the difficulty in determining 

ideal parameter values for various settings [7]. 

Alharbi et al. (2021) did a detailed evaluation of swarm 

intelligence algorithms used for cloud computing scheduling and 

optimisation. The study was used to synthesise existing knowledge 

in the topic. A thorough literature review was used by the authors 

to evaluate the performance of various swarm intelligence 

strategies. The review emphasised the advantages and 

disadvantages of various algorithms, providing significant insights 

for researchers and practitioners. However, the study emphasised 

the field's dynamic character, requiring constant updates to reflect 

developing trends [20]. Talwani et al. (2022) proposed a machine-

learning-based solution for cloud computing virtual machine 

allocation and migration. The study used machine learning 

techniques to improve decision-making in virtual machine 

allocation and migration. For algorithm construction, the authors 

used prominent machine learning frameworks and languages. The 

examination of performance revealed enhanced accuracy and 

efficiency in virtual machine administration. The study did 

acknowledge the difficulty of training the machine learning model 

using representative data, as well as the possible impact of 

changing workload patterns on model performance [21]. 

Oduwole et al. (2022) proposed an improved load balancing 

technique tailored to big-data cloud computing systems. To 

increase resource use, the study used load balancing methods and 

optimisation approaches. The authors evaluated the performance 

of the suggested technique using simulation tools. When compared 

to previous methods, the enhanced load balancing technology 

revealed improved load distribution and system performance. 

However, the study acknowledged the importance of real-world 

validation and taking into account a variety of workload scenarios 

[22]. Wang et al. (2023) addressed the issues of distributed 

computing in cloud data centre networks by utilising a 

comprehensive methodology that included effective data 

persistence and data division techniques. They intended to improve 

the overall performance of distributed computing in cloud data 

centre networks by employing innovative data management 

technologies. Their investigation's findings highlighted the 

usefulness of the proposed strategies in optimising data 

management, hence boosting the efficiency of distributed 

computing operations. The study methodically analysed many 

metrics to evaluate the performance of their technique, providing 

light on the delicate features of data persistence and partition in the 

cloud environment. However, the study acknowledged some 

limitations, emphasising the need for further investigation and 

refinement to address specific issues connected with the proposed 

techniques [23]. Kaur et al. (2023) proposed an algorithmic 

approach to cloud computing virtual machine migration that used 

the modified SESA algorithm. To establish an effective migration 

method, the study used algorithmic design and execution 

techniques. The algorithm's effectiveness in optimising virtual 

machine migration was demonstrated through performance 

evaluation. However, the study highlighted the difficulties in 

finding suitable migration parameters and the need for additional 

research in dynamic cloud settings [24]. Table 1 the literature 

review highlights the substantial advances made in optimising 

many aspects of big-data cloud computing. In tackling the issues 

connected with optimisation tasks, each study presents unique 

viewpoints, approaches, and concerns. 

Table 1: Comparative Analysis of the Existing Studies 

Authors and 

Reference 

Objective of the 

Study 

Methodology 

and 
Techniques 

Limitations and Observed 

Research Gaps 

Li et al. [8] Energy-efficient 

fault-tolerant 
replica 

management 

policy in edge-
cloud  

Mathematical 

modeling, 
Optimization 

techniques 

The application of the 

mathematical model may 
be constrained by 

assumptions. Further 

empirical validation in 
real-world edge-cloud 

environments is 

necessary. 

Wang et al. 
[18] 

Hybrid multi-
objective firefly 

algorithm for big 
data optimisation  

Firefly 
algorithms, 

Multi-objective 
optimization 

More investigation is 
required to optimise 

parameter values for 
optimal performance. 

Jayaraj [19] Process 

Optimisation of 

Big-Data Cloud 
Centre Using 

Nature-Inspired 

Firefly Algorithm 
and K-Means 

Clustering 

Nature-

inspired 

algorithms, K-
Means 

clustering 

The performance of the 

method is sensitive to 

parameter values, 
demanding careful 

customisation. 

Senthilkumar 

and Ilango 

[7] 

Energy-aware task 

scheduling in big 

data with hybrid 

firefly-GA 

Hybrid firefly-

genetic 

algorithm 

The task of establishing 

appropriate parameter 

values for various 

contexts continues to be 
difficult. 

Alharbi et al. 

[20] 

A review of the 

adoption of swarm 

intelligence 
algorithms for 

scheduling and 

optimisation in 
cloud computing. 

Literature 

review, Swarm 

intelligence 
algorithms 

The effectiveness of the 

review is determined by 

the accuracy and 
timeliness of the material 

included. 

Talwani et al. 

[21] 

Machine-

Learning-Based 
Approach for 

Virtual Machine 

Allocation and 
Migration  

Machine 

learning 
techniques 

The performance of the 

model is determined on 
the quality and 

representativeness of the 

training data. The model's 
response to changing 

workload patterns should 

be carefully considered. 

Oduwole et 

al. [22] 

Enhanced Load 

Balancing 

Technique for 
Big-data Cloud 

Computing 

Environments 

Load balancing 

algorithms, 

Optimization 
techniques 

Real-world validation is 

required to confirm the 

effectiveness of the 
enhanced load balancing 

technique. The approach 

may need to be tweaked 
for different workload 

scenarios. 

Saurabh et al. 

[24] 

With an Updated 

SESA Algorithm, 
an Algorithmic 

Approach to 

Virtual Machine 
Migration in 

Cloud Computing 

Algorithmic 

design, 
improved 

SESA 

algorithm 
using Artificial 

Bee Colony 

Determining effective 

migration parameters 
remains a challenge and 

further research is needed 

in a dynamic 
environment. 

In recent years, there has been an exponential increase in interest 
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and research focused on optimising resource allocation and job 

scheduling in the realm of big data cloud computing. As the 

volume and complexity of data grows, so does the need for 

efficient techniques to manage and process this massive amount of 

data in cloud systems. Scholars like Mangalampalli et al. [25] have 

investigated work scheduling algorithms, emphasising the need of 

optimisation in delivering effective cloud computing outcomes. 

Furthermore, the trend towards optimisation solutions is seen in 

works such as Hassan et al.'s [26], which provides a cloud-fog 

framework for resource allocation based on the firefly algorithm, 

highlighting the need of optimisation in maintaining resource 

efficiency. Bacanin et al. [27] contribute to this trend by 

developing a modified firefly algorithm for process scheduling in 

cloud with an emphasis on flexibility to varied computing 

landscapes. Elmagzoub et al. [28] also conducted a survey on the 

use of swarm intelligence-based load balancing approaches in 

cloud computing, revealing the expanding use of swarm 

intelligence methodology to address complex optimisation 

difficulties. The convergence of these research demonstrates a 

clear and growing preference for optimisation methodologies, 

particularly those based on swarm intelligence, as a critical enabler 

for improving the performance and scalability of big data cloud 

computing systems.  

 Proposed Methodology  

The proposed work is divided into two distinct phases as shown in 

Figure 2. The first phase is for the preliminary allocation of the 

user’s resource demand to data nodes based on the Min Cost 

Allocation Policy (MCAP). The MCAP policy ensures that with 

minimum cost on the execution side, the SLA is complete. In the 

second phase, the proposed work uses proposed SI architecture to 

first calculate the overloaded and the underloaded data nodes. 

These data nodes will face migrations in terms of users so that they 

can be brought to a normalised state.  

Start
Initiate Users 

and Data Nodes

Find Region of 

User and Apply 

MCAP

Calculate n 

(CPU, PC) for 

all DN

Apply Dual 

Threshold 

Policy

Identify Overutilized, 

Normal and 

Underutilized 

For Overutilized 

Data Nodes, Apply 

Proposed Selection 

Algorithm 

Migrate 

Users

Start

1(a) 1(b) 1(c)

Phase 1

Phase 2

2(a)2(b)2(c)2(d)

 

Fig 2: Overall Work Architecture  

 The Preliminary Allocation via MCAP 

The primary objective of the Preliminary Allocation phase, as 

facilitated by the MCAP algorithm to optimize the allocation of 

user data within a distributed storage system. This optimization 

process hinges on a multifaceted approach that takes into account 

the geographical regions of users and the proximity of data nodes, 

all while carefully considering the associated costs. At its core, the 

MCAP algorithm seeks to streamline the allocation process by 

identifying the region to which each user belongs. By doing so, it 

aims to enhance the overall convenience and efficiency of data 

retrieval for users. To achieve this, the algorithm leverages the 

geographical information associated with both users and data 

nodes, ensuring that users are allocated to the nearest available data 

node within their respective regions. However, in scenarios where 

multiple data nodes coexist within a single region, the MCAP 

algorithm goes beyond mere proximity considerations. It 

introduces a cost calculation mechanism that evaluates the 

potential expenses associated with data allocation decisions. This 

cost assessment takes into account various factors, including the 

user's utilization index, the expected delay, and the cost per unit of 

time for data migration.  

 

The MCAP algorithm is designed to intelligently allocate user data 

to data nodes within a distributed storage system while optimizing 

for factors such as proximity, computational resources, and cost 

efficiency. It begins by initializing an empty data structure known 

as the allocation table to track the allocation of users to data nodes. 

Then, for each user in the set of active users, the algorithm 

proceeds with a series of steps. First, it identifies the geographical 

or logical region to which the user belongs, using the user 

region(u) function. This regional information is crucial because it 

helps determine which data nodes are in proximity to the user, 

enhancing data retrieval efficiency. Next, the algorithm calculates 

the CPU demand of the user using the user CPU demand, which 

quantifies the computational resources needed by the user for 

various data operations. It then identifies feasible data nodes within 

the same region as the user, as these are potential candidates for 

data allocation. To narrow down the options, the algorithm filters 

out data nodes with CPU capacities lower than the user's CPU 

demand, ensuring that only suitable data nodes are considered. 

Crucially, MCAP goes beyond simple proximity 

considerations by introducing a cost calculation step. It 

calculates the costs associated with allocating the user to 

each of the remaining feasible data nodes. The overall cost 

of the allocation is calculated by adding the static power cost 

and the dynamic cost using equation (2) and (3). 

 Proposed scheme of balancing to optimize resource 

allocation  

3.2.1. Identification of overutilized and underutilized data 

nodes using dual threshold policy 

After the initial allocation of user data to data nodes within the 

distributed storage system, a subsequent process is initiated to 

assess and categorize these data nodes based on their CPU 

utilization and power consumption. This categorization is achieved 

by applying a Dual Threshold Policy concept, which aims to 

classify data nodes into one of three distinct categories: 

"underutilized," "overutilized," and "neutral" data nodes. 

The primary objective of this categorization process is to strike a 

balance between CPU utilization and power consumption, 

ensuring efficient resource allocation and optimal system 
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performance. A Dual Threshold Policy(DTP) is adopted that uses 

an upper threshold and a lower threshold as follows. 

𝑇𝑈𝑃𝑃𝐸𝑅 = 𝜒 + 𝑚     (5) 

𝑇𝐿𝑜𝑤𝑒𝑟 = 𝜒 − 𝑚     (6) 

Where 𝜒 is the normalised threshold for power consumption and 

CPU utilization and m is a set of threshold, 𝑚 ∈ {10 − 30}%[ref] 

𝜒 =
∑ 𝑛𝑜𝑟𝑚(𝑃𝐶)+𝑛𝑜𝑟𝑚(𝐶𝑃𝑈)𝑇𝐴

𝑎=1

𝑇𝐴
   (7)  

Where TA is total number of allocations attained via 

MCAP. The algorithm is designed to evaluate and 

categorize data nodes within a distributed storage system 

based on their resource utilization, with a specific focus on 

CPU utilization and power consumption. Its primary 

objective is to assess the efficiency of these data nodes and 

identify potential areas for resource optimization. The algorithm 

starts by collecting essential data, such as the total CPU and power 

allocation across all data nodes (represented as TCA and TPA) and 

determining the total number of data nodes in the system (TDN). 

 
These initial metrics serve as the foundation for subsequent 

analysis. To gain an understanding of the overall resource 

utilization, the algorithm calculates the mean CPU utilization 

(MCA) and mean power consumption (MPA) by dividing the total 

allocated CPU and power by the total number of data nodes. These 

mean values provide a reference point for assessing the 

performance of individual data nodes. However, since data nodes 

may have different capacities, the algorithm normalizes the CPU 

utilization (NCA) and power consumption (NPA) of each data 

node. This normalization process involves dividing the allocated 

resources by the capacity of the respective data node (DN_C and 

DN_PC), ensuring a fair and equitable comparison among data 

nodes. The crux of the algorithm lies in the determination of 

thresholds. Upper and lower thresholds are calculated for both 

CPU utilization (UTC and LTC) and power consumption (UPC 

and LPC). These thresholds are established by adding and 

subtracting a predetermined delta value (DC for CPU and DP for 

power) to the normalized mean values. These thresholds serve as 

critical reference points for categorization. Data nodes are 

categorized based on whether their normalized CPU utilization and 

power consumption fall outside the established thresholds. Data 

nodes that exceed both the upper CPU and power thresholds are 

classified as "overutilized," indicating that they are consuming 

more resources than anticipated, potentially leading to 

inefficiencies or performance degradation. Conversely, data nodes 

that fall below both lower thresholds are labelled as 

"underutilized," suggesting that they have available resources that 

are not fully utilized, presenting an opportunity for resource 

optimization. Throughout this process, the algorithm maintains 

two distinct lists: "overutilized nodes" (ON) and "underutilized 

nodes" (UN). These lists store the data nodes that meet the 

respective categorizations, providing system administrators with 

clear insights into which nodes may require resource adjustments 

to enhance overall efficiency. In summary, this algorithm serves as 

a powerful tool for evaluating and categorizing data nodes within 

a distributed storage system, contributing to the optimization of 

resource allocation and the efficient operation of the infrastructure. 

3.2.2. Selection of the users from overutilized data nodes 

Once the data nodes have been identified as overutilized or 

underutilized, the objective is to neutralise both kind of data nodes. 

If the data node is underutilized, it is holding all the resources that 

are not getting used at all and hence in such a scenario, all the users 

will have to be migrated from this data node and the data node 

becomes a candidate where other users can be located. As the 

overutilized data node has more number of users to handle and that 

is why it is not able to use its resources properly, few of the users 

have to migrated to a less burden holding data node.  Swarm 

Intelligence (SI) based algorithms are used for selecting users from 

overutilized data nodes because they draw inspiration from the 

collective behaviour of social animals or organisms, such as ants, 

bees, birds, or fireflies, to solve complex optimization problems. 

In the context of selecting users from overutilized data nodes, SI 

algorithms can help identify an optimal or near-optimal solution by 

mimicking the way these social creatures cooperate and coordinate 

to find the best path or solution in a decentralized and self-

organizing manner. 

One specific SI algorithm is the Firefly algorithm. The Firefly 

algorithm is named after the behavior of fireflies in nature. Fireflies 

use bioluminescence to communicate and attract mates. Similarly, 

in the Firefly algorithm, artificial "fireflies" represent potential 

solutions to an optimization problem. The proposed work views 

the Firefly algorithm with the following constraints.  

For data nodes D, and a set of users U each data node has a certain 

utilization and power consumption level, the aim is to select a 

subset of users from U to be relocated to different data nodes in 

order to balance the utilization and power consumption across all 

data nodes. Let's define the problem mathematically: 

• Variables: 

o Binary decision variables: Let 𝑥𝑢𝑖 be a binary variable 

that takes the value 1 if user u from set U is selected to 

be relocated to datanode i from set D, and 0 otherwise. 

• Parameters: 

o 𝑑𝑖: The current utilization level of datanode i. 

o 𝑈_𝑚𝑎𝑥 : The maximum number of users that can be 

relocated to any datanode. 

o 𝑈𝑚𝑖𝑛: The minimum number of users that should be 

relocated to any datanode to achieve a balanced load. 

 Objective Function: 

The proposed firefly algorithm has multiple objective functions 

and they are illustrated as follows. 

3.3.1. Neutralisation of the CPU utilization  

Minimize the imbalance in data node utilization and power 

consumption. This can be represented as an objective function: 

Minimize: 

∑ 𝐶𝑃𝑈𝑈𝑖 
− 𝑎𝑣𝑔𝐶𝑃𝑈𝑈𝑖∈𝐷     (8) 

Here, the 𝑎𝑣𝑔𝐶𝑃𝑈 is the total utilization across all data nodes 
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divided by the number of data nodes and 𝐶𝑃𝑈𝑈 is the cpu 

utilization for current data node 

Ensure that each data node receives a balanced load: 

𝑈𝑚𝑖𝑛 ≤
∑ 𝑈𝑢𝑢∈𝑈

𝑈
≤ 𝑈𝑚𝑎𝑥     (9) 

3.3.2. Neutralisation of the PC 

Minimize the imbalance in data node utilization and power 

consumption. This can be represented as an objective function: 

Minimize: 

∑ 𝑃𝐶𝑖 − 𝑎𝑣𝑔𝑃𝐶𝑖∈𝐷      (10) 

Where avgPC is the average power consumption across all data 

nodes. 

Ensure that each data node receives a power consumption  

𝑃𝐶𝑚𝑖𝑛 ≤
∑ 𝑃𝐶𝑢𝑢∈𝑈

𝑈
≤ 𝑃𝐶𝑚𝑎𝑥    (11) 

 Firefly Algorithm 

The Firefly Algorithm is inspired by the flashing behavior of 

fireflies in nature. Fireflies are attracted to each other based on 

their brightness, and this concept is applied to optimization 

problems. In the algorithm, each solution (represented as a firefly) 

has a brightness value, and fireflies move towards brighter ones to 

find optimal or near-optimal solutions. 

3.4.1. Mathematical Architecture and Steps 

Here's a step-by-step breakdown of how the Firefly Algorithm can 

be applied to your problem: 

• Initialization: 

o Initialize a population of fireflies, each representing 

a potential solution to the problem of user selection 

from overutilized data nodes. 

o Define a fitness function that quantifies how well a 

solution balances datanode utilization. Brighter 

fireflies have higher fitness values. 

• Attraction Index (Attractiveness): 

o Calculate the attraction (attractiveness) between two 

fireflies (solutions) using an attractiveness function. 

The attractiveness between firefly i and firefly j can 

be represented as β(e), where e is the Euclidean 

distance between fireflies i and j. 

o The attractiveness function could be defined as 

follows: 

𝛽(𝑒) = 𝛽0 ⋅ 𝑒−𝛾𝑟2     (11) 

o Here, 𝛽0 and γ are algorithm-specific parameters and 

r is the distance between two fireflies. 

• Firefly Movement: 

o Fireflies move towards other fireflies with higher 

attractiveness values. The movement of a firefly 

toward another firefly is governed by the following 

equation:  

o Move towards firefly j: 
o 𝒙𝒊(𝑡 + 1) = 𝒙𝑖(𝑡) + 𝛽 exp−𝛾(𝒙𝑗(𝑡)−𝒙𝑖(𝑡))

2

× 𝑟 + 𝛼 ⋅
(𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑡𝑒𝑝)  (12) 

o In proposed context, this means that solutions 

(representing user configurations) that provide better 

load balancing will attract other solutions, causing 

them to adjust their user selections accordingly. 

• Update Brightness (Fitness): After the movement step, 

update the brightness (fitness) of each firefly based on 

how well its associated solution balances data node 

utilization. A lower fitness value indicates better load 

balancing. 

• Iteration: Repeat the attraction, movement, and 

brightness update steps for a predefined number of 

iterations or until a convergence criterion is met. 

• Solution Extraction: 

o The final positions of the fireflies represent a set of 

users relocated to data nodes, providing a balanced 

load across data nodes. Select the solution (firefly) 

with the lowest fitness value as the optimized 

configuration. 

3.4.2. Proposed Firefly  

The "Proposed Firefly Algorithm (PFA)" is designed for the 

selection of users from overutilized data nodes. It employs a 

firefly-inspired selection procedure where the "brighter fireflies" 

correspond to users categorized under "neutral data nodes. The 

main goal of this algorithm is to intelligently select users from a 

group of overutilized data nodes while taking into account their 

CPU utilization and power consumption characteristics. It achieves 

this by drawing inspiration from the behaviour of fireflies in 

nature. 

Input Parameters: 

• Allocation Table (AT): This table contains information 

about the allocation status of users on various data nodes. 

• Overutilized Data Node (OD): The algorithm targets a 

specific overutilized data node for user selection. 

• Neutral Data Nodes (ND): These represent data nodes 

where users exhibit stable and neutral behavior. 

 
Initialization: The algorithm begins by identifying the "Brighter 

Firefly." In the context of this algorithm, the Brighter Firefly refers 

to the data node that is categorized as a neutral data node and serves 

as a reference point for selecting users with similar characteristics. 

Several key parameters are set up: 

• Maximum generations (max_gen): This parameter 

determines how many generations or iterations the algorithm 

will perform. It is set to 1000. 

• Generation counter (g): Initialized to 0, this counter keeps 

track of the current generation. 

• AI (Attractiveness Index) List: An empty list is created to 

store the calculated attractiveness values for users. 

• Constants: Three constants are defined - alpha (0.01), beta 

(1), and gamma (a range between 0 and 1). 

Algorithm Main Loop: The algorithm operates in a loop, where 

each iteration represents a generation. It continues to execute until 

the generation counter (g) reaches the maximum specified number 

of generations (max_gen). Within each generation, the 
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algorithm proceeds as follows: 

1. User Selection: It iterates through all the users on the 

overutilized data node (OD) for all users (k) in the set U. 

2. Pairing with Brighter Fireflies: For each user (i), the 

algorithm pairs the user with random other users or 

"fireflies" to simulate the interaction between users. These 

fireflies represent users from neutral data nodes (ND). 

3. Weighted Evaluation: The algorithm assigns weight 

factors, W_1 and W_2, to CPU utilization and power 

consumption, respectively. These weight factors reflect the 

importance or priority of these two characteristics in the user 

selection process. The algorithm then calculates r_i and r_j, 

representing the weighted evaluation of CPU utilization and 

power consumption for the current user and the randomly 

paired firefly. 

4. Attractiveness Calculation: The attractiveness (ai) of the 

user is computed using a mathematical formula. This 

formula incorporates the differences (r) between the user's 

characteristics and those of the paired firefly, along with the 

defined weight factors and constants (alpha, beta, and 

gamma). If the calculated attractiveness (ai) exceeds the 

current AI value for that user, the AI value is updated with 

the new calculated value. 

• End of Generation: Once all users on the overutilized 

data node have been evaluated for a given generation, the 

algorithm proceeds to the next generation (if applicable). 

• Termination: The algorithm concludes after the 

specified maximum number of generations (max_gen) 

has been reached. 

• User Selection and Output: After the algorithm 

completes its iterations, it selects users with the 

maximum AI values. These users are considered the 

most suitable for allocation on the overutilized data 

node. The algorithm compiles a list of these selected 

users, referred to as U_List, and returns it as the output. 

The algorithm can be mathematically explained as follows. 

consider a simplified scenario with three users (User 1, User 2, 

User 3) on an overutilized data node (OD). We will calculate the 

attractiveness index (AI) for each user over three generations 

(max_gen = 3). 

Initialization: 

• max_gen = 3 

• g = 0 (initial generation) 

• AI[] is an empty list 

• alpha = 0.01 

• beta = 1 

• Let's assume a fixed value for gamma for simplicity: 

gamma = 0.5 

Initial Data: Users on OD: 

o User 1: CPU = 70%, PC = 20 

o User 2: CPU = 80%, PC = 25 

o User 3: CPU = 65%, PC = 18 

• Brighter Firefly (from ND): 

• Firefly: CPU = 75%, PC = 22 

• Weight Factors: 

o W_1 = 0.7 (for CPU) 

o W_2 = 0.3 (for PC) 

Algorithm Main Loop: Generation 1 (g = 1): 

User Selection and Pairing: For User 1: 

• Pairing with Firefly: Firefly's CPU = 75%, PC = 22 

o Calculate r_i: (70% * 0.7 + 20 * 0.3) = 55.9 

o Calculate r_j: (75% * 0.7 + 22 * 0.3) = 56.1 

o Calculate r: r_i - r_j = 55.9 - 56.1 = -0.2 

o Calculate ai: AI[User 1] + 1 * exp(-0.5 * (-

0.2)^2) * 70 + 0.01 * 0.5 ≈ AI[User 1] + 0.998 

* 70 + 0.005 ≈ AI[User 1] + 69.86 

o AI[User 1] is updated to approximately 69.86. 

o Repeat the same process for User 2 and User 

3. 

▪ End of Generation 1: g = 2 

• Generation 2 (g = 2): 

• User Selection and Pairing: 

o Repeat the pairing and attractiveness 

calculation process for all users based on the 

updated AI values from the previous 

generation. 

• End of Generation 2: g = 3 

• Generation 3 (g = 3): 

• User Selection and Pairing: 

o Again, repeat the pairing and attractiveness 

calculation process for all users based on the 

AI values from the previous generation. 

• End of Generation 3: g = 4 

• Termination: Since g = 4 and max_gen = 3, the 

algorithm stops after three generations. 

• User Selection and Output: 

• At the end of the algorithm, we have AI values for all 

users: 

o AI[User 1] ≈ 69.86 

o AI[User 2] ≈ 70.14 

o AI[User 3] ≈ 69.71 

• The user with the highest AI value is User 2 (AI ≈ 70.14). 

Therefore, User 2 is selected as the most suitable user for 

allocation on the overutilized data node. 

The proposed algorithm is evaluated for several QoS parameters 

namely the power consumption using eq(1) and (2) and the SLA-

V is calculated using eq(5) in various scenarios and is discussed in 

detail in the next section.  

 Results and Discussions  

The aim is to comprehensively evaluate the performance of four 

distinct workload allocation algorithms within a dynamic 

computing environment. Two different load factors, denoted as L1 

(representing 1000 users) and L2 (representing 5000 users) reflect 

varying levels of user load, ranging from relatively low to high user 

populations. Each load factor is further segmented into 15 discrete 

breakdowns, allowing for a detailed examination of algorithm 

behaviour under different user load profiles. The primary objective 

of this study is to conduct a comparative analysis of how these 

algorithms manage workloads and allocate resources effectively as 

user demands fluctuate. One of the critical parameters under 

investigation is power consumption, a pivotal metric for assessing 

the energy efficiency of the workload allocation algorithms. Lower 

power consumption values indicate that the algorithms are more 

adept at optimizing resource usage, leading to reduced energy 

consumption within the computing environment. The second key 

parameter of interest is SLA-V, which serves as a crucial 

performance indicator. SLA violation quantifies the extent to 

which the workload allocation algorithms meet or fail to meet 

predefined service level agreements with users. A lower SLA-V 

value implies a higher level of adherence to these agreements, 

reflecting the algorithms' ability to provide consistent and reliable 

services to users. Analysing SLA-V across different load factors 

and breakdowns helps us gauge the algorithms' effectiveness in 

maintaining service quality as user demands vary. The results are 
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discussed for all the types of load namely L1, L2 and L3. 

 

 

 Analysis for Load Factor 1(1000) users 

As shown in table 1 the "Proposed" algorithm consistently 

demonstrates lower power consumption compared to other 

algorithms, which indicates its efficiency in managing resources 

and reducing energy consumption. 

Here are the average power consumption values for each 

algorithm: 

• Proposed: 38.98kW 

• Li et al.: 53.84kW 

• Suruchi et al.: 55.95kW 

• Saurabh et al.: 53.58kW 

Table 1: Power Consumption analysis for L1 

Distribution Proposed Li et al. [8] 
Suruchi et al. 

[21] 

Saurabh et al. 

[24] 

100 5.64082143 10.1450271 12.09659333 12.36191938 

164 9.44259689 13.3384721 15.46435251 16.15319249 

229 12.0513603 16.3907164 16.88897836 16.10008227 

293 15.1937931 21.9685973 24.37217164 20.9515158 

357 19.5184232 26.240041 30.12025422 27.92870282 

421 22.5137429 33.9604756 34.18526468 32.90867973 

486 25.8148021 38.9390337 39.80427845 34.77450016 

550 28.2686632 44.3787863 39.00669429 40.11287098 

614 30.7168947 44.7046858 44.6097926 45.37542077 

679 34.2641399 47.6808391 52.10213055 51.18633562 

743 38.1738451 57.3770618 52.92410366 52.07214003 

807 41.5447681 60.824473 61.86018382 58.89262268 

871 44.7570827 65.5533185 64.10480432 64.25661347 

936 47.0288949 66.6609151 68.01583494 67.44495412 

1000 50.0641325 71.0075955 75.71108713 75.27384308 

The improvement analysis is as follows. 

• Improvement over Li et al.: 

o Improvement = [(Power Consumption Li et al. - Power 

Consumption Proposed) / Power Consumption Li et al.] * 

100 

o Improvement = [(53.84 - 38.98) / 53.84] * 100 ≈ 27.59% 

• Improvement over Suruchi et al.: 

o Improvement = [(Power Consumption Suruchi et al. - Power 

Consumption Proposed) / Power Consumption Suruchi et 

al.] * 100 

o Improvement = [(55.95 - 38.98) / 55.95] * 100 ≈ 30.34% 

• Improvement over Saurabh et al.: 

o Improvement = [(Power Consumption Saurabh et al. - Power 

Consumption Proposed) / Power Consumption Saurabh et 

al.] * 100 

o Improvement = [(53.58 - 38.98) / 53.58] * 100 ≈ 32.42% 

The "Proposed" algorithm demonstrates significant improvements 

in power consumption compared to other algorithms, with 

improvements ranging from approximately 27.59% to 32.42%. 

These improvements highlight the well-tuned resource 

management capabilities of the "Proposed" algorithm, resulting in 

lower energy consumption and more efficient resource utilization. 

The "Proposed" algorithm consistently maintains lower SLA 

violation values compared to other algorithms, indicating its 

effectiveness in ensuring the quality of service. Here are the 

average SLA-V values for each algorithm: 

• Proposed: 0.00561 

• Li et al.: 0.04465 

• Suruchi et al.: 0.03518 

• Saurabh et al.: 0.05067 

The improvement analysis is as follows. 

• Improvement over Li et al.: 

o Improvement = [(SLA-V Li et al. - SLA-V Proposed) / 

SLA-V Li et al.] * 100 

o Improvement = [(0.04465 - 0.00561) / 0.04465] * 100 ≈ 

87.48% 

Table 2: SLA-V analysis 

Distribution Proposed Li et al. [8] 
Suruchi et 

al. [21] 

Saurabh et al. 

[24] 

100 0.018095001 0.062068432 0.026864154 0.064759585 

164 0.000317959 0.029558027 0.021924484 0.065441046 

229 0.00385544 0.067300501 0.029238205 0.067964436 

293 0.000534205 0.051270209 0.062827664 0.034256673 

357 0.015285564 0.032087155 0.044701904 0.068528587 

421 0.016454347 0.027800191 0.033732691 0.033698517 

486 0.00241134 0.024699271 0.069526467 0.027759603 

550 0.000558464 0.052661037 0.036489671 0.041694472 

614 0.00013996 0.06336164 0.030796141 0.041262325 

679 0.003008715 0.058046919 0.038252722 0.04234027 

743 0.00837765 0.050943732 0.0282511 0.021713545 

807 0.005539618 0.0431925 0.06728949 0.068972504 

871 0.011702805 0.020357099 0.02091867 0.065619352 

936 0.001571872 0.024572589 0.026104257 0.034525826 

1000 0.003363368 0.067112406 0.033509017 0.05895721 

• Improvement over Suruchi et al.: 

o Improvement = [(SLA-V Suruchi et al. - SLA-V Proposed) 

/ SLA-V Suruchi et al.] * 100 

o Improvement = [(0.03518 - 0.00561) / 0.03518] * 100 ≈ 

84.09% 

• Improvement over Saurabh et al.: 

o Improvement = [(SLA-V Saurabh et al. - SLA-V 

Proposed) / SLA-V Saurabh et al.] * 100 

o Improvement = [(0.05067 - 0.00561) / 0.05067] * 100 ≈ 

88.91% 

 

Fig 3: Power consumption and SLA-V for load factor L1 

The "Proposed" algorithm consistently exhibits substantial 

improvements in SLA-V compared to other algorithms, with 

improvements ranging from approximately 84.09% to 88.91%. 

These improvements underscore the ability of the "Proposed" 

algorithm to maintain a higher quality of service and minimize 

SLA violations, making it a suitable choice for meeting service 

level agreements effectively. 

 Analysis for Load Factor 2(5000) users 

Similar to L1, the analysis for L2 is given in Table 3 showing 

power consumption for proposed and the three existing studies 

used for the comparison in the research work.  

• Proposed: 76.56kW 

• Li et al.: 102.25kW 

• Suruchi et al.: 102.07kW 
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• Saurabh et al.: 101.98kW 

Now, let's calculate the improvements attained by the "Proposed" 

algorithm over the other algorithms: 

• Improvement over Li et al.: 

o Improvement = [(Power Consumption Li et al. - Power 

Consumption Proposed) / Power Consumption Li et al.] 

* 100 

o Improvement = [(102.25 - 76.56) / 102.25] * 100 ≈ 

25.14% 

Table 3: Power Consumption for L2 

Users Proposed Li et al. [8] 
Suruchi et al. 

[21] 
Saurabh et al. [24] 

2100 5.95718591 7.50011574 10.48688732 9.106042427 

2500 12.905367 21.701618 17.78898721 20.17295237 

2900 19.1013584 26.4131227 31.91222286 31.03450181 

3300 26.9434551 35.7361326 36.92914752 35.53311869 

3500 33.6166881 49.1978013 46.27696936 48.2093594 

3700 40.3487029 55.5101549 58.62830302 55.49445839 

3850 47.0098716 69.090884 64.62131424 65.70923505 

4000 53.5313373 74.2493783 77.10814203 76.50430966 

4150 60.9429021 86.8370981 87.89411094 83.08496872 

4300 67.2882023 97.1242244 95.39783453 93.33488613 

4450 73.9272632 102.564385 103.3139435 103.2418134 

4600 80.7541006 114.020649 112.9814169 112.9025299 

4750 87.9325494 125.840064 124.2445544 124.8508732 

4900 95.1315295 134.509298 134.5384574 135.7433945 

5000 101.993576 145.808052 140.39982 144.851383 

• Improvement over Suruchi et al.: 

o Improvement = [(Power Consumption Suruchi et al. - 

Power Consumption Proposed) / Power Consumption 

Suruchi et al.] * 100 

o Improvement = [(102.07 - 76.56) / 102.07] * 100 ≈ 

25.00% 

• Improvement over Saurabh et al.: 

o Improvement = [(Power Consumption Saurabh et al. - 

Power Consumption Proposed) / Power Consumption 

Saurabh et al.] * 100 

o Improvement = [(101.98 - 76.56) / 101.98] * 100 ≈ 

24.91% 

From table 3 it is observed that there is a progressive increase in 

power consumption across all algorithms as the distribution 

(number of users) escalates. This trend underscores its efficiency 

in managing resources efficiently, even under heavier workloads. 

Furthermore, as the distribution increases, the gap between the 

power consumption of the "Proposed" algorithm and other 

algorithms widens, emphasizing its superior resource utilization 

and energy-saving capabilities. 

Average Analysis: The average SLA violation values for each 

algorithm are as follows: 

• Proposed: 0.01046 

• Li et al.: 0.05488 

• Suruchi et al.: 0.04999 

• Saurabh et al.: 0.04628 

Improvement analysis of proposed work over Li et al.: 

o Improvement = [(SLA Violation Li et al. - SLA Violation 

Proposed) / SLA Violation Li et al.] * 100 

o Improvement = [(0.045637 - 0.017777866) / 0.045637] * 

100 ≈ 61.04% 

• Improvement over Suruchi et al.: 

o Improvement = [(SLA Violation Suruchi et al. - SLA 

Violation Proposed) / SLA Violation Suruchi et al.] * 100 

o Improvement = [(0.067623729 - 0.017777866) / 

0.067623729] * 100 ≈ 73.66% 

Table 4: SLA-V for L2 

Users Proposed Li et al. [8] Suruchi et al. [21] 
Saurabh et al. 

[24] 

2100 0.017777866 0.045637 0.067623729 0.05026109 

2500 0.004982366 0.052966776 0.030299551 0.035210994 

2900 0.011267606 0.066257075 0.045822359 0.028643128 

3300 0.000423562 0.069536048 0.039311148 0.030849521 

3500 0.008022763 0.063099172 0.034919686 0.037123462 

3700 0.01282202 0.054525252 0.051131151 0.050591642 

3850 0.019174518 0.031475875 0.034302445 0.035116063 

4000 0.000256923 0.022559112 0.063424416 0.046434512 

4150 0.012530703 0.023910588 0.03874588 0.02590472 

4300 0.014119908 0.04785654 0.058891171 0.058104262 

4450 0.001222804 0.056423034 0.027758659 0.04517569 

4600 0.001337962 0.05354237 0.068857759 0.053106556 

4750 0.000707767 0.064489161 0.053232322 0.062483506 

4900 0.007476267 0.061447825 0.050681617 0.067341488 

5000 0.015174623 0.05747858 0.043045653 0.02383538 

• Improvement over Saurabh et al.: 

o Improvement = [(SLA Violation Saurabh et al. - SLA 

Violation Proposed) / SLA Violation Saurabh et al.] * 100 

o Improvement = [(0.05026109 - 0.017777866) / 

0.05026109] * 100 ≈ 64.65% 

 

 

Fig 4: Power consumption and SLA-V for load factor L2 

The "Proposed" algorithm consistently outperforms the other 

algorithms with significant improvements ranging from 

approximately 61.04% to 73.66%. The average analysis 

underscores the superior SLA compliance of the "Proposed" 

algorithm, with the lowest average SLA violation of 0.01046. This 

indicates that the "Proposed" algorithm effectively adapts to higher 

user loads, maintaining lower SLA violations and ensuring more 

reliable service quality as the system scales. This trend underscores 

the scalability and robustness of the "Proposed" algorithm in 

delivering improved SLA compliance with increasing workloads, 

making it a valuable choice for systems requiring consistent and 

dependable performance. 

 Conclusion 

In today's world of research and technology, the old ways of 

deciding how to use these resources don't always work well with 

our ever-changing needs, and they often don't learn from our past 

experiences. The proposed algorithm, based on the Firefly 
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optimization technique, incorporates a finely tuned objective and 

fitness function to optimize resource allocation and ensure high-

quality service delivery in big user base cloud system. Under Load 

Factor L1 (1000 users), the "Proposed" algorithm consistently 

demonstrated superior power consumption efficiency, consuming 

approximately 27.59% less power than Li et al., 30.34% less than 

Suruchi et al., and 32.42% less than Saurabh et al. This remarkable 

reduction in power consumption underscores its robust resource 

management capabilities, contributing to energy conservation. 

Similarly, under Load Factor L2 (5000 users), the "Proposed" 

algorithm maintained its efficiency, exhibiting an average power 

consumption lower than Li et al., Suruchi et al., and Saurabh et al. 

Under both load factors, it consistently maintained lower SLA 

violation percentages compared to other algorithms, signifying its 

ability to meet service quality requirements. The proposed Firefly-

based algorithm, equipped with a finely tuned objective function, 

exhibits outstanding resource optimization capabilities. Its 

substantial power consumption reductions and consistently lower 

SLA violations under varying load factors make it a promising 

solution for enhancing energy efficiency and service quality in 

large-scale systems. In the future, this framework could further 

contribute to improved sustainability and performance in complex 

environments. 
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