

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 3612–3620 | 3612

Comparative Analysis of Testing Approach in Context of Agile

Software Development

Garima Nahar1, Dr. Sonal Bordia Jain2

Submitted: 04/02/2024 Revised: 12/03/2024 Accepted: 20/03/2024

Abstract: The Agile technique is becoming widely used by businesses worldwide to develop software products because it

promises to provide high-quality products more quickly. Software testing is the most important way to evaluate a product's

quality. Software testing in Agile development is still difficult and highly complex. This has mostly occurred as a result of

Agile development's lack of emphasis on software testing activities. It emphasises frequent delivery, brief iterations, and client

participation. This paper delves into a comparative analysis of testing approaches within the context of ASD. We explore

traditional testing methodologies used in waterfall models and contrast them with techniques tailored for the iterative nature

of agile projects. Key aspects like test automation, exploratory testing, and continuous integration will be discussed alongside

their advantages and limitations in the agile environment. Finally, the paper concludes by outlining a potential framework for

agile testing, integrating various techniques for optimal results.

Keywords: ASD, SDLC, Testing Methods, Software Development

1. Introduction

The software development landscape has witnessed

a significant shift towards agile methodologies.

Agile prioritizes continuous delivery of value,

customer involvement, and adaptation to evolving

requirements. This approach fosters innovation and

responsiveness but poses challenges for testing

practices traditionally built for a more linear, phased

development process.

The Agile Software Development has become the

most successful from various effective approaches

that have been developed to reach the final software

product. Agile Software Development is a

lightweight methodology that intends to overcome

the drawbacks and limitations of traditional

waterfall software development method. It reduces

overhead and other operating costs along with

providing flexibility to adapt to alterations in

requirements at any stage. This is attained via a set

of values and principles that govern task

management and coordination [1].

While many software development techniques

assume that project requirements can be accurately

gathered at the initiation of the software project, this

is often not possible due to the inherent complexity

and unpredictability of software projects. As a

result, iterative software development designs are

necessary to cope with the multitude of unknown

effecting variables. The success of the lean

development method in the 1980s led to the

emergence of a variety of "iterative" software

methods, such as the Unified Process, Evo, Spiral,

and Agile methods. These approaches recognize the

need for flexibility and adaptability throughout the

software development process [2].

The Agile Software Development Methodology has

gained popularity in recent years due to its ability to

become acquainted to changing requirements and

user’s needs. In contrast to traditional software

development approaches/models that follow a linear

and sequential process, the Agile Software

Methodology is iterative and incremental. It

emphasizes collaboration, flexibility, and

adaptableness to change [3].

In the Agile Development Methodology, the

software development process is broken down into

smaller iterations sometimes called sprints. Each

iteration involves a small set of requirements or user

stories, which are developed and tested within a

short period of time. At the end of each iteration, the

development team demonstrates the working

software to the customer and gathers feedback. This

feedback is used to refine and prioritize the

requirements for the next iteration or we can say

1Research Scholar, RTU, Kota and Asst. Professor, Dept.

of Computer Science, S. S. Jain Subodh P.G. Mahila

Mahavidyalaya, Rambagh Circle, Jaipur
2Associate Professor, Dept. of Computer Science, S. S.

Jain Subodh P.G. College, Jaipur

Email:dagagarima@gmail.com1,

Sonalbordiajain@gmail.com2

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 3612–3620 | 3613

each iteration involves a full software devilment life

cycle including all phases [4].

Agile Software Development Methodologies are

widely used for highly collaborative software

development. The Agile development approach is

commonly associated with "lean" engineering and

emphasizes activities that contribute directly to the

project's end goal of delivering high-quality

software that meets business needs. The Agile

Manifesto, published in 2001, defines the approach

known as Agile Software Development and serves

as an influencing and guiding force for Agile

professionals. The manifesto was created by 17

influential figures, some of whom formed the Agile

Alliance [5]. The manifesto established a common

set of overarching values and principles for all

individual Agile Methodologies at the time.

This paper aims to analyze various testing

approaches in the context of agile software

development. We will explore the limitations of

traditional methodologies and delve into agile-

specific testing techniques. Through a comparative

analysis, we will identify the strengths and

weaknesses of each approach, paving the way for a

more comprehensive testing strategy within agile

projects.

1.1 Traditional Testing Methodologies

Traditional software development methodologies,

like the waterfall model, follow a well-defined,

sequential approach. Requirements are meticulously

documented before the development phase. Testing

occurs towards the end of the development cycle,

often as a separate and distinct phase following

development completion. This approach utilizes the

following testing methods:

• Unit Testing: Focuses on validating the

functionality of individual software units

(modules, functions). Unit testing is typically

performed by developers themselves.

• Integration Testing: Verifies how integrated

software modules interact with each other.

• System Testing: Evaluates the entire software

system against the defined requirements.

• Acceptance Testing: Confirms whether the

software meets the user's acceptance criteria.

While these methods serve a purpose, they are not

readily adaptable to the dynamic nature of agile

development. Rigorously defined requirements at

the project's outset are often unrealistic in agile

projects, and testing at the end of each iteration may

be time-consuming and inefficient.

1.2 Agile Testing Techniques

Agile testing methodologies aim to integrate

seamlessly with the iterative development cycles of

agile projects. Here are some key approaches:

• Test-Driven Development (TDD): Involves

writing unit tests before writing the actual code.

This ensures the code meets functional

requirements from the outset and aids in code

refactoring.

• Behavior-Driven Development (BDD):

Focuses on defining user stories and acceptance

criteria in a collaborative manner. BDD

facilitates the creation of automated acceptance

tests based on user stories.

• Exploratory Testing (ET): Involves an

informal, session-based approach to testing.

Testers actively explore the functionality of the

software, using their experience and judgment

to identify bugs.

• Continuous Integration (CI): Automates the

process of integrating code changes from

multiple developers into a central repository. CI

typically involves running automated tests after

each commit, providing immediate feedback on

potential regressions.

• Continuous Delivery/Continuous

Deployment (CD): Automates the process of

deploying new software versions to production

environments. CD allows for frequent releases

with minimal manual intervention.

2. Agile Methodology

Agile methodologies have gained popularity in

recent years due to their ability to enhance

collaboration, improve productivity, and deliver

software that meets business and user needs.

Research has shown that Agile Development

Methodologies are very effective in managing

software development projects by allowing for

flexibility and adaptability, achieving higher

customer satisfaction, speedy time-to-market, and

also increased return on investment [6, 7].

Agile methodologies provide a framework for

highly collaborative software development that

firmly follows the flow of business value, with a

focus on activities that directly contribute to the

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 3612–3620 | 3614

software project final goal i.e. quality software

product. The Agile Manifesto, with its core values

and principles, provides guidance for Agile

developers, and has proven to be an effective

approach to software development [8].

User-Centered Design (UCD) and Human-

Computer Interaction (HCI) are also important

components of Agile development that facilitate the

development of efficient and user-friendly software

products [9].

Usability Engineering is an important aspect of

software design that has gained significant attention

in recent years. According to O. Sohaib and K. Khan

(1988), Usability Engineering is the process of

designing and evaluating products, systems, or

services to ensure that they meet the needs and

expectations of their intended users. This process

involves conducting user research, gathering

feedback, and also testing the product with real users

to identify areas that need improvement [10].

Usability Engineering is commonly used in the

design and development of digital products,

including software applications and websites.

However, it can also be applied to physical products

and services to enhance their usability and

accessibility. As noted by O. Sohaib and K. Khan

(2010), Usability Engineering plays a significant

role in improving user experience, which can lead to

increased user satisfaction and adoption [11].

Incorporating Usability Engineering into the design

process can help organizations create products that

are more effective, efficient, and enjoyable to use.

By focusing on the needs and expectations of their

intended audience, organizations can develop

products that are user-friendly and accessible,

thereby enhancing user interaction, experience and

satisfaction.

Usability Testing has been recognized as a

fundamental part of various software development

methodologies, including Agile Software

Development, and Usability Engineering [12]. The

main objective of Usability Testing is to evaluate

whether the software is user-friendly and meets the

needs of its users [13].

In Agile Software Development, Usability Testing

is an important phase of the development process,

and it is conducted in each sprint to identify any

usability issues early on [14]. This approach allows

for quick feedback and iteration to ensure that the

final product meets the user's needs and is easy to

use. The testing is conducted to identify any

usability issues and to evaluate the overall

performance of the software.

In Usability Engineering, Usability Testing is used

to ensure that the system is easy to use and meets the

needs of its users [15]. The testing is conducted at

various stages of the development process, from

design to post-launch, to ensure that the system is

user-friendly and meets the user's needs. Usability

Testing is an important aspect of software

development, and it has been shown to improve user

satisfaction and adoption rates [16]. Usability

Testing can contribute to the success of software

projects.

2.1 Agile Software Development Life Cycle

Agile Software Development Life Cycle is an

incremental and iterative approach to software

development that emphasizes flexibility,

collaboration, and continuous improvement. It is a

departure from traditional waterfall development

methodologies and is well-suited for software

projects with evolving requirements and dynamic

environments. The Agile project team continuously

refines and reprioritizes the backlog based on

feedback and evolving requirements. Agile SDLC

promotes collaboration, adaptability, and

transparency throughout the software development

process. By embracing change and focusing on

delivering value incrementally, Agile SDLC enables

teams to respond quickly to user needs and deliver

high-quality software products [17]. The Agile

Development Life Cycle encompasses a sequence of

six distinct stages that aptly capture the iterative and

collaborative essence of Agile Development

methodologies. These stages can be broadly

explained as follows [17] [18]:

• Project Discovery and Prioritization

• Planning and Requirement Refinement

• Development and Iteration

• Release and Deployment

• Production and Maintenance

• Retirement or Transition

The Agile Development Life Cycle represents a

dynamic journey characterized by constant

adaptation, collaboration, and incremental progress.

It serves as a robust framework for magnificently

delivering software solutions that associate with

evolving requirements and user expectations. These

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 3612–3620 | 3615

stages in the Agile Development Life Cycle reflect

the dynamic and iterative nature of Agile

methodologies, allowing for continuous

improvement, customer collaboration, and the

delivery of valuable software increments.

Fig 1: Agile Process

3. Related Work

The concept of the "Paradox of the Active User" was

invented by John M. Carroll and Mary Beth Rosson,

at IBM. This concept emerged as a way to explain a

recurring observation noted in numerous user

studies conducted at the IBM User Interface Institute

in the early 1980s. According to authors, users tend

to skip manuals and start using software right away.

This behavior pattern has been validated by research

and other studies. Their motivation lies in promptly

commencing their tasks and achieving immediate

objectives. Their focus is on the task at hand, rather

than on the intricacies of the system itself [22].

Najmeh Ghasemifard et.al (2015) proposed Curative

Usability Test Methods for Usability Testing. The

evaluation criteria encompass a range of factors that

contribute to effective Usability Testing. To conduct

successful tests, it's important to consider several

key factors. To ensure a smooth user experience,

completing tasks quickly and efficiently is essential.

Cost-effectiveness is also important to keep

expenses low. Utilizing flexible tools and

frameworks that can adapt to different situations is

important. Adequate resources must be available to

conduct tests. It is necessary to determine the

appropriate number of tests for a comprehensive

evaluation. When deciding between experimental

and analytical test types, the specific situation

should be taken into consideration. The evaluator's

experience and expertise can impact test outcomes.

Finally, categorizing identified issues based on

severity, distinguishing between major and minor

problems, and defining the purpose parameters of

the chosen testing method are all essential steps. [23]

Geisen, E. et. al. (2017) discussed that in later

rounds of testing, a common technique involves a

combination of cognitive and usability testing to

maximize efficiency. This approach leverages

methods like "Think Aloud" and verbal probing to

enhance error detection. However, the depth of

verbal probing can impact usability metrics. To

achieve a balance between priorities and optimize

usability metrics, retrospective cognitive probes

may be employed, whereas concurrent probing is

more apt for a cognitive interviewing focus. It is

crucial to carefully manage the balance between

cognitive insights and usability metrics while taking

into account the timing of probes when using

techniques like "Think Aloud" and verbal probing

[24].

M.J. Van den Haak et. al. (2004) study presented a

comparative analysis of three usability test

approaches: concurrent Think-Aloud protocols,

retrospective Think-Aloud protocols, and

constructive interaction. The assessment was

conducted on an online library catalogue,

considering four aspects: the number and type of

usability issues detected, the importance of the

problems found, overall task performance, and

participant feedback [25].

Nichols, Elizabeth, et al. (2020) shared their current

practices in Usability Testing online surveys at the

Census Bureau. These practices have evolved due to

technological shifts, sponsor requirements, insights

from UX literature, and practical experience. The

authors explored the connection between research

on Think-Aloud methodology and participant

numbers, and how experience influences it.

However, there are challenges when incorporating

usability concepts in social survey tools. Developing

a comprehensive satisfaction score that aligns with

participant behavior can enhance evaluation and

comparisons. Utilizing templates for eye-tracking

data and theory development may aid in measuring

effectiveness, and incorporating paradata

systematically can sharpen the focus on Usability

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 3612–3620 | 3616

Testing. The evolution of usability practices offers

valuable insights for survey designers to enhance

design features and minimize errors. By carefully

observing user actions and feedback, designers can

gain a deeper understanding of how to improve

surveys [26].

Franz, Rachel et. al. (2019) thoroughly explored the

significance of Usability Testing in evaluating

technologies for individuals aged 65 and above. The

authors share their practical experience and

knowledge from literature to offer a range of

effective strategies for designing, conducting, and

analyzing usability tests. These strategies

encompassed selecting appropriate test locations for

the Co-discovery approach, devising questions,

choosing relevant testing techniques, and using

mixed-methods approaches. The authors also

addressed challenges like recruitment and

participant impressions, utilizing insights from

Human-Computer Interaction and sociology.

Usability Testing, essential for refining technology

and ensuring positive user experiences, provided

insights into how older adults integrate technology

into their lives. While acknowledging limitations in

sample sizes common in research involving frail

older adults, the findings contribute valuable

insights for improving usability methods and best

practices. These insights could guide the study of

emerging technologies, with the chapter urging

researchers to continually enhance User-Centered

Design methods tailored to older adults [27].

Banker, Andria et. al. (2022) structured literature

review on Usability Testing for children, the authors

explored the evolution of practices over time and the

distinct variations between children's interactions

with prototypes compared to those of adults. The

study identifies potential avenues for future

research, including longitudinal vs. cross-sectional

testing, distinguishing between physical and digital

product testing, and determining suitable age ranges

for child participants. It underscores the significance

of transparency and possible bias in testing, while

emphasizing the imperative of valuing children's

instincts and opinions to enhance product design

[28].

Kirkscey, Russell (2022) utilized a mixed-methods

approach to examine the creation, Usability Testing,

and user experience assessment of an mHealth app

that aims to educate older women about diagnosis,

treatment, and prevention of osteoporosis. To cater

to the needs of older users, the app was designed

with Universal DesignUsability Tests were

conducted to evaluate functional, informational, and

navigational tasks. The data collected included

audio transcript records, video observer notes, task

completion times, and a post-test survey evaluating

user experience. Users interacted effectively and

comfortably with the app. Results showed that users

found the app effective and comfortable to use, but

there were certain challenges that could be

addressed in future iterations. The framework of the

study, which incorporated both qualitative and

quantitative elements, can provide valuable

guidance for other researchers who will be

developing similar mHealth products [29].

Rahmawati, A.F. et. al. (2022) explained the

evaluation of the SiNovi website's User Experience

(UX) after conducting Moderated Remote Usability

Testing and a User Experience Questionnaire (UEQ)

revealed several important findings. The results

showed that while the website received positive

evaluations in categories like "Attractiveness,"

"Efficiency," "Dependability," and more, indicating

a good overall user experience. However, there are

areas that require improvement to reduce the number

of issues and enhance user satisfaction [30].

Khalid, Md Saifuddin et. al. (2023) examined the

complexities of designing and evaluating adaptive

learning systems from a usability perspective,

considering adaptability and diverse stakeholder

requirements. Students and educators were

increasingly involved in educational quality

assessments, often without perceiving value. Few

case studied report on usability evaluations for such

systems [31].

4. Comparative Analysis

Here's a breakdown of the methodology for a

comparative analysis of testing approaches in Agile

Software Development:

1. Define Scope and Objectives:

• Project Type: Specify the type of Agile

methodology used (Scrum, Kanban, etc.)

• Testing Techniques: Identify the testing

approaches you'll compare (e.g., exploratory testing,

BDD, etc.)

• Evaluation Criteria: Determine the

factors for comparison (e.g., defect detection rate,

test automation coverage, etc.)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 3612–3620 | 3617

2. Research and Data Collection:

• Agile Testing Practices: Research best

practices for testing in your chosen Agile

methodology.

• Testing Techniques: Gather information

on the strengths and weaknesses of each testing

approach you'll compare.

• Case Studies: Look for case studies where

different testing approaches were used in Agile

projects.

3. Develop Evaluation Framework:

• Metrics: Define clear metrics for each

evaluation criterion (e.g., number of defects

found, percentage of automated tests).

• Weighting: Assign weights to each criterion

based on their importance to your specific

project.

By following this methodology, conduct a

comprehensive comparison of testing approaches

and select the one that best aligns with Agile

software development project.

Table 1: Comparative Analysis of Testing Approaches

Feature Traditional Testing Agile Testing

Focus Requirements verification Continuous feedback and improvement

Timing of Testing Separate phase Integrated throughout development cycle

Level of Automation Limited automation Emphasis on automation

Adaptability to Changing Requirements Difficult Highly adaptable

Efficiency in Agile Environment Low High

Advantages of Agile Testing:

• Early Feedback: Agile testing methods

provide feedback throughout the development

cycle, leading to faster bug detection and

resolution.

• Improved Quality: Continuous testing ensures

a higher quality product by identifying issues

early on.

• Reduced Risk: Frequent deployments and

automated testing minimize the risk of

introducing regressions.

• Increased Collaboration: Testing becomes an

integral part of the development process,

fostering better communication between

developers and testers.

Limitations of Agile Testing:

• Test Automation Overhead: Creating and

maintaining a robust suite of automated tests

can be time-consuming.

• Technical Expertise: Agile testing techniques

may require specialized skills and knowledge

from testers.

• Over-reliance on Automation: Over-

dependence on automation may neglect the

benefits of exploratory testing.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 3612–3620 | 3618

Table 2: Comparative Analysis of Testing Approach in Different Software Development Models

Feature Waterfall Model Agile Model Spiral Model

Testing Phases

Sequential (Unit ->

Integration -> System ->

Acceptance)

Iterative and Incremental

(Testing throughout

development)

Risk-driven, integrates testing

throughout the project lifecycle

Testing

Techniques

Primarily black-box

testing (focus on

requirements)

Mix of black-box and white-

box testing (adapts based on

iteration)

Combination of black-box,

white-box, and other techniques

based on risk assessment

Documentation
Formal test plans and test

cases created upfront

Test plans and cases evolve

with each iteration

Test plans and cases created and

updated based on risk

assessment

Defect

Management

Defects found later in the

process can be expensive

to fix

Early defect detection and

correction due to continuous

testing

Focus on mitigating high-risk

defects early

Change

Management

Difficult to accommodate

changes due to sequential

nature

Easier to incorporate changes

due to iterative approach

Adaptable to changes based on

risk evaluation

Advantages

Well-defined process,

easy to manage for simple

projects

Flexible, faster feedback loop,

good for complex or evolving

projects

Mitigates risk early, good for

large, high-risk projects

Disadvantages

Inflexible, difficult to

adapt to changes, late

defect detection

Requires strong discipline and

communication, can be

resource-intensive

More complex to manage,

requires good risk assessment

skills

5. Conclusion

This comparative analysis highlights the strengths of

agile testing approaches in the context of agile

software development. Agile testing prioritizes:

• Continuous Integration and Delivery

(CI/CD): Frequent testing throughout

development cycles ensures early defect

detection and faster fixes.

• Collaboration: Close interaction between

developers, testers, and stakeholders fosters a

shared understanding of evolving requirements

and leads to more effective testing strategies.

• Adaptability: Agile testing readily adjusts to

changing priorities and accommodates new

features introduced during sprints.

While traditional, plan-driven testing methodologies

might offer more structure in specific contexts, agile

testing fosters a more responsive and efficient

approach within the iterative nature of agile

development.

References

[1] V. Szalvay, “An Introduction to

Agile Software Development,” 2004.

[2] A. Choday and C. Dwivedula, “A

Systematic Literature Review and Industrial

Evaluation of Incorporating Lean Methodologies in

Software Engineering”.

[3] K. Beck and C. Andres, Extreme

programming explained: embrace change, 2nd ed.

Boston, MA: Addison-Wesley, 2005.

[4] M. Cohn, Succeeding with agile:

software development using Scrum. Pearson

Education, 2010.

[5] A. Cockburn, Agile software

development: the cooperative game. Pearson

Education, 2006.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 3612–3620 | 3619

[6] R. C. Martin, Agile software

development, principles, patterns, and practices,

First edition, Pearson new international edition.

Harlow: Pearson, 2014.

[7] Beck, K., Beedle, M., van

Bennekum, A., Cockburn, A., Cunningham, W.,

Fowler,

M., Grenning, J., Highsmith, J., Hunt, A., Jeffries,

R., “Manifesto for Agile Software Development.,”

2001, [Online]. Available:

https://agilemanifesto.org/

[8] S. W. Ambler, Agile modeling: effective

practices for eXtreme programming and the unified

process. New York: J. Wiley, 2002.

[9] J. D. Gould and C. Lewis, “Designing

for usability: key principles and what designers

think,” vol. 28, no. 3, 1985.

[10] J. Whiteside, J. Bennett, and K.

Holtzblatt, “Usability Engineering: Our Experience

and Evolution,” in Handbook of Human-Computer

Interaction, Elsevier, 1988, pp. 791–817. doi:

10.1016/B978-0-444-70536-5.50041-5.

[11] O. Sohaib and K. Khan, “Integrating

usability engineering and agile software

development: A literature review,” in 2010

International Conference On Computer Design and

Applications, Qinhuangdao, China: IEEE, Jun.

2010, pp. V2-32-V2-38. doi:

10.1109/ICCDA.2010.5540916.

[12] K. Curcio, R. Santana, S. Reinehr, and A.

Malucelli, “Usability in agile software development:

A tertiary study,” Comput. Stand. Interfaces, vol. 64,

pp. 61–77, May 2019, doi:

10.1016/j.csi.2018.12.003.

[13] S. Roy and P. K. Pattnaik, “Some

Popular Usability Evaluation Techniques for

Websites,” in Proceedings of the International

Conference on Frontiers of Intelligent Computing:

Theory and Applications (FICTA) 2013, S. C.

Satapathy, S. K. Udgata, and B. N. Biswal, Eds., in

Advances in Intelligent Systems and Computing,

vol. 247. Cham: Springer International Publishing,

2014, pp. 535–543. doi: 10.1007/978-3-319-02931-

3_61.

[14] M. Düchting, D. Zimmermann, and K.

Nebe, “Incorporating User Centered Requirement

Engineering into Agile Software Development,” in

Human-Computer Interaction. Interaction Design

and Usability, J. A. Jacko, Ed., in Lecture Notes in

Computer Science, vol. 4550. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2007, pp. 58–67. doi:

10.1007/978-3-540-73105-4_7.

[15] J. Nielsen, “The usability engineering

life cycle,” Computer, vol. 25, no. 3, pp. 12– 22,

Mar. 1992, doi: 10.1109/2.121503.

[16] M.-L. Sánchez-Gordón and L. Moreno,

“Toward an Integration of Web Accessibility into

Testing Processes,” Procedia Comput. Sci., vol. 27,

pp. 281–291, 2014, doi:

10.1016/j.procs.2014.02.031.

[17] Y. B. Leau, W. K. Loo, W. Y. Tham, and

S. F. Tan, “Software Development Life Cycle

AGILE vs Traditional Approaches”.

[18] De Vicente Mohino, Bermejo Higuera,

Bermejo Higuera, and Sicilia Montalvo, “The

Application of a New Secure Software Development

Life Cycle (S-SDLC) with Agile Methodologies,”

Electronics, vol. 8, no. 11, p. 1218, Oct. 2019, doi:

10.3390/electronics8111218.

[19] “The Stages of the Agile Software

Development Life Cycle,” The Stages of the Agile

Software Development Life Cycle.

https://www.lucidchart.com/blog/agile-software-

development-life-cycle

[20] “Types of Usability Testing,” Types of

Usability Testing.

https://www.uxtweak.com/usability-testing/types/

[21] G. Nahar and S. Bordia Jain,

“Uncovering the Usability Test Methods for

Human–Computer Interaction,” vol. 681, no. 1, p.

57, doi:

https://link.springer.com/chapter/10.1007/978-981-

99-1909-3_6.

[22] J. M. Carroll and M. B. Rosson,

“Paradox of the active user.,” in Interfacing thought:

Cognitive aspects of human-computer interaction.,

Cambridge, MA, US: The MIT Press, 1987, pp. 80–

111.

[23] N. Ghasemifard, M. Shamsi, and A. R.

R. Kenari, “A New View at Usability Test Methods

of Interfaces for Human Computer Interaction,”

2015.

[24] E. Geisen and J. Romano Bergstrom,

“Think Aloud and Verbal-Probing Techniques,” in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 3612–3620 | 3620

Usability Testing for Survey Research, Elsevier,

2017, pp. 131–161. doi: 10.1016/B978-0-12-

803656-3.00006-3.

[25] M. J. Van den Haak, M. D. T. de Jong,

and P. J. Schellens, “Employing think-aloud

protocols and constructive interaction to test the

usability of online library catalogues: a

methodological comparison,” Interact. Comput.,

vol. 16, no. 6, pp. 1153–1170, Dec. 2004, doi:

10.1016/j.intcom.2004.07.007.

[26] E. Nichols, E. Olmsted-Hawala, T.

Holland, and A. A. Riemer, “Usability Testing

Online Questionnaires: Experiences at the U.S.

Census Bureau,” in Advances in Questionnaire

Design, Development, Evaluation and Testing, P.

Beatty, D. Collins, L. Kaye, J. L. Padilla, G. Willis,

and A. Wilmot, Eds., Hoboken, NJ, USA: John

Wiley & Sons, Inc., 2019, pp. 315–348. doi:

10.1002/9781119263685.ch13.

[27] R. Franz and B. B. Neves, “Usability Is

Ageless: Conducting Usability Tests with Older

Adults,” in Ageing and Digital Technology, B. B.

Neves and F. Vetere, Eds., Singapore: Springer

Singapore, 2019, pp. 99–114. doi: 10.1007/978-981-

13-3693-5_7.

[28] University of Minnesota-Twin Cities,

United States of America and A. Banker, “Usability

testing with children: History of best practices,

comparison of methods and gaps in literature,”

presented at the DRS2022: Bilbao, Jun. 2022. doi:

10.21606/drs.2022.646.

[29] R. Kirkscey, “Development and Patient

User Experience Evaluation of an mHealth

Informational App for Osteoporosis,” 2021.

[30] A. F. Rahmawati, T. Wahyuningrum, A.

C. Wardhana, A. Septiari, and L. Afuan, “User

Experience Evaluation Using Integration of Remote

Usability Testing and Usability Evaluation

Questionnaire Method,” presented at the 2022 IEEE

International Conference on Cybernetics and

Computational Intelligence (CyberneticsCom),

IEEE, 2022, pp. 40–45.

[31] M. S. Khalid, T. A. B. Tretow-Fish, and

A. Roark, “Usability Evaluation of Adaptive

Learning System RhapsodeTM Learner,” presented

at the Proceedings of International Conference on

Information and Communication Technology for

Development: ICICTD 2022, Springer, 2023, pp.

71–82.

[32] Bhawana Verma, S.K.A.. (2019). Design

& Analysis of Cost Estimation for New

Mobile-COCOMO Tool for Mobile

Application. International Journal on Recent and

Innovation Trends in Computing and

Communication, 7(1), 27–34.

https://doi.org/10.17762/ijritcc.v7i1.5222

