

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 3906–3916 |3906

Optimizing Resource Allocation in Big Data Scheduling

Architectures Using a Tuned Firefly Algorithm

Rohit Kumar Verma1, Sukhvir Singh2

Submitted: 25/01/2024 Revised: 03/03/2024 Accepted: 11/03/2024

Abstract: In contemporary research architectures, the efficient allocation of computational resources is paramount to meet the dynamic

and diverse demands of tasks and applications. Traditional resource allocation policies often struggle with adaptability to varying workloads

and underutilize historical allocation data. To address these limitations and enhance Quality of Service (QoS) in research environments, a

rank-based data node allocation system is imperative. This research introduces a novel firefly-based Swarm Intelligence (SI) algorithm,

meticulously tuned to strike a balance between resource overutilization and underutilization while upholding essential Service Level

Agreements (SLAs). The contributions of this work encompass algorithm design, the delicate equilibrium between resource usage and

SLA adherence, the establishment of a robust evaluation framework, and systematic comparisons with state-of-the-art resource allocation

methods. Furthermore, this study takes into account different load factors, providing a comprehensive analysis of resource allocation

efficiency across varying workloads. The algorithm's performance is evaluated based on QoS metrics, including power consumption and

SLA adherence, and compared with existing allocation methods. The results underscore the algorithm's superiority in enhancing resource

allocation efficiency and SLA adherence in Big Data Scheduling Architectures.

Keywords: Resource Allocation, Swarm Intelligence, Quality of Service, Service Level Agreements, Big Data Scheduling, Optimization,

Efficiency, Load Factors, Computational Resources, Dynamic Workloads.

 Introduction

In today's digitally driven world, we are experiencing an

exponential explosion of data generation and consumption, a

phenomenon commonly referred to as "big data." The era of big

data is marked by an overwhelming influx of data from various

sources, including social media, sensors, mobile devices, and the

Internet of Things (IoT) [1]. These data streams have evolved into

massive reservoirs of information, with volumes ranging from

terabytes to zettabytes, characterized by the relentless flow of data,

and encompassing a wide spectrum of formats and types. Big data,

with its tremendous potential, offers unprecedented opportunities

for organizations across diverse sectors [2, 3]. It promises

transformative insights, informed decision-making, and ground-

breaking innovations. However, the journey from data to

actionable insights is laden with formidable challenges, and one of

the most fundamental among them is the effective allocation of

resources in the context of big data due to diverse application and

user base seeking to use big data architecture [4, 5].

Job

1

Job

2

Job

3

Job

4

 .

Job

1

Job

2

Job

3

Job

4

 .

Job

1

Job

2

Job

3

Job

4

 .

Job

1

Job

2

Job

3

Job

4

 .

Job

1

Job

2

Job

3

Job

4

 .

1 2 3 4 5

Q1 Q2 Q3 Q4 Q5

Client 1

Client n

1

2

Nodes Cluster

Energy Aware Scheduler

Energy-aware Scheduling

Monitor

Turn-off

node

Turn-on

node

Nodes Turn on/off

Management

Job Submission

System Metrics

Module

Component

Fig 1: Job Scheduler in Big Data

Resource allocation involves the judicious distribution and

management of computing resources such as processing capacity,

memory, storage, and network bandwidth to enable the efficient

processing and analysis[6, 7] of big data. This crucial facet of big

data analytics ensures that computational tasks are executed

1*PhD Research Scholar, Department of Computer Science, Himachal

Pradesh University, Shimla, India

2Assistant Professor, Department of Computer Science, Himachal

Pradesh University, Shimla, India

* Corresponding Author Email: pverma1542015@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 3906–3916 |3907

seamlessly and within defined time frames [8].

Power aware allocation has been a part of Big data scheduling

architectures since 2010 and different power consumption models

have been introduced since then. The power consumption of the

scheduling process depends upon two factors namely the static

consumption and the dynamic consumption defined in eq(1) and

(2).

𝑆𝑃𝑐 =
𝐽𝑅𝑝

𝐸𝑥𝑐𝑝
∗ Uc (1)

𝐷𝑃𝐶 =
𝐽𝐶

𝐸𝑥𝑐𝑝
∗ Uc (2)

Where 𝐽𝑅 is the remaining job 𝑖𝑛 𝑝𝑡ℎ buffer 𝐸𝑥𝑐𝑝 is the execution

capacity of the executer for particular buffer p and Uc is the unit

cost of execution in watt. 𝐽𝐶 is the current job list. The scheduling

environment can be defined as follows.

Definition 1: The big data scheduler (BDS) is a scheduler that

handles users 𝑈 = {𝑢1, 𝑢2, . . 𝑢𝑛} with multiple locations 𝐿 =
{𝑙1, 𝑙2, 𝑙3 … . 𝑙𝑛} with varying job request with different priorities

P={p1,p2,….pn} with the minimization of the overall power

consumption PC={pc1,pc2….pcn} so that neither the system is

underutilized or overutilized and minimum Service Level

Agreement(SLA) is met.

Minimize ∑
PCi

SUi

n
i=1 ×

SLAi

pi
 (3)

Lemma: In the context of the Big Data Scheduler (BDS), the

system should achieve a balanced allocation of resources to meet

user demands while minimizing overall power consumption. This

requires that the system utilization (SU_i) for each user u_i

satisfies the constraint:

𝑀𝑖𝑛𝑆𝑈 < 𝑆𝑈𝑖 < 𝑀𝑎𝑥𝑆𝑈 (4)

Where:

SU_i represents the system utilization for user u_i.

SLA_i signifies the Service Level Agreement requirement for user

u_i.

The SLA violation(SLA-V) is calculated in terms of power

consumption as defined in eq(5) as follows.

𝑆𝐿𝐴 − 𝑉 = 𝒵/𝐶 (5)

Where Z is the total number of occurrences when the data node is

consuming more energy than the desired energy threshold and C is

the total number of allocations in the allocation table. The

allocation table also contains the details of the allocation of the

migrated users as the migrated users have to be reallocated as well.

 Problem Statement

In contemporary research architectures, the efficient allocation of

computational resources plays a pivotal role in meeting the diverse

and dynamic demands of tasks and applications. Traditional

resource allocation policies, such as minimum cost allocation,

often lack adaptability to varying workloads and do not utilize

historical allocation data for improved decision-making. To

address these limitations and enhance the Quality of Service (QoS)

in research environments, there is a pressing need to develop a

rank-based data node allocation system.

The evolution of swarm intelligence has significantly influenced

rank generation in Big Data Scheduling Architectures. Inspired by

the collective behaviours of social organisms, swarm-inspired

algorithms have introduced dynamic, self-organizing, and adaptive

mechanisms for creating rankings within these architectures [9–

12]. These algorithms enable data nodes to autonomously assess

their performance, adapt to changing conditions, and refine their

rankings based on real-time feedback. This evolution has improved

resource allocation, enhanced Quality of Service (QoS),

minimized power consumption, and ensured efficient resource

utilization in the ever-evolving landscape of big data processing,

all while promoting scalability and resilience in large-scale

architectures. Swarm intelligence continues to play a pivotal role

in shaping the future of distributed computing and data analytics

[10, 13, 14].

 Contributions of the Research

This research explores the design of a novel firefly-based

(SI) algorithm, meticulously tuned to strike a balance

between resource overutilization and underutilization, all

while upholding essential (SLAs). The contributions can be

listed as follows.

• "Design and development of a firefly-based Swarm

Intelligence (SI) algorithm with a tuned fitness function

for optimized resource allocation."

• "A delicate balance between resource overutilization and

underutilization while preserving (SLAs)."

• "Establishment of a robust evaluation framework for pre

and post-implementation assessment of the proposed

algorithm."

• "Demonstration of the algorithm's superiority through

systematic comparisons with state-of-the-art resource

allocation methods."

• "Enhanced resource allocation efficiency and SLA

adherence in Big Data Scheduling Architectures."

The rest of the paper is organized in the following manner.

Section2 represents the literature survey that mainly focuses on the

SI based algorithm architecture that has been applied in the same

context. Section 3 presents the proposed work algorithm and its

illustration and Section 4 presents the evaluation of the proposed

work and a comparison of proposed work with other state of art

algorithms. The paper is concluded in section 5.

 Related Work

The literature review includes a thorough examination of several

optimisation methodologies in the context of big-data cloud

computing. Numerous studies have been presented in the research

community to address the challenges of resource scheduling for

big data in cloud environment for efficient management and

deployment of various applications [15–17]. In the present work,

researcher seeks to provide a comprehensive overview of the

approaches used in the quest of efficient resource utilisation within

big data scheduling structures by assessing the unique

contributions and insights contained within this publication. To

start with Wang et al. (2018) proposed a hybrid multi-objective

firefly method optimised for big data. To address the complexity

inherent in huge data processing, the study used both firefly

algorithms and multi-objective optimisation techniques. The

authors used popular programming languages and frameworks to

develop their algorithm, emphasising its versatility in dealing with

various optimisation targets. The algorithm's performance review

indicated its ability to achieve many goals at the same time. The

study did, however, admit the need for additional research into

parameter adjustment for maximum performance [18]. Li et al.

(2019) suggested a fault-tolerant replica management policy that is

energy-efficient and designed for edge-cloud scenarios. To

guarantee optimal resource utilisation, the study focused on

meeting both deadline and budget restrictions. To create the policy,

the authors used mathematical modelling and optimisation

techniques. They used simulation and validation techniques to

demonstrate the usefulness of the proposed policy in improving

energy efficiency and fault tolerance. However, drawbacks include

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 3906–3916 |3908

the mathematical model's reliance on certain assumptions and the

need for additional empirical validation in real-world edge-cloud

environments [8]. Jayaraj (2019) employed a nature-inspired

firefly method with K-means clustering to optimise processes in

big-data cloud centres. K-means clustering was used to add an

extra layer of optimisation. When compared to traditional

approaches, performance evaluation indicated enhanced process

optimisation. The study did, however, highlight the algorithm's

sensitivity to parameter values, indicating the necessity for careful

adjustment [19]. Senthilkumar and Ilango (2020) developed an

energy-aware work scheduling approach in big data environments

based on a hybrid firefly-genetic algorithm. The research used

evolutionary algorithms to improve the exploration-exploitation

balance during the optimisation process. The authors used

simulation tools to develop the algorithm and evaluate its

performance. When compared to standard methods, the hybrid

approach revealed enhanced energy-aware job scheduling.

However, the study acknowledged the difficulty in determining

ideal parameter values for various settings [7].

Alharbi et al. (2021) did a detailed evaluation of swarm

intelligence algorithms used for cloud computing scheduling and

optimisation. The study was used to synthesise existing knowledge

in the topic. A thorough literature review was used by the authors

to evaluate the performance of various swarm intelligence

strategies. The review emphasised the advantages and

disadvantages of various algorithms, providing significant insights

for researchers and practitioners. However, the study emphasised

the field's dynamic character, requiring constant updates to reflect

developing trends [20]. Talwani et al. (2022) proposed a machine-

learning-based solution for cloud computing virtual machine

allocation and migration. The study used machine learning

techniques to improve decision-making in virtual machine

allocation and migration. For algorithm construction, the authors

used prominent machine learning frameworks and languages. The

examination of performance revealed enhanced accuracy and

efficiency in virtual machine administration. The study did

acknowledge the difficulty of training the machine learning model

using representative data, as well as the possible impact of

changing workload patterns on model performance [21].

Oduwole et al. (2022) proposed an improved load balancing

technique tailored to big-data cloud computing systems. To

increase resource use, the study used load balancing methods and

optimisation approaches. The authors evaluated the performance

of the suggested technique using simulation tools. When compared

to previous methods, the enhanced load balancing technology

revealed improved load distribution and system performance.

However, the study acknowledged the importance of real-world

validation and taking into account a variety of workload scenarios

[22]. Wang et al. (2023) addressed the issues of distributed

computing in cloud data centre networks by utilising a

comprehensive methodology that included effective data

persistence and data division techniques. They intended to improve

the overall performance of distributed computing in cloud data

centre networks by employing innovative data management

technologies. Their investigation's findings highlighted the

usefulness of the proposed strategies in optimising data

management, hence boosting the efficiency of distributed

computing operations. The study methodically analysed many

metrics to evaluate the performance of their technique, providing

light on the delicate features of data persistence and partition in the

cloud environment. However, the study acknowledged some

limitations, emphasising the need for further investigation and

refinement to address specific issues connected with the proposed

techniques [23]. Kaur et al. (2023) proposed an algorithmic

approach to cloud computing virtual machine migration that used

the modified SESA algorithm. To establish an effective migration

method, the study used algorithmic design and execution

techniques. The algorithm's effectiveness in optimising virtual

machine migration was demonstrated through performance

evaluation. However, the study highlighted the difficulties in

finding suitable migration parameters and the need for additional

research in dynamic cloud settings [24]. Table 1 the literature

review highlights the substantial advances made in optimising

many aspects of big-data cloud computing. In tackling the issues

connected with optimisation tasks, each study presents unique

viewpoints, approaches, and concerns.

Table 1: Comparative Analysis of the Existing Studies

Authors and

Reference

Objective of the

Study

Methodology

and
Techniques

Limitations and Observed

Research Gaps

Li et al. [8] Energy-efficient

fault-tolerant
replica

management

policy in edge-
cloud

Mathematical

modeling,
Optimization

techniques

The application of the

mathematical model may
be constrained by

assumptions. Further

empirical validation in
real-world edge-cloud

environments is

necessary.

Wang et al.
[18]

Hybrid multi-
objective firefly

algorithm for big
data optimisation

Firefly
algorithms,

Multi-objective
optimization

More investigation is
required to optimise

parameter values for
optimal performance.

Jayaraj [19] Process

Optimisation of

Big-Data Cloud
Centre Using

Nature-Inspired

Firefly Algorithm
and K-Means

Clustering

Nature-

inspired

algorithms, K-
Means

clustering

The performance of the

method is sensitive to

parameter values,
demanding careful

customisation.

Senthilkumar

and Ilango

[7]

Energy-aware task

scheduling in big

data with hybrid

firefly-GA

Hybrid firefly-

genetic

algorithm

The task of establishing

appropriate parameter

values for various

contexts continues to be
difficult.

Alharbi et al.

[20]

A review of the

adoption of swarm

intelligence
algorithms for

scheduling and

optimisation in
cloud computing.

Literature

review, Swarm

intelligence
algorithms

The effectiveness of the

review is determined by

the accuracy and
timeliness of the material

included.

Talwani et al.

[21]

Machine-

Learning-Based
Approach for

Virtual Machine

Allocation and
Migration

Machine

learning
techniques

The performance of the

model is determined on
the quality and

representativeness of the

training data. The model's
response to changing

workload patterns should

be carefully considered.

Oduwole et

al. [22]

Enhanced Load

Balancing

Technique for
Big-data Cloud

Computing

Environments

Load balancing

algorithms,

Optimization
techniques

Real-world validation is

required to confirm the

effectiveness of the
enhanced load balancing

technique. The approach

may need to be tweaked
for different workload

scenarios.

Saurabh et al.

[24]

With an Updated

SESA Algorithm,
an Algorithmic

Approach to

Virtual Machine
Migration in

Cloud Computing

Algorithmic

design,
improved

SESA

algorithm
using Artificial

Bee Colony

Determining effective

migration parameters
remains a challenge and

further research is needed

in a dynamic
environment.

In recent years, there has been an exponential increase in interest

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 3906–3916 |3909

and research focused on optimising resource allocation and job

scheduling in the realm of big data cloud computing. As the

volume and complexity of data grows, so does the need for

efficient techniques to manage and process this massive amount of

data in cloud systems. Scholars like Mangalampalli et al. [25] have

investigated work scheduling algorithms, emphasising the need of

optimisation in delivering effective cloud computing outcomes.

Furthermore, the trend towards optimisation solutions is seen in

works such as Hassan et al.'s [26], which provides a cloud-fog

framework for resource allocation based on the firefly algorithm,

highlighting the need of optimisation in maintaining resource

efficiency. Bacanin et al. [27] contribute to this trend by

developing a modified firefly algorithm for process scheduling in

cloud with an emphasis on flexibility to varied computing

landscapes. Elmagzoub et al. [28] also conducted a survey on the

use of swarm intelligence-based load balancing approaches in

cloud computing, revealing the expanding use of swarm

intelligence methodology to address complex optimisation

difficulties. The convergence of these research demonstrates a

clear and growing preference for optimisation methodologies,

particularly those based on swarm intelligence, as a critical enabler

for improving the performance and scalability of big data cloud

computing systems.

 Proposed Methodology

The proposed work is divided into two distinct phases as shown in

Figure 2. The first phase is for the preliminary allocation of the

user’s resource demand to data nodes based on the Min Cost

Allocation Policy (MCAP). The MCAP policy ensures that with

minimum cost on the execution side, the SLA is complete. In the

second phase, the proposed work uses proposed SI architecture to

first calculate the overloaded and the underloaded data nodes.

These data nodes will face migrations in terms of users so that they

can be brought to a normalised state.

Start
Initiate Users

and Data Nodes

Find Region of

User and Apply

MCAP

Calculate n

(CPU, PC) for

all DN

Apply Dual

Threshold

Policy

Identify Overutilized,

Normal and

Underutilized

For Overutilized

Data Nodes, Apply

Proposed Selection

Algorithm

Migrate

Users

Start

1(a) 1(b) 1(c)

Phase 1

Phase 2

2(a)2(b)2(c)2(d)

Fig 2: Overall Work Architecture

 The Preliminary Allocation via MCAP

The primary objective of the Preliminary Allocation phase, as

facilitated by the MCAP algorithm to optimize the allocation of

user data within a distributed storage system. This optimization

process hinges on a multifaceted approach that takes into account

the geographical regions of users and the proximity of data nodes,

all while carefully considering the associated costs. At its core, the

MCAP algorithm seeks to streamline the allocation process by

identifying the region to which each user belongs. By doing so, it

aims to enhance the overall convenience and efficiency of data

retrieval for users. To achieve this, the algorithm leverages the

geographical information associated with both users and data

nodes, ensuring that users are allocated to the nearest available data

node within their respective regions. However, in scenarios where

multiple data nodes coexist within a single region, the MCAP

algorithm goes beyond mere proximity considerations. It

introduces a cost calculation mechanism that evaluates the

potential expenses associated with data allocation decisions. This

cost assessment takes into account various factors, including the

user's utilization index, the expected delay, and the cost per unit of

time for data migration.

The MCAP algorithm is designed to intelligently allocate user data

to data nodes within a distributed storage system while optimizing

for factors such as proximity, computational resources, and cost

efficiency. It begins by initializing an empty data structure known

as the allocation table to track the allocation of users to data nodes.

Then, for each user in the set of active users, the algorithm

proceeds with a series of steps. First, it identifies the geographical

or logical region to which the user belongs, using the user

region(u) function. This regional information is crucial because it

helps determine which data nodes are in proximity to the user,

enhancing data retrieval efficiency. Next, the algorithm calculates

the CPU demand of the user using the user CPU demand, which

quantifies the computational resources needed by the user for

various data operations. It then identifies feasible data nodes within

the same region as the user, as these are potential candidates for

data allocation. To narrow down the options, the algorithm filters

out data nodes with CPU capacities lower than the user's CPU

demand, ensuring that only suitable data nodes are considered.

Crucially, MCAP goes beyond simple proximity

considerations by introducing a cost calculation step. It

calculates the costs associated with allocating the user to

each of the remaining feasible data nodes. The overall cost

of the allocation is calculated by adding the static power cost

and the dynamic cost using equation (2) and (3).

 Proposed scheme of balancing to optimize resource

allocation

3.2.1. Identification of overutilized and underutilized data

nodes using dual threshold policy

After the initial allocation of user data to data nodes within the

distributed storage system, a subsequent process is initiated to

assess and categorize these data nodes based on their CPU

utilization and power consumption. This categorization is achieved

by applying a Dual Threshold Policy concept, which aims to

classify data nodes into one of three distinct categories:

"underutilized," "overutilized," and "neutral" data nodes.

The primary objective of this categorization process is to strike a

balance between CPU utilization and power consumption,

ensuring efficient resource allocation and optimal system

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 3906–3916 |3910

performance. A Dual Threshold Policy(DTP) is adopted that uses

an upper threshold and a lower threshold as follows.

𝑇𝑈𝑃𝑃𝐸𝑅 = 𝜒 + 𝑚 (5)

𝑇𝐿𝑜𝑤𝑒𝑟 = 𝜒 − 𝑚 (6)

Where 𝜒 is the normalised threshold for power consumption and

CPU utilization and m is a set of threshold, 𝑚 ∈ {10 − 30}%[ref]

𝜒 =
∑ 𝑛𝑜𝑟𝑚(𝑃𝐶)+𝑛𝑜𝑟𝑚(𝐶𝑃𝑈)𝑇𝐴

𝑎=1

𝑇𝐴
 (7)

Where TA is total number of allocations attained via

MCAP. The algorithm is designed to evaluate and

categorize data nodes within a distributed storage system

based on their resource utilization, with a specific focus on

CPU utilization and power consumption. Its primary

objective is to assess the efficiency of these data nodes and

identify potential areas for resource optimization. The algorithm

starts by collecting essential data, such as the total CPU and power

allocation across all data nodes (represented as TCA and TPA) and

determining the total number of data nodes in the system (TDN).

These initial metrics serve as the foundation for subsequent

analysis. To gain an understanding of the overall resource

utilization, the algorithm calculates the mean CPU utilization

(MCA) and mean power consumption (MPA) by dividing the total

allocated CPU and power by the total number of data nodes. These

mean values provide a reference point for assessing the

performance of individual data nodes. However, since data nodes

may have different capacities, the algorithm normalizes the CPU

utilization (NCA) and power consumption (NPA) of each data

node. This normalization process involves dividing the allocated

resources by the capacity of the respective data node (DN_C and

DN_PC), ensuring a fair and equitable comparison among data

nodes. The crux of the algorithm lies in the determination of

thresholds. Upper and lower thresholds are calculated for both

CPU utilization (UTC and LTC) and power consumption (UPC

and LPC). These thresholds are established by adding and

subtracting a predetermined delta value (DC for CPU and DP for

power) to the normalized mean values. These thresholds serve as

critical reference points for categorization. Data nodes are

categorized based on whether their normalized CPU utilization and

power consumption fall outside the established thresholds. Data

nodes that exceed both the upper CPU and power thresholds are

classified as "overutilized," indicating that they are consuming

more resources than anticipated, potentially leading to

inefficiencies or performance degradation. Conversely, data nodes

that fall below both lower thresholds are labelled as

"underutilized," suggesting that they have available resources that

are not fully utilized, presenting an opportunity for resource

optimization. Throughout this process, the algorithm maintains

two distinct lists: "overutilized nodes" (ON) and "underutilized

nodes" (UN). These lists store the data nodes that meet the

respective categorizations, providing system administrators with

clear insights into which nodes may require resource adjustments

to enhance overall efficiency. In summary, this algorithm serves as

a powerful tool for evaluating and categorizing data nodes within

a distributed storage system, contributing to the optimization of

resource allocation and the efficient operation of the infrastructure.

3.2.2. Selection of the users from overutilized data nodes

Once the data nodes have been identified as overutilized or

underutilized, the objective is to neutralise both kind of data nodes.

If the data node is underutilized, it is holding all the resources that

are not getting used at all and hence in such a scenario, all the users

will have to be migrated from this data node and the data node

becomes a candidate where other users can be located. As the

overutilized data node has more number of users to handle and that

is why it is not able to use its resources properly, few of the users

have to migrated to a less burden holding data node. Swarm

Intelligence (SI) based algorithms are used for selecting users from

overutilized data nodes because they draw inspiration from the

collective behaviour of social animals or organisms, such as ants,

bees, birds, or fireflies, to solve complex optimization problems.

In the context of selecting users from overutilized data nodes, SI

algorithms can help identify an optimal or near-optimal solution by

mimicking the way these social creatures cooperate and coordinate

to find the best path or solution in a decentralized and self-

organizing manner.

One specific SI algorithm is the Firefly algorithm. The Firefly

algorithm is named after the behavior of fireflies in nature. Fireflies

use bioluminescence to communicate and attract mates. Similarly,

in the Firefly algorithm, artificial "fireflies" represent potential

solutions to an optimization problem. The proposed work views

the Firefly algorithm with the following constraints.

For data nodes D, and a set of users U each data node has a certain

utilization and power consumption level, the aim is to select a

subset of users from U to be relocated to different data nodes in

order to balance the utilization and power consumption across all

data nodes. Let's define the problem mathematically:

• Variables:

o Binary decision variables: Let 𝑥𝑢𝑖 be a binary variable

that takes the value 1 if user u from set U is selected to

be relocated to datanode i from set D, and 0 otherwise.

• Parameters:

o 𝑑𝑖: The current utilization level of datanode i.

o 𝑈_𝑚𝑎𝑥 : The maximum number of users that can be

relocated to any datanode.

o 𝑈𝑚𝑖𝑛: The minimum number of users that should be

relocated to any datanode to achieve a balanced load.

 Objective Function:

The proposed firefly algorithm has multiple objective functions

and they are illustrated as follows.

3.3.1. Neutralisation of the CPU utilization

Minimize the imbalance in data node utilization and power

consumption. This can be represented as an objective function:

Minimize:

∑ 𝐶𝑃𝑈𝑈𝑖
− 𝑎𝑣𝑔𝐶𝑃𝑈𝑈𝑖∈𝐷 (8)

Here, the 𝑎𝑣𝑔𝐶𝑃𝑈 is the total utilization across all data nodes

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 3906–3916 |3911

divided by the number of data nodes and 𝐶𝑃𝑈𝑈 is the cpu

utilization for current data node

Ensure that each data node receives a balanced load:

𝑈𝑚𝑖𝑛 ≤
∑ 𝑈𝑢𝑢∈𝑈

𝑈
≤ 𝑈𝑚𝑎𝑥 (9)

3.3.2. Neutralisation of the PC

Minimize the imbalance in data node utilization and power

consumption. This can be represented as an objective function:

Minimize:

∑ 𝑃𝐶𝑖 − 𝑎𝑣𝑔𝑃𝐶𝑖∈𝐷 (10)

Where avgPC is the average power consumption across all data

nodes.

Ensure that each data node receives a power consumption

𝑃𝐶𝑚𝑖𝑛 ≤
∑ 𝑃𝐶𝑢𝑢∈𝑈

𝑈
≤ 𝑃𝐶𝑚𝑎𝑥 (11)

 Firefly Algorithm

The Firefly Algorithm is inspired by the flashing behavior of

fireflies in nature. Fireflies are attracted to each other based on

their brightness, and this concept is applied to optimization

problems. In the algorithm, each solution (represented as a firefly)

has a brightness value, and fireflies move towards brighter ones to

find optimal or near-optimal solutions.

3.4.1. Mathematical Architecture and Steps

Here's a step-by-step breakdown of how the Firefly Algorithm can

be applied to your problem:

• Initialization:

o Initialize a population of fireflies, each representing

a potential solution to the problem of user selection

from overutilized data nodes.

o Define a fitness function that quantifies how well a

solution balances datanode utilization. Brighter

fireflies have higher fitness values.

• Attraction Index (Attractiveness):

o Calculate the attraction (attractiveness) between two

fireflies (solutions) using an attractiveness function.

The attractiveness between firefly i and firefly j can

be represented as β(e), where e is the Euclidean

distance between fireflies i and j.

o The attractiveness function could be defined as

follows:

𝛽(𝑒) = 𝛽0 ⋅ 𝑒−𝛾𝑟2 (11)

o Here, 𝛽0 and γ are algorithm-specific parameters and

r is the distance between two fireflies.

• Firefly Movement:

o Fireflies move towards other fireflies with higher

attractiveness values. The movement of a firefly

toward another firefly is governed by the following

equation:

o Move towards firefly j:
o 𝒙𝒊(𝑡 + 1) = 𝒙𝑖(𝑡) + 𝛽 exp−𝛾(𝒙𝑗(𝑡)−𝒙𝑖(𝑡))

2

× 𝑟 + 𝛼 ⋅
(𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑡𝑒𝑝) (12)

o In proposed context, this means that solutions

(representing user configurations) that provide better

load balancing will attract other solutions, causing

them to adjust their user selections accordingly.

• Update Brightness (Fitness): After the movement step,

update the brightness (fitness) of each firefly based on

how well its associated solution balances data node

utilization. A lower fitness value indicates better load

balancing.

• Iteration: Repeat the attraction, movement, and

brightness update steps for a predefined number of

iterations or until a convergence criterion is met.

• Solution Extraction:

o The final positions of the fireflies represent a set of

users relocated to data nodes, providing a balanced

load across data nodes. Select the solution (firefly)

with the lowest fitness value as the optimized

configuration.

3.4.2. Proposed Firefly

The "Proposed Firefly Algorithm (PFA)" is designed for the

selection of users from overutilized data nodes. It employs a

firefly-inspired selection procedure where the "brighter fireflies"

correspond to users categorized under "neutral data nodes. The

main goal of this algorithm is to intelligently select users from a

group of overutilized data nodes while taking into account their

CPU utilization and power consumption characteristics. It achieves

this by drawing inspiration from the behaviour of fireflies in

nature.

Input Parameters:

• Allocation Table (AT): This table contains information

about the allocation status of users on various data nodes.

• Overutilized Data Node (OD): The algorithm targets a

specific overutilized data node for user selection.

• Neutral Data Nodes (ND): These represent data nodes

where users exhibit stable and neutral behavior.

Initialization: The algorithm begins by identifying the "Brighter

Firefly." In the context of this algorithm, the Brighter Firefly refers

to the data node that is categorized as a neutral data node and serves

as a reference point for selecting users with similar characteristics.

Several key parameters are set up:

• Maximum generations (max_gen): This parameter

determines how many generations or iterations the algorithm

will perform. It is set to 1000.

• Generation counter (g): Initialized to 0, this counter keeps

track of the current generation.

• AI (Attractiveness Index) List: An empty list is created to

store the calculated attractiveness values for users.

• Constants: Three constants are defined - alpha (0.01), beta

(1), and gamma (a range between 0 and 1).

Algorithm Main Loop: The algorithm operates in a loop, where

each iteration represents a generation. It continues to execute until

the generation counter (g) reaches the maximum specified number

of generations (max_gen). Within each generation, the

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 3906–3916 |3912

algorithm proceeds as follows:

1. User Selection: It iterates through all the users on the

overutilized data node (OD) for all users (k) in the set U.

2. Pairing with Brighter Fireflies: For each user (i), the

algorithm pairs the user with random other users or

"fireflies" to simulate the interaction between users. These

fireflies represent users from neutral data nodes (ND).

3. Weighted Evaluation: The algorithm assigns weight

factors, W_1 and W_2, to CPU utilization and power

consumption, respectively. These weight factors reflect the

importance or priority of these two characteristics in the user

selection process. The algorithm then calculates r_i and r_j,

representing the weighted evaluation of CPU utilization and

power consumption for the current user and the randomly

paired firefly.

4. Attractiveness Calculation: The attractiveness (ai) of the

user is computed using a mathematical formula. This

formula incorporates the differences (r) between the user's

characteristics and those of the paired firefly, along with the

defined weight factors and constants (alpha, beta, and

gamma). If the calculated attractiveness (ai) exceeds the

current AI value for that user, the AI value is updated with

the new calculated value.

• End of Generation: Once all users on the overutilized

data node have been evaluated for a given generation, the

algorithm proceeds to the next generation (if applicable).

• Termination: The algorithm concludes after the

specified maximum number of generations (max_gen)

has been reached.

• User Selection and Output: After the algorithm

completes its iterations, it selects users with the

maximum AI values. These users are considered the

most suitable for allocation on the overutilized data

node. The algorithm compiles a list of these selected

users, referred to as U_List, and returns it as the output.

The algorithm can be mathematically explained as follows.

consider a simplified scenario with three users (User 1, User 2,

User 3) on an overutilized data node (OD). We will calculate the

attractiveness index (AI) for each user over three generations

(max_gen = 3).

Initialization:

• max_gen = 3

• g = 0 (initial generation)

• AI[] is an empty list

• alpha = 0.01

• beta = 1

• Let's assume a fixed value for gamma for simplicity:

gamma = 0.5

Initial Data: Users on OD:

o User 1: CPU = 70%, PC = 20

o User 2: CPU = 80%, PC = 25

o User 3: CPU = 65%, PC = 18

• Brighter Firefly (from ND):

• Firefly: CPU = 75%, PC = 22

• Weight Factors:

o W_1 = 0.7 (for CPU)

o W_2 = 0.3 (for PC)

Algorithm Main Loop: Generation 1 (g = 1):

User Selection and Pairing: For User 1:

• Pairing with Firefly: Firefly's CPU = 75%, PC = 22

o Calculate r_i: (70% * 0.7 + 20 * 0.3) = 55.9

o Calculate r_j: (75% * 0.7 + 22 * 0.3) = 56.1

o Calculate r: r_i - r_j = 55.9 - 56.1 = -0.2

o Calculate ai: AI[User 1] + 1 * exp(-0.5 * (-

0.2)^2) * 70 + 0.01 * 0.5 ≈ AI[User 1] + 0.998

* 70 + 0.005 ≈ AI[User 1] + 69.86

o AI[User 1] is updated to approximately 69.86.

o Repeat the same process for User 2 and User

3.

▪ End of Generation 1: g = 2

• Generation 2 (g = 2):

• User Selection and Pairing:

o Repeat the pairing and attractiveness

calculation process for all users based on the

updated AI values from the previous

generation.

• End of Generation 2: g = 3

• Generation 3 (g = 3):

• User Selection and Pairing:

o Again, repeat the pairing and attractiveness

calculation process for all users based on the

AI values from the previous generation.

• End of Generation 3: g = 4

• Termination: Since g = 4 and max_gen = 3, the

algorithm stops after three generations.

• User Selection and Output:

• At the end of the algorithm, we have AI values for all

users:

o AI[User 1] ≈ 69.86

o AI[User 2] ≈ 70.14

o AI[User 3] ≈ 69.71

• The user with the highest AI value is User 2 (AI ≈ 70.14).

Therefore, User 2 is selected as the most suitable user for

allocation on the overutilized data node.

The proposed algorithm is evaluated for several QoS parameters

namely the power consumption using eq(1) and (2) and the SLA-

V is calculated using eq(5) in various scenarios and is discussed in

detail in the next section.

 Results and Discussions

The aim is to comprehensively evaluate the performance of four

distinct workload allocation algorithms within a dynamic

computing environment. Two different load factors, denoted as L1

(representing 1000 users) and L2 (representing 5000 users) reflect

varying levels of user load, ranging from relatively low to high user

populations. Each load factor is further segmented into 15 discrete

breakdowns, allowing for a detailed examination of algorithm

behaviour under different user load profiles. The primary objective

of this study is to conduct a comparative analysis of how these

algorithms manage workloads and allocate resources effectively as

user demands fluctuate. One of the critical parameters under

investigation is power consumption, a pivotal metric for assessing

the energy efficiency of the workload allocation algorithms. Lower

power consumption values indicate that the algorithms are more

adept at optimizing resource usage, leading to reduced energy

consumption within the computing environment. The second key

parameter of interest is SLA-V, which serves as a crucial

performance indicator. SLA violation quantifies the extent to

which the workload allocation algorithms meet or fail to meet

predefined service level agreements with users. A lower SLA-V

value implies a higher level of adherence to these agreements,

reflecting the algorithms' ability to provide consistent and reliable

services to users. Analysing SLA-V across different load factors

and breakdowns helps us gauge the algorithms' effectiveness in

maintaining service quality as user demands vary. The results are

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 3906–3916 |3913

discussed for all the types of load namely L1, L2 and L3.

 Analysis for Load Factor 1(1000) users

As shown in table 1 the "Proposed" algorithm consistently

demonstrates lower power consumption compared to other

algorithms, which indicates its efficiency in managing resources

and reducing energy consumption.

Here are the average power consumption values for each

algorithm:

• Proposed: 38.98kW

• Li et al.: 53.84kW

• Suruchi et al.: 55.95kW

• Saurabh et al.: 53.58kW

Table 1: Power Consumption analysis for L1

Distribution Proposed Li et al. [8]
Suruchi et al.

[21]

Saurabh et al.

[24]

100 5.64082143 10.1450271 12.09659333 12.36191938

164 9.44259689 13.3384721 15.46435251 16.15319249

229 12.0513603 16.3907164 16.88897836 16.10008227

293 15.1937931 21.9685973 24.37217164 20.9515158

357 19.5184232 26.240041 30.12025422 27.92870282

421 22.5137429 33.9604756 34.18526468 32.90867973

486 25.8148021 38.9390337 39.80427845 34.77450016

550 28.2686632 44.3787863 39.00669429 40.11287098

614 30.7168947 44.7046858 44.6097926 45.37542077

679 34.2641399 47.6808391 52.10213055 51.18633562

743 38.1738451 57.3770618 52.92410366 52.07214003

807 41.5447681 60.824473 61.86018382 58.89262268

871 44.7570827 65.5533185 64.10480432 64.25661347

936 47.0288949 66.6609151 68.01583494 67.44495412

1000 50.0641325 71.0075955 75.71108713 75.27384308

The improvement analysis is as follows.

• Improvement over Li et al.:

o Improvement = [(Power Consumption Li et al. - Power

Consumption Proposed) / Power Consumption Li et al.] *

100

o Improvement = [(53.84 - 38.98) / 53.84] * 100 ≈ 27.59%

• Improvement over Suruchi et al.:

o Improvement = [(Power Consumption Suruchi et al. - Power

Consumption Proposed) / Power Consumption Suruchi et

al.] * 100

o Improvement = [(55.95 - 38.98) / 55.95] * 100 ≈ 30.34%

• Improvement over Saurabh et al.:

o Improvement = [(Power Consumption Saurabh et al. - Power

Consumption Proposed) / Power Consumption Saurabh et

al.] * 100

o Improvement = [(53.58 - 38.98) / 53.58] * 100 ≈ 32.42%

The "Proposed" algorithm demonstrates significant improvements

in power consumption compared to other algorithms, with

improvements ranging from approximately 27.59% to 32.42%.

These improvements highlight the well-tuned resource

management capabilities of the "Proposed" algorithm, resulting in

lower energy consumption and more efficient resource utilization.

The "Proposed" algorithm consistently maintains lower SLA

violation values compared to other algorithms, indicating its

effectiveness in ensuring the quality of service. Here are the

average SLA-V values for each algorithm:

• Proposed: 0.00561

• Li et al.: 0.04465

• Suruchi et al.: 0.03518

• Saurabh et al.: 0.05067

The improvement analysis is as follows.

• Improvement over Li et al.:

o Improvement = [(SLA-V Li et al. - SLA-V Proposed) /

SLA-V Li et al.] * 100

o Improvement = [(0.04465 - 0.00561) / 0.04465] * 100 ≈

87.48%

Table 2: SLA-V analysis

Distribution Proposed Li et al. [8]
Suruchi et

al. [21]

Saurabh et al.

[24]

100 0.018095001 0.062068432 0.026864154 0.064759585

164 0.000317959 0.029558027 0.021924484 0.065441046

229 0.00385544 0.067300501 0.029238205 0.067964436

293 0.000534205 0.051270209 0.062827664 0.034256673

357 0.015285564 0.032087155 0.044701904 0.068528587

421 0.016454347 0.027800191 0.033732691 0.033698517

486 0.00241134 0.024699271 0.069526467 0.027759603

550 0.000558464 0.052661037 0.036489671 0.041694472

614 0.00013996 0.06336164 0.030796141 0.041262325

679 0.003008715 0.058046919 0.038252722 0.04234027

743 0.00837765 0.050943732 0.0282511 0.021713545

807 0.005539618 0.0431925 0.06728949 0.068972504

871 0.011702805 0.020357099 0.02091867 0.065619352

936 0.001571872 0.024572589 0.026104257 0.034525826

1000 0.003363368 0.067112406 0.033509017 0.05895721

• Improvement over Suruchi et al.:

o Improvement = [(SLA-V Suruchi et al. - SLA-V Proposed)

/ SLA-V Suruchi et al.] * 100

o Improvement = [(0.03518 - 0.00561) / 0.03518] * 100 ≈

84.09%

• Improvement over Saurabh et al.:

o Improvement = [(SLA-V Saurabh et al. - SLA-V

Proposed) / SLA-V Saurabh et al.] * 100

o Improvement = [(0.05067 - 0.00561) / 0.05067] * 100 ≈

88.91%

Fig 3: Power consumption and SLA-V for load factor L1

The "Proposed" algorithm consistently exhibits substantial

improvements in SLA-V compared to other algorithms, with

improvements ranging from approximately 84.09% to 88.91%.

These improvements underscore the ability of the "Proposed"

algorithm to maintain a higher quality of service and minimize

SLA violations, making it a suitable choice for meeting service

level agreements effectively.

 Analysis for Load Factor 2(5000) users

Similar to L1, the analysis for L2 is given in Table 3 showing

power consumption for proposed and the three existing studies

used for the comparison in the research work.

• Proposed: 76.56kW

• Li et al.: 102.25kW

• Suruchi et al.: 102.07kW

0

20

40

60

80

P
o
w

er
 C

o
n

su
m

p
ti

o
n

K
W

Comparison for Load Factor 1

Proposed
Li et al.
Suruchi et al.
Saurabh et al.

0

0.02

0.04

0.06

0.08

100 200 300 400 500 600 700 800 900 1000

S
L

A
 V

io
la

ti
o
n

s

Number of Users

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 3906–3916 |3914

• Saurabh et al.: 101.98kW

Now, let's calculate the improvements attained by the "Proposed"

algorithm over the other algorithms:

• Improvement over Li et al.:

o Improvement = [(Power Consumption Li et al. - Power

Consumption Proposed) / Power Consumption Li et al.]

* 100

o Improvement = [(102.25 - 76.56) / 102.25] * 100 ≈

25.14%

Table 3: Power Consumption for L2

Users Proposed Li et al. [8]
Suruchi et al.

[21]
Saurabh et al. [24]

2100 5.95718591 7.50011574 10.48688732 9.106042427

2500 12.905367 21.701618 17.78898721 20.17295237

2900 19.1013584 26.4131227 31.91222286 31.03450181

3300 26.9434551 35.7361326 36.92914752 35.53311869

3500 33.6166881 49.1978013 46.27696936 48.2093594

3700 40.3487029 55.5101549 58.62830302 55.49445839

3850 47.0098716 69.090884 64.62131424 65.70923505

4000 53.5313373 74.2493783 77.10814203 76.50430966

4150 60.9429021 86.8370981 87.89411094 83.08496872

4300 67.2882023 97.1242244 95.39783453 93.33488613

4450 73.9272632 102.564385 103.3139435 103.2418134

4600 80.7541006 114.020649 112.9814169 112.9025299

4750 87.9325494 125.840064 124.2445544 124.8508732

4900 95.1315295 134.509298 134.5384574 135.7433945

5000 101.993576 145.808052 140.39982 144.851383

• Improvement over Suruchi et al.:

o Improvement = [(Power Consumption Suruchi et al. -

Power Consumption Proposed) / Power Consumption

Suruchi et al.] * 100

o Improvement = [(102.07 - 76.56) / 102.07] * 100 ≈

25.00%

• Improvement over Saurabh et al.:

o Improvement = [(Power Consumption Saurabh et al. -

Power Consumption Proposed) / Power Consumption

Saurabh et al.] * 100

o Improvement = [(101.98 - 76.56) / 101.98] * 100 ≈

24.91%

From table 3 it is observed that there is a progressive increase in

power consumption across all algorithms as the distribution

(number of users) escalates. This trend underscores its efficiency

in managing resources efficiently, even under heavier workloads.

Furthermore, as the distribution increases, the gap between the

power consumption of the "Proposed" algorithm and other

algorithms widens, emphasizing its superior resource utilization

and energy-saving capabilities.

Average Analysis: The average SLA violation values for each

algorithm are as follows:

• Proposed: 0.01046

• Li et al.: 0.05488

• Suruchi et al.: 0.04999

• Saurabh et al.: 0.04628

Improvement analysis of proposed work over Li et al.:

o Improvement = [(SLA Violation Li et al. - SLA Violation

Proposed) / SLA Violation Li et al.] * 100

o Improvement = [(0.045637 - 0.017777866) / 0.045637] *

100 ≈ 61.04%

• Improvement over Suruchi et al.:

o Improvement = [(SLA Violation Suruchi et al. - SLA

Violation Proposed) / SLA Violation Suruchi et al.] * 100

o Improvement = [(0.067623729 - 0.017777866) /

0.067623729] * 100 ≈ 73.66%

Table 4: SLA-V for L2

Users Proposed Li et al. [8] Suruchi et al. [21]
Saurabh et al.

[24]

2100 0.017777866 0.045637 0.067623729 0.05026109

2500 0.004982366 0.052966776 0.030299551 0.035210994

2900 0.011267606 0.066257075 0.045822359 0.028643128

3300 0.000423562 0.069536048 0.039311148 0.030849521

3500 0.008022763 0.063099172 0.034919686 0.037123462

3700 0.01282202 0.054525252 0.051131151 0.050591642

3850 0.019174518 0.031475875 0.034302445 0.035116063

4000 0.000256923 0.022559112 0.063424416 0.046434512

4150 0.012530703 0.023910588 0.03874588 0.02590472

4300 0.014119908 0.04785654 0.058891171 0.058104262

4450 0.001222804 0.056423034 0.027758659 0.04517569

4600 0.001337962 0.05354237 0.068857759 0.053106556

4750 0.000707767 0.064489161 0.053232322 0.062483506

4900 0.007476267 0.061447825 0.050681617 0.067341488

5000 0.015174623 0.05747858 0.043045653 0.02383538

• Improvement over Saurabh et al.:

o Improvement = [(SLA Violation Saurabh et al. - SLA

Violation Proposed) / SLA Violation Saurabh et al.] * 100

o Improvement = [(0.05026109 - 0.017777866) /

0.05026109] * 100 ≈ 64.65%

Fig 4: Power consumption and SLA-V for load factor L2

The "Proposed" algorithm consistently outperforms the other

algorithms with significant improvements ranging from

approximately 61.04% to 73.66%. The average analysis

underscores the superior SLA compliance of the "Proposed"

algorithm, with the lowest average SLA violation of 0.01046. This

indicates that the "Proposed" algorithm effectively adapts to higher

user loads, maintaining lower SLA violations and ensuring more

reliable service quality as the system scales. This trend underscores

the scalability and robustness of the "Proposed" algorithm in

delivering improved SLA compliance with increasing workloads,

making it a valuable choice for systems requiring consistent and

dependable performance.

 Conclusion

In today's world of research and technology, the old ways of

deciding how to use these resources don't always work well with

our ever-changing needs, and they often don't learn from our past

experiences. The proposed algorithm, based on the Firefly

0

40

80

120

160

P
o
w

er
 C

o
n

su
m

p
ti

o
n

K
W

Comparison for Load Factor 2

Proposed

Li et al.

Suruchi et al.

Saurabh et al.

0

0.04

0.08

2000 2500 3000 3500 4000 4500 5000

S
L

A
 V

io
la

ti
o
n

s

Number of Users

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 3906–3916 |3915

optimization technique, incorporates a finely tuned objective and

fitness function to optimize resource allocation and ensure high-

quality service delivery in big user base cloud system. Under Load

Factor L1 (1000 users), the "Proposed" algorithm consistently

demonstrated superior power consumption efficiency, consuming

approximately 27.59% less power than Li et al., 30.34% less than

Suruchi et al., and 32.42% less than Saurabh et al. This remarkable

reduction in power consumption underscores its robust resource

management capabilities, contributing to energy conservation.

Similarly, under Load Factor L2 (5000 users), the "Proposed"

algorithm maintained its efficiency, exhibiting an average power

consumption lower than Li et al., Suruchi et al., and Saurabh et al.

Under both load factors, it consistently maintained lower SLA

violation percentages compared to other algorithms, signifying its

ability to meet service quality requirements. The proposed Firefly-

based algorithm, equipped with a finely tuned objective function,

exhibits outstanding resource optimization capabilities. Its

substantial power consumption reductions and consistently lower

SLA violations under varying load factors make it a promising

solution for enhancing energy efficiency and service quality in

large-scale systems. In the future, this framework could further

contribute to improved sustainability and performance in complex

environments.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] S. Shadroo and A. M. Rahmani, “Systematic survey of big

data and data mining in internet of things,” Computer

Networks, vol. 139, pp. 19–47, Jul. 2018, doi:

10.1016/J.COMNET.2018.04.001.

[2] C. L. Philip Chen and C. Y. Zhang, “Data-intensive

applications, challenges, techniques and technologies: A

survey on Big Data,” Information Sciences, vol. 275, pp.

314–347, Aug. 2014, doi: 10.1016/J.INS.2014.01.015.

[3] Y. Hajjaji, W. Boulila, I. R. Farah, I. Romdhani, and A.

Hussain, “Big data and IoT-based applications in smart

environments: A systematic review,” Computer Science

Review, vol. 39, p. 100318, Feb. 2021, doi:

10.1016/J.COSREV.2020.100318.

[4] Y. Jiang, Z. Huang, and D. H. K. Tsang, “Towards Max-Min

Fair Resource Allocation for Stream Big Data Analytics in

Shared Clouds,” IEEE Transactions on Big Data, vol. 4, no.

1, pp. 130–137, Dec. 2016, doi:

10.1109/TBDATA.2016.2638860.

[5] R. Buyya, A. Beloglazov, and J. Abawajy, “Energy-Efficient

Management of Data Center Resources for Cloud

Computing: A Vision, Architectural Elements, and Open

Challenges,” Jun. 2010, doi: 10.48550/arxiv.1006.0308.

[6] W. T. Wu, W. W. Lin, C. H. Hsu, and L. G. He, “Energy-

efficient hadoop for big data analytics and computing: A

systematic review and research insights,” Future Generation

Computer Systems, vol. 86, pp. 1351–1367, Sep. 2018, doi:

10.1016/J.FUTURE.2017.11.010.

[7] M. Senthilkumar and P. Ilango, “Energy aware task

scheduling using hybrid firefly - GA in big data,”

International Journal of Advanced Intelligence Paradigms,

vol. 16, no. 2, pp. 99–112, 2020, doi:

10.1504/IJAIP.2020.107008.

[8] C. Li, Y. P. Wang, Y. Chen, and Y. Luo, “Energy-efficient

fault-tolerant replica management policy with deadline and

budget constraints in edge-cloud environment,” Journal of

Network and Computer Applications, vol. 143, pp. 152–166,

Oct. 2019, doi: 10.1016/J.JNCA.2019.04.018.

[9] A. Tzanetos and G. Dounias, “A Comprehensive Survey on

the Applications of Swarm Intelligence and Bio-Inspired

Evolutionary Strategies,” Machine Learning Paradigms, pp.

337–378, 2020, doi: 10.1007/978-3-030-49724-8_15.

[10] L. Abualigah et al., “Advances in Meta-Heuristic

Optimization Algorithms in Big Data Text Clustering,”

Electronics 2021, Vol. 10, Page 101, vol. 10, no. 2, p. 101,

Jan. 2021, doi: 10.3390/ELECTRONICS10020101.

[11] B. H. Nguyen, B. Xue, and M. Zhang, “A survey on swarm

intelligence approaches to feature selection in data mining,”

Swarm and Evolutionary Computation, vol. 54, p. 100663,

May 2020, doi: 10.1016/J.SWEVO.2020.100663.

[12] S. Kumar and S. K. Goyal, “Swarm Intelligence Based Data

Selection Mechanism for Reputation Generation in Social

Cloud,” 2022 International Conference on Machine

Learning, Big Data, Cloud and Parallel Computing, COM-

IT-CON 2022, pp. 583–588, 2022, doi: 10.1109/COM-IT-

CON54601.2022.9850947.

[13] L. Brezočnik, I. Fister, and V. Podgorelec, “Swarm

Intelligence Algorithms for Feature Selection: A Review,”

Applied Sciences 2018, Vol. 8, Page 1521, vol. 8, no. 9, p.

1521, Sep. 2018, doi: 10.3390/APP8091521.

[14] T. Jayaraj, “Process Optimization of Big-Data Cloud Centre

Using Nature Inspired Firefly Algorithm and K-Means

Clustering,” Article in International Journal of Innovative

Technology and Exploring Engineering, vol. 8, no. 12, pp.

2278–3075, 2019, doi: 10.35940/ijitee.L2490.1081219..

[15] G. Rjoub, J. Bentahar, and O. A. Wahab,

“BigTrustScheduling: Trust-aware big data task scheduling

approach in cloud computing environments,” Future

Generation Computer Systems, vol. 110, pp. 1079–1097,

2020, doi: 10.1016/j.future.2019.11.019.

[16] K. Manivannane and M. Chidambaram, “A Cloud Resource

Scheduling Framework for big data stream and analytics in

Cloud Environment,” Proceedings of the 4th International

Conference on Communication and Electronics Systems,

ICCES 2019, pp. 1638–1642, Jul. 2019, doi:

10.1109/ICCES45898.2019.9002225.

[17] H. GIBET TANI and C. EL AMRANI, “Smarter Round

Robin Scheduling Algorithm for Cloud Computing and Big

Data,” Journal of Data Mining & Digital Humanities, Jan.

2018, doi: 10.46298/jdmdh.3104.

[18] H. Wang et al., “A hybrid multi-objective firefly algorithm

for big data optimization,” Applied Soft Computing, vol. 69,

pp. 806–815, Aug. 2018, doi: 10.1016/J.ASOC.2017.06.029.

[19] T. Jayaraj, “Process Optimization of Big-Data Cloud Centre

Using Nature Inspired Firefly Algorithm and K-Means

Clustering,” Article in International Journal of Innovative

Technology and Exploring Engineering, vol. 8, no. 12, pp.

2278–3075, 2019, doi: 10.35940/ijitee.L2490.1081219.

[20] M. T. Alharbi, Y. Qawqzeh, A. Jaradat, K. Nazim, and A.

Sattar, “A review of swarm intelligence algorithms

deployment for scheduling and optimization in cloud

computing environments,” PeerJ Computer Science, vol. 7,

p. e696, Aug. 2021, doi: 10.7717/PEERJ-CS.696.

[21] S. Talwani et al., “Machine-Learning-Based Approach for

Virtual Machine Allocation and Migration,” Electronics,

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 3906–3916 |3916

vol. 11, no. 19, p. 3249, 2022.

[22] O. A. Oduwole, S. A. Akinboro, O. G. Lala, and S. O.

Olabiyisi, “An Enhanced Load Balancing Technique for

Big-data Cloud Computing Environments,” Transactions of

the Royal Society of South Africa, vol. 77, no. 3, pp. 219–

236, Sep. 2022, doi: 10.1080/0035919X.2022.2160389.

[23] X. Wang, X. Hu, W. Fan, and R. Wang, “Efficient data

persistence and data division for distributed computing in

cloud data center networks,” The Journal of

Supercomputing, vol. 79, no. 14, pp. 16300–16327, Sep.

2023, doi: 10.1007/S11227-023-05276-2.

[24] A. Kaur et al., “Algorithmic Approach to Virtual Machine

Migration in Cloud Computing with Updated SESA

Algorithm,” Sensors (Basel, Switzerland), vol. 23, no. 13, p.

6117, Jul. 2023, doi: 10.3390/S23136117.

[25] S. Mangalampalli, G. R. Karri, and A. A. Elngar, “An

Efficient Trust-Aware Task Scheduling Algorithm in Cloud

Computing Using Firefly Optimization,” Sensors 2023, Vol.

23, Page 1384, vol. 23, no. 3, p. 1384, Jan. 2023, doi:

10.3390/S23031384.

[26] K. Hassan, N. Javaid, F. Zafar, S. Rehman, M. Zahid, and S.

Rasheed, “A Cloud Fog Based Framework for Efficient

Resource Allocation Using Firefly Algorithm,” Lecture

Notes on Data Engineering and Communications

Technologies, vol. 25, pp. 431–443, 2019, doi: 10.1007/978-

3-030-02613-4_38/COVER.

[27] N. Bacanin, M. Zivkovic, T. Bezdan, K. Venkatachalam, and

M. Abouhawwash, “Modified firefly algorithm for workflow

scheduling in cloud-edge environment,” Neural Computing

and Applications, vol. 34, no. 11, pp. 9043–9068, Jun. 2022,

doi: 10.1007/S00521-022-06925-Y/FIGURES/9.

[28] M. A. Elmagzoub, D. Syed, A. Shaikh, N. Islam, A.

Alghamdi, and S. Rizwan, “A Survey of Swarm Intelligence

Based Load Balancing Techniques in Cloud Computing

Environment,” Electronics vol. 10, no. 21, p. 2718, Nov.

2021, doi: 10.3390/ELECTRONICS10212718.

