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Abstract: Owing to the complications of LULC, the numerous kinds of seasonal variations, and human actions, Land use and land cover 

(LULC) become a challenge for monitoring and identification. Therefore, machine learning (ML) and Remote sensing (RS) technologies 

are employed to overcome these issues for generating LULC maps. RS identification uses object-based and pixel-based classifications 

which deliver LU classification with higher performance. However, this technique constantly needs sample data for parameter adjustment 

and training. ML has been instrumental in RS classification and has achieved remarkable outcomes for the LULC classification. 

Furthermore, currently, semantic segmentation is generally utilized in remote sensing images (RSI) for mapping crop types, glacial lakes, 

LC, and buildings. In the present scenario, Convolution Neural Networks (CNN) have attained more effective results for numerous tasks 

comprising LC estimates due to their capability to remove multiscale feature maps. The most complex issue in standard spatial resolution 

images is employing deep learning (DL) semantic segmentation for LU removal. Therefore, this study presents an optimum DL-based 

segmentation and classification method for LULC, termed the ODLSC-LULC approach. The segmentation stage uses U2Net, a strong DL-

based segmentation system, to exactly describe spatial features and improve contextual understanding. The SE-ResNet architecture is 

employed for feature extraction, taking hierarchical representations of land features for more discriminative identification. To modify the 

model's parameters efficiently, we present the African Vulture Optimizer Algorithm (AVOA), which represents the foraging behavior of 

vultures to constantly enhance the network's configuration. At last, a Bidirectional Long Short-Term Memory (BiLSTM) classifier is 

utilized to analyze successive dependencies and safeguard the precise classification of different land cover classes. Experimental outcomes 

on benchmark datasets determine the better performance of ODLSC-LULC, showcasing its efficiency in attaining optimum classification 

and segmentation outcomes for difficult and dynamic LU scenarios. 
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1. Introduction 

Land Use Land Cover (LULC) classification is important in 

remote sensing (RS) and environment monitoring [1]. It 

involves categorizing the Earth's surface into several groups 

that depend upon the various types of LC like agriculture, 

water bodies, urban regions, forests, and so on. These details 

are needed for different applications, comprising disaster 

assessment, agricultural management, urban planning, and 

natural resource conservation [2]. Improving accessibility of 

remotely sensed images because of the fast development of 

RS technology increases the horizon of the selections of 

image sources. The accessible sources have been identified 

for their changes in temporal, radiometric, spectral, and 

spatial resolutions so that will be appropriate for various 

objectives [3]. RS data or information obtained through 

satellite sensors offer incessant datasets that could be 

employed for identifying and monitoring various earth 

phenomena. It has been utilized for measuring the types of 

environmental parameters namely surface and cloud top 

reflectance, regions and possible yield of specified crop 

varieties, density and height of forest stands, snow and water 

content, soil, and fraction of photosynthetic active radiation 

[4].  

High spatial resolution images are about 30 cm to 10 m and 

can be proficient in extracting and classifying complex 

LULC features to be unnoticed in medium or lower-

resolution imageries [5]. The resolution can be higher 

prospective for the LULC classification categories as 

described in the LULC Level-3 classification model. Such 

types of image resolutions can be mainly categorized by 

image processing employing machine learning (ML) 

techniques. ML has performed a significant part in RS 

classification for more than ten years and provides excellent 

effectiveness for LULC classification [6]. The pixel-and 

object-based classifications are implemented by ML 

methods like random forest (RF), K-nearest neighbor 

(KNN), support vector machine (SVM), decision tree (DT), 

and maximum likelihood estimator (MLE) [7]. Currently, 

deep learning (DL) techniques are a vast and useful attention 

for automated classification of RSI. They manage the big 

data issues and the difficulty of LU characteristics. These 
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methods are employed for object segmentation and image 

classification and have been demonstrated more effective 

for numerous RS applications. LULC classification and DL 

semantic segmentation techniques have been a quickly 

developing research advancement [8]. According to the 

study, the study shows that DL semantic segmentation can 

identify and extract the variabilities and intricacy of LU 

features precisely [9]. On the other hand, the baseline 

network substructure that has been employed for the 

supervised learning method has deep and intricate 

convolution layers for learning under multidimensional 

data, and LU characteristics above medium spatial 

resolution imageries have middle-level features [10]. 

The ODLSC-LULC approach utilizes U2Net for precise 

spatial feature description during segmentation, while SE-

ResNet extracts hierarchical LULC features for enhanced 

identification. The African Vulture Optimizer Algorithm 

efficiently adjusts model parameters, followed by 

classification using a Bidirectional Long Short-Term 

Memory (BiLSTM) classifier, demonstrating superior 

performance in challenging land use scenarios. 

2. Literature Survey 

Li et al. [11] developed a DL technique of surface 

complexity exploration that is dependent upon multiscale 

entropy. The technique could be employed to decrease the 

entropy-based invariance and sampling bias to learn the 

semantic segmentation of LULC images. The quantitative 

systems efficiently recognized and removed local surface 

complexity scores, representing their wide-ranging utility. 

In [12], LULC mapping has been implemented by 

employing the developed CNN–MRS technique. Various 

types of Sentinel-2A images and diverse patch sizes have 

been utilized in the primary analysis. Yu et al. [13] designed 

an integrated CNN named DUA-Net architecture. The 

DUA-Net incorporated UNet and Densely connected Atrous 

Spatial Pyramid Pooling (DenseASPP) for extracting RSI 

features in parallel. Subsequently, the channel attention 

mechanism has been employed to proficiently combine the 

multi-source semantic data at the double-layer model 

output. Lastly, LULC classification of higher-resolution 

urban RSI could be accomplished. 

In [14], an innovative multimodal DL method was 

developed by encompassing traditional ViT with decreased 

variations. This method can process the multimodal RSI 

patches with equivalent divisions of position-divided ViTs 

comprehensively with separate convolution components. 

Additionally, their tokenized embeddings have been 

combined across cross-modality attention (CMA) 

components by utilizing pixel-level spatial relationships in 

RSI. Xu et al. [15] presented an enriched classification 

technique including Recurrent Neural Network (RNN) 

system with RF algorithm for LU classification employing 

satellite images that have been openly accessible for diverse 

research. The technique employed the spatial data collected 

from the satellite images like time series. The employed 

experimental classification was dependent upon object-

based classification and pixel. Cheng et al. [16] presented a 

multi-level LC contextual (MLCC) algorithm that must be 

flexibly combined with the efficient global context with 

local context for categorizing LC. The MLCC model 

encompasses 2 components first one is a DCNN-based LC 

classification network (DLCN) and another one is multiple-

level context integration module (MCIM). Also, MCIM 

permits the incorporation of the global and local contexts in 

the direction of uncertainty mapping in a resourceful 

process. 

In [17], a CNN method dependent upon the LeNet model 

was developed for executing the LULC classification 

through Sentinel-2 images. The CNN techniques like LeNet 

need decreased computation efficiency related to highly 

complicated models. An entire 11 LULC classes will be 

employed for validating and training the system that can be 

then employed for categorizing the sub-basins. Castelo-

Cabay et al. [18] introduced a classification of the LULC by 

employing satellite images through numerous classifiers 

and found which of them achieved the better efficiency for 

which three various techniques were implemented such as 

Deep Neural Network (DNN), Geographic Object-Based 

Image Analysis (GEOBIA), and Pixel-Based Image 

Analysis (PBIA). Different factors and seven categories 

have been employed. 

.” 

3. The Proposed Model 

In this study, we have established an optimum DL-based 

segmentation and classification method for LULC, termed 

the ODLSC-LULC approach. The main purposes of the 

ODLSC-LULC approach are four different processes 

involved U2Net-based segmentation, SE-ResNet-based 

feature extractor, AVOA-based hyperparameter tuning, and 

BiLSTM-based classification process. Fig. 1 demonstrates 

the entire flow of the ODLSC-LULC algorithm. 

 

Fig. 1. Overall flow of the ODLSC-LULC method 
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3.1. Segmentation Process 

At the primary level, the ODLSC-LULC approach takes 

place segmentation process using the U2Net model. The 

improvement of the U2Net method is its design, and 

capability to adjust to dissimilar areas and modify the 

function of loss [19]. Inserting color data into the technique 

along with generating novel dissimilar convolutional 

(Conv) layers and combining it with flattened and dense 

layers permits the U2Net method to take different visual 

prompts of diverted driving and improve the outcomes of 

identification. U2Net enhances the power of the entire UNet 

structure without extensively enhancing the computation 

cost due to pooling processes. 

The U2-net method modifies the UNet structure by 

incorporating 4 additional Conv layers and 2 max-pooling 

layers in the contracting pathway, while also expanding 2 

max-pooling layers and 4 upsampling layers in the 

expanding pathway, facilitating spatial data integration and 

increasing output resolution. By downsizing input images to 

256×256 dimensions and employing Conv processes 

followed by pooling functions, the model enhances 

localization and reduces training time, with transpose Conv 

layers subsequently upsampling to predict feature maps and 

enhance resolution for effective planning and context 

recognition in the network's architecture. 

3.2. SE-ResNet-based Feature Extractor 

The SE-ResNet can be employed for the feature extraction 

process. CNN has presented its power in computer visual 

challenges [20]. The SE block enhances representative 

features by recalibrating network features automatically, 

utilizing weight acquisition through learning. Employing 

global average pooling, the squeeze operator reduces input 

data, while the excitation process, incorporating dual fully 

connected layers with ReLU activation, emphasizes input 

data to generate weight channels, optimizing feature 

extraction in tasks such as image detection and classification 

through the SE-ResNet model's integration of SE blocks 

with ResNet residual blocks. We increase the SE‐ResNet 

output in Eq. (1). 

y=F(f_se (x),(ω_i ))+x                                                   (1) 

Whereas ω_i refers to the weight of the i^th  input, f_se (∙) 

represents the function of the SE block, and y, and x denote 

the output and input of the SE‐ResNet, correspondingly. 

However, in the squeeze operator process, we want to 

describe the feature image scale, which will significantly 

change the re-weight value. Meanwhile, the dimensions of 

input features are not similar, this study offers a variable 

scale as per the feature channel size. We describe the j^th 

output of SE‐ResNet as in Eq. (2). 

          y_j=F(f_se (x_j ),(ω_ij ))+x_j                                           

(2) 

Here y_j represents the jth output of SE‐ResNet. Fig. 2 

describes the architecture of SE-ResNet.  

 

Fig. 2. Architecture of SE-ResNet. 

3.3. Hyperparameter Tuning Process 

The AVOA method is applied for the optimal 

hyperparameter tuning related to the SE-ResNet approach. 

AVOA is a new nature-based algorithm that pretends to the 

uncommon behaviors of African vultures in foraging and 

navigation [21]. 

A). Formation of Population  

After being set by population of N, vultures have been 

separated into 3 groups dependent upon estimated fitness 

value. The vulture group with the optimal solution, and then 

the finest solutions are stored in the 2nd group and remain 

retained in the 3rd group. Eq. (3) is projected in order to 

define which vulture must be shifted to the existing 

iteration: 

 𝑅(𝑖)

=      {
𝐵𝑒𝑠𝑡𝑉𝑢𝑙𝑡𝑢𝑟𝑒1𝑖𝑓 𝑝𝑖 = 𝐿1
𝐵𝑒𝑠𝑡𝑉𝑢𝑙𝑡𝑢𝑟𝑒2𝑖𝑓 𝑝𝑖 = 𝐿2

}                                          (3) 

Here, pi is defined utilizing the roulette wheel model; L2 

and L1 denote the random numbers among the range of 

[0,1], with sum equivalent to 1. 

B). Starvation assignment 

The satiation and hunger phenomena such as insufficient 

energy, and violent seeking for foodstuff are imitated by 

Eqs. (4) and (5): 

 

𝑡 = ℎ∗(sin𝑤(𝜋/2 ∗ 𝑖/max𝑖) + cos(𝜋/2𝑖/max𝑖)

− 1)               (4) 

𝐹 = (2∗𝑟𝑎𝑛𝑑1 + 1)
∗𝑧∗ (1 −

𝑖𝑡𝑒𝑟−𝑖

max𝑖
)

+ 𝑡                                         (5) 

Whereas max_i  represents the maximum iterations count, 

Iter_- i means existing iteration, z is the random number 

among ‐l and 1, F signifies vulture satiation which selects 

the search model of vulture in exploitation or exploration 
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mode, h is the arbitrary number among -2 and 2, and rand_1  

refers to the random number amongst zero and one. 

C). Exploration 

At this stage, starving vultures (F>1) are directed to discover 

more united solutions in diverse random regions by picking 

the exact plan between dual as definite by the parameter Pl 

[0 and 1] at Eq. (6). If P1>1, the Eq. (7) is utilized or else 

Eq. (9) is employed to perfect this event: 

𝑣(𝑖 + 1)

= {
𝐸𝑞. (7) 𝑖𝑓 𝑃1 ≥ 𝑟𝑎𝑛𝑑𝑃1

𝐸𝑞. (9) 𝑖𝑓 𝑃1 < 𝑟𝑎𝑛𝑑𝑃1
}                                          (6) 

𝑣(𝑖 + 1) = 𝑅(𝑖) − 𝐷(𝑖)

∗ 𝐹                                                        (7) 

                     𝐷(𝑖)

= 𝑋 ∗ 𝑅(𝑖) − 𝑣(𝑖)                                                               (8) 

Whereas v(i+1) denotes the location vector of the vulture in 

the next iteration. Eq. (8) signifies the food search near the 

finest vultures at random distances (i). X is employed as a 

co-efficient vector in every iteration, which is attained by 

the formulation X=2×rand [0 and 1]. 

𝑣(𝑖 + 1) = 𝑣(𝑖) − 𝐹 + 𝑟𝑎𝑛𝑑2

∗ ((𝑢𝑏 − 𝑙𝑏) ∗ 𝑟𝑎𝑛𝑑3 + 𝑙𝑏)                (9) 

While, lb and ub are the lower and upper bound of the 

variables, rand3 ranges among [0 and 1]. 

D). Exploitation 

Vultures with F value which is larger than one arrive to 

develop the search area with two dissimilar tactics in every 

stage. Parameters P3 and P2 are employed to pick the plans 

accessible in the 1st and 2nd phases correspondingly. The 

AVOA goes into the exploitation of 1st phase when the 

value |F| lies among 1 and 0.5 or else the AVOA will follow 

the 2nd phase. In the 1st stage, twofold dissimilar rotating 

flight and siege-flight approaches have been implemented 

according to Eq. (10) which is given below: 

𝑣(𝑖 + 1)

= {
𝐸𝑞. (11) 𝑖𝑓 𝑃2 ≥ 𝑟𝑎𝑛𝑑𝑃2

𝐸𝑞.  (14) 𝑖𝑓 𝑃2 < 𝑟𝑎𝑛𝑑𝑃2
}                                        (10) 

Strategy 1: Siege and Food Competition  

The weaker vultures attempt to exhaust and acquire foods 

from healthy predators by collecting nearby them and 

making little fights. 

𝑣(𝑖 + 1) = 𝐷(𝑖) ∗ (𝐹 + 𝑟𝑎𝑛𝑑4)

− 𝑑(𝑡)                                            (11) 

𝑑(𝑖) = 𝑅(𝑖) − 𝑣(𝑖)                                                         (12) 

 

Upgraded vulture location is v(i+1) and rand_4 denotes the 

random integer within [0,1], which is utilized to enlarge the 

arbitrary co-efficient. 

Strategy 2: Rotational Spiral Flight Mode  

This stage is employed to perfect the rotating flight of 

predators. A formulation of the spiral has been produced 

between all vultures as well as one of the dual finest 

vultures. The S1 and S2 accepted by predators is stated 

utilizing Eq. (13): 

 

𝑆1 = 𝑅(𝑖) ∗ (
𝑟𝑎𝑛𝑑5 ∗ 𝑣(𝑖)

2𝜋
) ∗ cos(𝑣(𝑖))

𝑆2 = 𝑅(𝑖) ∗ (
𝑟𝑎𝑛𝑑3 ∗ 𝑣(𝑖)

2𝜋
) sin(𝑣(𝑖))

}
 
 

 
 

                                 (13) 

𝑣(𝑖 + 1) = 𝑅(𝑖) − (𝑆1
+ 𝑆2)                                                 (14) 

 

At last, by employing Eq. (14), the position of vultures is 

upgraded. 

Phase 2: Vulture movement near the food basis is inspected 

at this stage. To define the range of every strategy, the 

parameter P3 is utilized in Eq. (15) which is as follows, 

whereas randP3  is a random number among 0 and 1. 

 

𝑣(𝑖 + 1)

= {
𝐸𝑞. (18) 𝑖𝑓 𝑃3 ≥ 𝑟𝑎𝑛𝑑𝑃3

𝐸𝑞.  (19) 𝑖𝑓 𝑃3 < 𝑟𝑎𝑛𝑑𝑃3
}                                      (15) 

Strategy 3: Gathering of vulture species around food  

Numerous kinds of vulture species obtain stored over food 

and fight for foodstuff. 

Utilizing Eqs. (16) and (17), the accumulation of the 

vulture’s movement is demonstrated: 

𝐴1  = 𝐵𝑒𝑠𝑡𝑣𝑢𝑙𝑡𝑢𝑟𝑒𝑙 (𝑖)

− 𝐷(𝑖)

× 𝐹                                                 (16) 

𝐴2 = 𝐵𝑒𝑠𝑡𝑣𝑢𝑙𝑡𝑢𝑟𝑒2(𝑖)

− 𝐷(𝑖)

× 𝐹                                                  (17) 

𝑣(𝑖 + 1) =
𝐴1 + 𝐴2

2
                                                         (18) 

A2 and A_1 denote the location vector of the vulture. 

Therefore, the accumulation of all vultures is implemented 

by utilizing Eq. (18). 

Strategy 4: Aggressive Competition for Food 

Once AVOA takes place, then food lack will be started. So, 

they collect food in every place and perform reasonably. 

They used to follow dissimilar guiding movements by 

assuming levy flight events and heading near the foremost 
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predator. This kind of behavior is demonstrated below 

𝑣(𝑖 + 1) = 𝑅(𝑖) − |𝑑(𝑖)| ∗ 𝐹

∗ 𝐿𝑒𝑣𝑦(𝑑)                                            (19) 

Whereas d(i) signifies the vulture distance and intended 

employing Eq. (25). The levy flight patterns are applied in 

order to enhance the efficacy of AVOA. 

The AVOA method is used to derive an FF for achieving 

high classifier accuracy. It determines a positive integer to 

epitomize the better efficiency of the solution candidate. 

Here, the minimization of classifier errors is assumed as FF.    

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖) = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒(𝑥𝑖) 

=
𝑁𝑜. 𝑜𝑓 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑜. 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∗ 100                  (20) 

 

3.4. Classification using the Bi-LSTM Model 

At last, the Bi-LSTM model can utilized for the detection 

and classification of different LC classes.  Recurrent neural 

network (RNN) reflects the relation characteristics of time 

sequence [22]. The extraction of prior data for the stock 

market is limited due to gradient explosion or disappearance 

problems. LSTM-NN is a kind of RNN that has significant 

benefits in handling the long‐term dependency of time‐

sequence data. LSTM is an extension of RNN, which 

includes input, forget, and output gates. The integral scale at 

dissimilar times is changed dynamically once the parameter 

model is fixed, which efficiently resolves the vanishing or 

exploding gradients and the existence of RNN problems.  

Initially, the forget gate f_t decides what data should be 

removed from the cell. 

𝑓𝑡
= 𝜎(𝑏𝑓 +𝑊𝑓𝑥𝑡

+ 𝑈𝑓ℎ𝑡−1)                                                        (21) 

Where the bias, the input weight, and the loop weight of the 

forget gate are represented as 𝑏𝑓 ,  𝑊𝑓, 𝑈𝑓 , correspondingly. 

x_i denotes the existing input vector σ indicates the sigmoid 

activation function and h_t represents the HL vectors.  

Consider external input gate g_t within [0,1] is subject to the 

sigmoid function: 

𝑔𝑡 = 𝜎(𝑏𝑔 +𝑊𝑔𝑥𝑡 + 𝑈𝑔ℎ𝑡−1)                                           (22) 

Next, the cell state C_t is updated according to C_(t-1) as 

follows 

𝐶𝑡 = 𝑓𝑡𝐶𝑡−1 + 𝑔𝑡tanh(𝑏𝑐 +𝑊𝑐𝑥𝑡
+ 𝑈𝑐ℎ𝑡−1)                                (23) 

Lastly, the data output h_t=o_t*tanh(C_t ) is subject to the 

input gate and it is described by: 

o𝑡
= 𝜎(𝑏o +𝑊o𝑥𝑡 + 𝑈oℎ𝑡−1)                                                (24) 

 

The Bi-LSTM-NN composed of two LSTM-NN, receives a 

similar input. It can be trained in forward and backward 

directions with LSTM-NN deciding on the last output. 

ℎ𝑡
= 𝑓(𝑤1𝑋𝑡
+ 𝑤2ℎ𝑡−1)                                                                 (25) 

ℎ𝑡
= 𝑓(𝑤3𝑋𝑡
+ 𝑤5ℎ𝑡+1)                                                                 (26) 

o𝑡
= 𝑔(𝑤4ℎ𝑡
+ 𝑤6ℎ𝑡

′)                                                                      (27) 

Where,w1,w2,w3,w4,w5, and w6 denote the weight matrices, 

Xt indicates the input at the moment, ht implies the output at 

the forward layer at the moment, ht^' means the output at the 

reverse layer at the moment, h(t-1) refers to the output at prior 

moment, 0t signifies the output at the moment, and h(t+1)  

shows the output at next time.  

4. Experimental Validation 

The stimulation analysis of the ODLSC-LULC algorithm is 

tested using the Sen-2 LULC dataset [23]. It includes 1750 

samples with 7 class labels as illustrated in Table 1. 

Table 1: Details of database 

Classes  No. of Samples 

Water Bodies 250 

Dense Forest 250 

Built up 250 

Agriculture land 250 

Barren land 250 

Fallow land 250 

Sparse Forest 250 

Total Samples 1750 
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Fig. 3. Average of ODLSC-LULC method on 70:30 of 

TRAPH/TESPH 

 

Fig. 4. 𝐴𝑐𝑐𝑢𝑦 curve of ODLSC-LULC technique under 

70:30 of TRAPH/TESPH 

The performance of the ODLSC-LULC technique on 70:30 

of TRAPH/TESPH is depicted in Fig. 3 through TRAA and 

VALA curves, illustrating its learning process and 

generalization abilities across epochs, with a notable steady 

improvement in both metrics suggesting its adaptive nature 

in pattern recognition. Additionally, Fig. 4 presents the 

TRLA and VALL outcomes, showing the ODLSC-LULC 

model's ability to reduce classifier error and capture patterns 

within the datasets, with continuous parameter enhancement 

aiming to minimize differences between predicted and 

actual class labels in the training data. 

 

 

Fig. 5. Loss curve of ODLSC-LULC technique on 70:30 of 

TRAPH/TESPH 

 

Fig. 6. PR curve of ODLSC-LULC technique under 70:30 

of TRAPH/TESPH 

Inspecting the PR curve, as displayed in Fig. 6, the results 

ensured that the ODLSC-LULC model on 70:30 of 

TRAPH/TESPH progressively accomplishes better PR 

values under each class. It verifies the improved abilities of 

the ODLSC-LULC technique in the detection of distinct 

classes, exhibiting proficiency in the recognition of classes.   

 

Fig. 7. ROC curve of ODLSC-LULC technique under 

70:30 of TRAPH/TESPH 

At last, a brief comparison study is made with recent 

approaches on LULC in Table 2 and Fig. 8 [23-25]. The 

outcomes infer that the CNN-SVM, CNN-RF, DeeplabV3+, 

and LoopNet models have resulted in poor performance. 

Meanwhile, the UNet-ResNet50, UNetResNet101, and 

UNet-ResNet152 models have reached closer results. 

Nevertheless, the ODLSC-LULC technique gains 

maximum performance with accu_y, prec_n, reca_l, and 

F1_{score} of 96.49%, 87.65%, 87.02%, and 87.22%, 

respectively. Therefore, the ODLSC-LULC method can be 

applied for automated segmentation and classification of 

LULC. 
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Table 3 Comparative outcome of ODLSC-LULC technique 

with existing algorithms   

Method 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝟏𝑺𝒄𝒐𝒓𝒆  

CNN-SVM 

Model 
82.06 81.08 82.08 81.06 

CNN-RF Model 83.06 83.08 83.07 82.06 

DeeplabV3+ 85.18 87.01 86.57 66.24 

LoopNet Model 89.90 87.03 86.86 71.74 

UNet-ResNet50 95.05 73.07 68.06 70.08 

UNet-

ResNet101 
95.06 69.06 67.07 68.06 

UNet-

ResNet152 
95.07 73.08 68.06 70.06 

ODLSC-LULC 96.49 87.65 87.02 87.22 

 

 

Fig. 8. Comparative outcome of ODLSC-LULC technique 

with existing algorithms 

4. Conclusion 

A conclusion In this study, we have developed an optimum 

DL-based segmentation and classification method for 

LULC, termed the ODLSC-LULC approach. The main 

purposes of the ODLSC-LULC approach are four different 

processes U2Net U2Net-based segmentation, SE-ResNet-

based feature extractor, AVOA-based hyperparameter 

tuning, and BiLSTM-based classification process. The 

segmentation stage uses U2Net, a strong DL-based 

segmentation system, to exactly describe spatial features 

and improve contextual understanding. The SE-ResNet 

architecture is employed for feature extraction, taking 

hierarchical representations of land features for more 

discriminative identification. To modify the model's 

parameters efficiently, we present the AVOA, which 

represents the foraging behavior of vultures to constantly 

enhance the network's configuration. At last, a Bi-LSTM 

classifier is utilized to analyze successive dependencies and 

safeguard the precise classification of different land cover 

classes. Experimental outcomes on benchmark datasets 

determine the better performance of ODLSC-LULC, 

showcasing its efficiency in attaining optimum 

classification and segmentation outcomes for difficult and 

dynamic land use scenarios. 
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