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Abstract: Timely identification of learners' performance is crucial for educators to intervene effectively before students encounter 

academic challenges. However, the scarcity and privacy concerns surrounding educational datasets pose significant hurdles. In this study, 

we investigate the efficacy of predictive models for learner performance using synthetic data and regression techniques. Our analysis 

focuses on a multi-source dataset from technical education, which has been expanded through synthetic data generation. Employing 

regression machine learning algorithms, we evaluate the prediction performance across actual, generated, and augmented datasets. Our 

findings indicate notable improvements with augmented datasets, achieving an R-squared coefficient of 0.8776. These results underscore 

the effectiveness of hybrid data approaches and advocate for the integration of synthetic data as a viable alternative, particularly in contexts 

where access to real data is limited. This integration holds promise for advancing educational technology and machine learning 

methodologies. Through comprehensive analysis of diverse data sources and the application of regression techniques on synthetic and 

augmented datasets, this investigation endeavors to evaluate the efficacy of predictive models concerning learner performance. 

Additionally, this study elucidates the potential utility of synthetic data as a viable alternative in instances where the available real dataset 

is limited in scale.  
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1. Introduction 

The effectiveness of educational initiatives is intricately tied 

to the ability to promptly and precisely evaluate student 

performance, a task that has become notably intricate amidst 

the proliferation of data within contemporary digital 

learning ecosystems [1]. Predictive analytics has emerged as 

a potent instrument, empowering educators to preemptively 

discern students at risk and customize interventions 

accordingly. Nonetheless, despite their promise, these 

methodologies often encounter obstacles due to the 

constrained accessibility and delicate nature of educational 

data. 

Synthetic data, artfully crafted to reflect the statistical 

properties of real datasets, presents a groundbreaking 

opportunity in educational research. It not only bypasses the 

privacy and ethical considerations linked with real data but 

also offers an enriched dataset for training Machine 

Learning (ML) models. However, the efficacy of synthetic 

data and its comparative effectiveness against real data in 

educational settings remains underexplored.  

To surmount these obstacles, our study delves into the 

utilization of synthetic data, an innovative strategy designed 

to replicate the statistical characteristics of authentic data 

while circumventing privacy and scarcity concerns using 

Gretel.ai. Integrated with advanced regression techniques 

like Support Vector Regression (SVR), Gradient Boosting 

Regression Trees (GBRT), Random Forest (RF), eXtreme 

Gradient Random Boost (XGB), and K- Nearest Neighbour 

(KNN), we propose an all-encompassing framework for 

forecasting learner performance. Through the generation 

and integration of synthetic data into our multi-source 

dataset from the technical education sphere, our objective is 

to augment the predictive model's efficacy and applicability. 

Additionally, we undertake a thorough examination of the  

 

comparison between actual and synthetic datasets to gauge 

the effectiveness and dependability of our machine learning 

algorithms. The incorporation of synthetic data presents 

considerable potential for guiding the enhancement of 

sophisticated pedagogical instruments, and our inquiry aims 

to furnish a substantial contribution to the realms of 

educational technology and analytics. Through the 

perspective offered by this study, we strive to lay the 

foundation for a fresh paradigm in educational data 

analysis—one that fosters wider implementation and 

ingenuity in addressing data limitations. The present study 

addresses the following Research Questions (RQ): 

RQ1: Does the Combination of Different Feature Sets 

Enhance Predictive Models for Academic Performance in 

Real, Synthetic, and Mixed Datasets? 
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RQ2: What is the comparative predictive performance of 

models across actual, generated, and augmented datasets for 

academic performance prediction in BL? 

 1.1 Contributions 

➢ Comprehensive Academic Performance 

Forecasting: Our study pioneers a holistic method 

for predicting academic performance, extending 

beyond single-course predictions to accurately 

forecast outcomes for a student's entire semester. 

➢ Cutting-edge Synthetic Data Generation: 

Leveraging the Tabular-ACTGAN algorithm via 

Gretel.ai, our research generates a substantial 

synthetic dataset of 5,000 entries with an 83% 

quality score, overcoming the limitations of small 

sample sizes and enhancing the reliability of our 

predictive models. 

➢ Enhanced Multi-source Data-driven Regression: 

Our research enhances regression analysis by 

integrating a multi-source dataset, delving into 

various factors like lifestyle habits, digital 

engagement, and socio-economic indicators. This 

approach significantly improves the potential for 

targeted educational intervention. 

2.  Related Work 

Data synthesis, an essential component in the realm of data 

science, encompasses various approaches and methods 

devised by researchers. One widely adopted technique 

employs Generative Adversarial Networks (GANs), 

demonstrating their efficacy in generating synthetic data 

that faithfully reproduces the original data distribution [2]. 

To address privacy concerns, differentially private GANs 

have been introduced [3], adding noise into generated 

samples to protect sensitive information. 

An alternative technique involves rule-based synthesis 

methods, exemplified by the Data Synthesizer framework 

[3]. This method leverages Bayesian networks to capture 

statistical dependencies among attributes, generating 

synthetic data while preserving essential characteristics. 

Privacy-preserving data synthesis is tackled by the PrivBTS 

algorithm [4], which utilizes Bayesian network structures to 

create synthetic data while preserving privacy guarantees. 

Moreover, the utility of synthetic data is a paramount 

concern. The PrivBayes algorithm [5], combining sampling 

and tree-based partitioning, generates synthetic data that 

balances privacy preservation with data utility. 

The authors in [6] explored the application of GANs in 

educational technology research. They assessed the 

compatibility of synthetic data with real data and 

investigated GANs’ suitability for educational research. By 

employing the COPULA-GAN algorithm, they created 

synthetic datasets for analysis. The study involved a two-

stage cluster analysis, highlighting the resemblance and 

interchangeability between synthetic and original datasets. 

 The work in [7] emphasized the importance of regression 

analysis in teaching students the significance of statistical 

analysis. They proposed a novel approach using multiple 

linear regression, which involves generating alternative 

multivariate datasets to emphasize the importance of 

advanced statistical analysis. Researcher in [8] introduced 

an improved approach that combines a Conditional 

Generative Adversarial Network (CGAN) with a deep-

layer-based SVM to predict academic success. To overcome 

the limitation of having a limited number of student 

educational records, the team utilizes synthetic data samples 

created through an enhanced CGAN. The findings from the 

CGAN training indicate that the combination of school and 

home tutoring positively impacts children’s performance. 

Notably, when compared to existing solutions in the 

literature, suggested advanced CGAN combined with the 

deep SVM exhibits superior performance, particularly in 

terms of sensitivity, specificity, and the area under the 

curve. Their study demonstrates the potential of synthetic 

data generated by CGAN in improving performance 

prediction models for technology-assisted learning 

platforms. 

 An interpretable model for predicting student performance 

in “Introduction to Programming” courses was developed 

[9]. Their model utilizes data derived from programming 

assignment submissions and employs a stacked ensemble 

model with SHAP (SHapley Additive exPlanations), a 

game-theory-based framework to forecast students’ final 

exam grades. This study also discerns distinct student 

profiles based on their problem-solving tendencies. 

Learners’ academic outcome prediction using data mining 

and learning analytics was done in [10]. They analyzed 62 

papers from 2010 to 2020 and identified key predictors of 

learning outcomes, emphasizing the use of regression and 

supervised ML models. Noteworthy predictors of learning 

outcomes include online learning activities, term assessment 

grades, and the emotional state of the students during their 

academic journey. 

  ML techniques were evaluated [11] for forecasting 

students’ final grades. They introduced a multiclass 

prediction model that integrated the Synthetic Minority 

Oversampling Technique (SMOTE) and feature selection 

methods, highlighting its potential to improve predictive 

performance. Being able to predict student performance in 

a timely manner empowers educators by enabling them to 

quickly identify underperforming students, which in turn 

facilitates early intervention and the implementation of 

essential support measures. 

     A guide for educators was provided [12] on the 

utilization of data mining methods to anticipate student 

performance in higher education. They categorized data 
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mining analysis methods and proposed a systematic 

framework for educators. The use of synthetic educational 

data was investigated [13] in training academic performance 

prediction models. They distributed synthetic data to 

participants in data challenges, revealing challenges and 

limitations associated with prediction models in such 

contexts. The synthetic data was generated from a 

confidential dataset and distributed to participants in data 

challenges, facilitating the training of prediction algorithms. 

These participants submitted their models in Docker 

containers, which were then rigorously evaluated and 

ranked against separate synthetic datasets. Certain models 

that had been trained on synthetic data exhibited 

considerably diminished performance when applied to the 

non-synthetic dataset.   

 A systematic review of ML was conducted [14] in 

predicting student performance. They analysed 162 research 

articles and identified prevalent methodologies for 

prediction. The quintet of ML algorithms that reigned 

supreme comprised the Artificial Neural Network (ANN), 

Decision Tree (DT), Random Forest (RF), Naive Bayes 

(NB), and Support Vector Machine (SVM). Furthermore, 

the bedrock features underpinning the prediction of 

students’ performance included historical academic records, 

class performance, academic data sourced from learning 

management systems, and students’ demographic 

information. A comparison of supervised data mining 

methods for the prediction of student exam performance 

was presented [15]. They highlighted the effectiveness of 

ANN and emphasized the importance of robust data 

acquisition and student engagement. Table 1 shows a 

summary of some key publications referred for the research.  

 

 

Table 1. Summary of Related Work 

Study Methodology Focus 

GANs for Data Synthesis [4] GANs, Rule-based methods 
Data Synthesis, Privacy 

Preservation 

GANs in Educational 

Technology [6] 
COPULA-GAN Synthetic Data’s Compatibility 

Advanced Statistical Analysis 

[7] 
Multiple Linear Regression 

Teaching Advanced Statistical 

Concepts 

Enhanced Performance 

Prediction [8] 

Enhanced CGAN, Deep 

Support Vector Machine 

(SVM) 

Academic Success Prediction 

Interpretable Models [9] Stacked Ensemble, SHAP 
Predicting Student 

Performance 

Comprehensive Review ([10], 

[16]) 

Data Mining, Learning 

Analytics 

Academic Performance 

Prediction 

Improved Predictive 

Performance ([1],[11]) 
ML Techniques 

Predicting Final Student 

Grades 

Data Mining Guide [12] Data Mining Techniques 
Predicting Student 

Performance 

Synthetic Data Challenges [13] Synthetic Data Utilization Challenges and Limitations 

Systematic Review [14] ML in Education 
Prevalent Prediction 

Methodologies 

Comparative Analysis [15] Supervised Data Mining 
Predicting Student Exam 

Performance 

Predicting Dropout [17] Deep Learning Methods Student Dropout Prediction 

Predictive Analytics in E-

Learning ([18], [19], [20]) 
Predictive Analytics 

Early Identification of At-Risk 

Students 
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Fig. 1. Workflow Diagram

3. Methodology 

 This section outlines the methods employed in the study, 

including the data acquisition, Synthetic data generation, 

and rigorous model evaluation. 

3.2       Dataset Description 

 The real-world educational dataset of 580 students is 

collected from Government Polytechnic of Karnataka, India 

comprising a diverse range of learner attributes, such as 

demographics, prior academic performance, and 

engagement metrics within online learning portals as 

mentioned in detail in [1]. The study utilizes a synthetic 

dataset of 5,000 records generated via Gretel API and a 

combination of real and synthetic datasets. Dataset is split 

in to five categories as below: 

Learners’ Background Data (P1): Incorporated within the 

learner’s background data combination set are several 

crucial parameters like Matriculation Medium of Study, 

Residential Background (Rural/Urban), and Family Annual 

Income. 

Experience with Prior Digital Learning Environment (P2): 

The P2 dataset included assessments of fundamental 

computer proficiency, online connectivity, and the user-

friendliness of Learning Management Systems (LMS). 

Interaction with Digital Learning Environment (P3): This 

includes Login Frequency Lectures Accessed Time Devoted 

to Viewing Online Lectures Time Allocated to Completing 

Online Assignments Activities Successfully Concluded 

Average Lecture Replay Frequency, and Average Lecture 

Viewing Interruptions. 

Forum participation (P4):  This includes Frequency of 

Inquiries, Peer Engagement, Instructor Interaction Group 

Activity Participation. 

Lifestyle and Behavioral Metrics (P5): The dataset referred 

to as                  

P5 encompasses Physical Activity Frequency, Sleep 

Duration, Smartphone Usage for Educational Purposes, 

Dietary Preferences, and Library Visit Frequency. 

 

3.3 System Overview    

Fig. 1. shows an overview of the proposed system. It has 

been  

divided into three phases: 

3.3.1    Phase 1: Data Preparation 

1. Data Collection: Data was collected from students 

through a multiple source on their experience with the 

Learning Management System (LMS), lifestyle, 

demographic information, and socioeconomic background. 

2. Data Cleaning: Errors, inconsistencies, missing values, 

and outliers in the collected data were identified and 

addressed to ensure data quality and integrity. 

3. Data Set: After performing data cleaning, a cleaned and 

prepared real data set was obtained, which included the 

survey responses collected from students. 

3.3.2    Phase 2: Synthetic Data Generation 

 

                   Fig. 2. Generation of Synthetic Dataset 
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Fig. 2. shows an overview of the generation of synthetic 

data. Tabular ACTGAN method is used to generate 

synthetic data using gretel.ai. 

3.3.2.1 Synthetic Data Generator 

Algorithm 1: Data Synthesis 

 

Require: Original Data 

Ensure: Synthetic Data 

Initialise Parameters 

1. Set the number of epochs automatically. 

2. Define the generator neural network with 

dimensions [1024, 1024] 

3. Specify the discriminator neural network with 

dimensions [1024, 1024]. 

4. Assign a learning rate of 0.0001 to the generator. 

5. Set the discriminator’s learning rate to 0.00033. 

6. Determine the batch size automatically 

Generate Synthetic Data 

7. Specify the number of synthetic records to generate 

as 5000. 

8. Apply privacy filters, including handling outliers 

and ensuring similarity. 

Train the Model 

9. Start training the model using the tabular-

ACTGAN algorithm. 

Evaluate the Synthetic Data 

10. Calculate the number of columns used for 

correlations. 

11. Generate a synthetic quality score report. 

12.  Identify mandatory columns (if any). 

The parameter initialization step in Algorithm 1, plays a 

crucial role in configuring the training process, including 

the determination of training epochs, representing the 

iterations over the dataset for neural network training. The 

architecture of the generator and discriminator neural 

networks is specified as [1024, 1024], defining their 

structural design. The learning rates govern the speed at 

which these networks acquire knowledge from the data. 

Additionally, the batch size is automatically determined, 

representing the number of data samples utilized in each 

training iteration. 

In step 2, the actual data generation takes place. The 

algorithm specifies the number of synthetic records to 

generate, which, in this case, is set to 5000 records. 

Privacy filters are applied in this step, which typically 

involves techniques to ensure that sensitive or personally 

identifiable information in the data is protected. This 

includes methods to handle outliers (extreme data points) 

and techniques to ensure that the synthetic data is similar 

in characteristics to the original data. 

     During the “Train the Model” phase, the algorithm 

initiates the training process for an ML model, using the 

tabular- ACTGAN (Anyway Conditional Tabular GAN). 

Tabular ACtGAN is an extension of the CTGAN 

(Conditional Tabular GAN) model and is used to generate 

synthetic tabular data that closely mimics the statistical 

characteristics of a provided dataset. This model is 

particularly useful in scenarios where data is scarce or 

sensitive and sharing it is restricted. The generator 

network employs random noise as input to generate 

synthetic data samples, which are then assessed by the 

discriminator network. The discriminator network’s role 

is to learn how to distinguish between authentic and 

synthetic data samples. A distinctive feature of Tabular 

ACtGAN is its ability to control specific attributes or 

features of the generated data. The training process 

involves utilizing the original dataset in combination with 

synthetic data to instruct the model in understanding and 

replicating the statistical patterns inherent in the original 

dataset. 

    After the model has been trained, the generated 

synthetic data will be evaluated as in Fig. 3. and Fig. 4. It 

defines the number of columns used for correlation 

analysis, reporting, the maximum number of rows in the 

report, and other evaluation-related settings such as target 

variables and metrics. Additionally, a synthetic quality 

score report and data summary statistics are generated. 

The algorithm also identifies any mandatory columns, 

essential variables, or attributes that must be present in the 

synthetic data. 

3.3.2.2 Merging Data Sets:  The generated synthetic data 

was combined with the real data set, creating a merged 

data set that encompassed both real and synthetic data. 

This integration ensured a diverse and comprehensive 

data set for subsequent analysis. 

 

Fig. 3. Report for generated synthetic data 
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Fig. 4. Data Summary Statistics 

Table 2. Accuracy Metrics 

Metric Formula Description 

R-Squared Co-efficient (R2) 

∑(𝑦𝑖 − 𝑦̂𝑖)
2

𝑛

𝑖=1

 

 

∑(𝑦𝑖 − 𝑦𝑖̅)
2

𝑛

𝑖=1

 

Quantifies the extent to which the variation in the 

dependent variable can be explained by the 

independent variables. A measure of the regression 

model's goodness of fit. Higher the R2 value stronger 

fit between the model and the data. 

Root Mean Square Error (RMSE) √
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑖=1

 

Measures the average magnitude of the errors between 

predicted (𝑦̂𝑖) and actual (𝑦𝑖) values. Smaller RMSE 

values indicate better model performance. 

Mean Absolute Error (MAE) 
1

𝑛
∑|𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1

 

Computes the mean of the absolute disparities between 

predicted (𝑦̂𝑖) and observed (𝑦𝑖) values, serving as an 

indicator of the model’s typical prediction inaccuracy. 

Phase 3: Model Design and Evaluation 

1. Data Preprocessing: This phase involved the usage of 

feature selection techniques like filter and wrapper and 

handling categorical variables through encoding. 

2.Appling ML algorithm: ML regression algorithms, 

including RF, Gradient Boosting Regression Trees 

(GBRT), eXtreme Gradient Boosting (XGB), K- Nearest 

Neighbor (KNN), and Support Vector Regression (SVR), 

were employed to train and model the preprocessed 

datasets. These algorithms aim to learn a mapping 

function that can predict the target variable (performance 

in this context) based on input features. 

a. RF: RF is an ensemble learning technique that 

relies on decision trees. The mathematical 

representation RF (X)  is expressed in (1). 

Let: 

              N be the number of decision trees in the 

forest. 

              𝑇𝑖  represents the prediction made by i-th 

decision tree. 

              X denotes the input features. 

𝑅𝐹(𝑋) =
1

𝑁
∑ 𝑇𝑖(𝑋)

𝑁

𝑖=1

     (1) 

b. GB: It’s an ensemble technique that builds an 

additive model by combining numerous weaker 

learners, typically in the form of decision trees. The 

mathematical representation of GB(X), prediction 

made by the GB model for input X is  expressed in 

(2). 

𝐺𝐵(𝑋) = ∑ ℎ𝑚(𝑋)

𝑀

𝑚=1

      (2) 

       Where: 

       M is the number of boosting iterations. 

       hm(X) is the prediction of the m-th weak learner. 

c. XGB: XGB works by minimizing a loss function 

that measures the disparity between the actual target 

values (Y) and the predictions generated by an 

ensemble of decision trees. In regression, the 

typical choice for this loss function is the Mean 

Squared Error (MSE). The objective function is to 

find optimal prediction function Fm(X) at each 

boosting iteration by minimizing this objective 

function and is given by (3). 
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   𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒(𝑀) =  𝛴ᵢ 𝐿(𝑦ᵢ, 𝐹𝑚 − 1(𝑥ᵢ))

+  𝛺(𝐹𝑚)     (3) 

   Where: 

   M be the number of boosting iterations. 

   hm be the m-th weak learner. 

   Fm−1(X) represent the ensemble’s prediction at 

iteration m − 1. 

   L(Y, Fm−1(X)) be the loss function that quantifies 

the difference between the      

   true target Y and the current prediction Fm−1(X). 

   Ω(Fm) is the regularization term that penalizes 

model complexity. 

d. KNN: KNN is a non-parametric instance-based 

learning method. When presented with a new data 

point, it locates the k training examples that are 

most similar to it in feature space and derives a 

prediction for the target variable by considering the 

majority class among these k nearest neighbors. 

The prediction KNN (X) for a new data point X can 

be represented as in (4). 

𝐾𝑁𝑁(𝑥) =
1

𝑘
∑ 𝑦𝑖

𝑘

𝑖=1

      (4) 

       Where: 

        k be the number of nearest neighbors. 

        yi represent target values. 

 

e. SVR: SVR is a supervised learning technique 

employed for regression tasks The objective in S is 

to find the optimal hyperplane that minimizes the 

prediction error while staying within a specified 

margin (ϵ-tube) around the target values and is 

given by (5). 

                                     

Minimize: 

1

2
‖𝜔‖2 + 𝐶 ∑(𝜉𝑖 + 𝜀𝑖

∗)

𝑁

𝑖=1

      (5) 

        Subject to: 

        yi − (w. ϕ(xi)+b) ≤ϵ + ξi 

        (w⋅ϕ(xi)+b) −yi ≤ ε+ξi∗  

        ξi, ξi ∗≥0 and i=1, 2, …., N 

        Where:  

         w represents the weight vector. 

     b is the bias term. 

     ξi and ξi ∗ are slack variables that quantify the 

prediction error. 

    C is the cost parameter that balances the trade-off 

between minimizing error and    

    ensuring data points are within the margin. 

    ϵ specifies the margin size. 

    yi are the target values. 

    ϕ(xi) represents the feature mapping, often involving 

a kernel function. 

3.Training and Test Data Split: The preprocessed 

datasets were meticulously divided 80% of the data for 

model training and remaining 20% for testing.  

4. Comparison and Evaluation: The outcomes derived 

from various datasets, including real, synthetic, and 

merged data, underwent a comprehensive comparative 

assessment through the 

4.  Results                                                           

Table 3: Comparison of real, synthetic, and mixed dataset on single feature set 

Feature set Algorithm 
Real Dataset Synthetic Dataset Mixed Dataset 

RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 

 

P1 

RF 14.09 10.88 0.8248 13.08 10.30 0.8415 11.54 8.05 0.8739 

XGB 14.31 10.88 0.8250 13.08 10.30 0.8415 11.54 8.06 0.8739 

KNN 12.92 10.36 0.8363 13.44 10.72 0.8297 12.64 9.73 0.8528 

SVR 13.02 10.21 0.8313 13.08 10.24 0.8420 11.54 7.89 0.8763 

GBRT 13.96 10.92 0.8240 13.09 10.31 0.8414 11.53 8.03 0.8742 
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trained ML model. A diverse set of evaluation metrics as in 

Table 2 was systematically employed. 

RQ 1: Does the Combination of Different Feature Sets 

Enhance Predictive Models for Academic Performance in 

Real, Synthetic, and Mixed Dataset? 

Single feature set:  In single feature sets, RMSE values 

spanned from 11.53 to 19.35, indicating variability in model 

performance across different feature sets. The highest 

RMSE (19.35) was observed with the XGB model for 

feature set "P4" on the real dataset, indicating a sensitivity 

to the variability in single feature sets. The lowest RMSE 

(11.53) was noted with the GBRT model for feature set "P1" 

on the mixed dataset, highlighting the strength of GB 

methods when demographic and background data are 

incorporated. Overall, the mixed dataset consistently 

produced superior outcomes, highlighting the value of 

incorporating synthetic data to bolster predictive models, as 

substantiated by the data in Table 3 and visually by Fig. 5. 

Twin Feature set: When two parameter sets were taken 

together, RF and XGB consistently performed well across 

different datasets as shown in Table 4, with RF often having 

a slight edge in terms of RMSE and MAE. KNN and SVR 

also exhibited competitive performance, and GB stood out 

in some cases, particularly in the “mixed” dataset as in Fig. 

6. P1_P2, the RF algorithm achieves an RMSE of 12.11 on 

the mixed dataset, markedly lower than 15.94 on the real 

dataset, indicating the added value of integrating synthetic 

data for a more robust predictive model. Similarly, the SVR 

algorithm stands out with consistent performance, 

particularly in feature set P1_P2, where it achieves an 

RMSE of 11.55 on the mixed dataset, one of the lowest 

across all combinations. This points to SVR's strength in 

handling diverse data inputs. effectively. The RMSE range 

for twin feature sets varies with the lowest observed for SVR 

in the P1_P2 combination on the mixed dataset (11.55) and 

the highest for XGB in the P1_P4 combination on the real 

dataset (19.00). The mixed dataset repeatedly results in 

enhanced model performance. 

Triple Feature set:  Across triple feature set combinations, 

models trained on mixed datasets consistently outperform 

those trained solely on real or synthetic datasets, reinforcing 

the proposition that a combination of different feature sets 

can indeed enhance predictive accuracy as shown in Fig. 7. 

For instance, when considering the feature set P1_P2_P3, 

the RF algorithm delivers the lowest RMSE (11.87) on the 

mixed dataset, markedly improving from 12.54 on the real 

dataset. This suggests the amalgamation of real and 

 

P2 

RF 14.49 11.59 0.8140 13.11 10.33 0.8414 11.64 8.20 0.8716 

XGB 14.54 11.62 0.8135 13.10 10.32 0.8414 11.65 8.21 0.8716 

KNN 16.32 12.61 0.7933 14.14 11.34 0.8244 12.70 9.64 0.8491 

SVR 13.00 10.09 0.8348 13.05 10.17 0.8433 11.55 7.90 0.8761 

GBRT 14.24 11.26 0.8181 13.10 10.31 0.8417 11.61 8.10 0.8730 

 

P3 

RF 12.30 9.42 0.8490 13.98 11.18 0.8293 12.13 8.98 0.8607 

XGB 14.25 10.86 0.8272 15.54 12.34 0.8121 12.75 9.73 0.8499 

KNN 13.56 10.66 0.8306 14.16 11.26 0.8289 12.40 9.39 0.8554 

SVR 12.68 9.93 0.8371 13.05 10.24 0.8423 11.55 7.91 0.8760 

GBRT 13.05 10.07 0.8390 13.32 10.59 0.8376 11.56 8.24 0.8712 

 

P4 

RF 15.60 11.95 0.8110 14.42 11.52 0.8253 12.47 9.25 0.8576 

XGB 19.35 14.83 0.7710 14.22 11.34 0.8273 12.38 9.11 0.8597 

KNN 13.14 9.39 0.8478 14.18 11.50 0.8260 12.43 9.34 0.8564 

SVR 12.53 9.58 0.8434 13.10 10.26 0.8416 11.55 7.88 0.8763 

GBRT 14.61 10.92 0.8277 13.34 10.55 0.8380 11.59 8.12 0.8729 

 

P5 

RF 13.86 10.60 0.8319 14.80 11.71 0.8212 12.97 9.86 0.8485 

XGB 13.90 10.72 0.8274 14.67 11.69 0.8214 12.70 9.51 0.8536 

KNN 13.71 10.71 0.8253 14.39 11.48 0.8239 12.77 9.77 0.8507 

SVR 12.64 9.77 0.8374 13.04 10.21 0.8426 11.54 7.89 0.8763 

GBRT 12.90 9.74 0.8446 13.06 10.24 0.8419 11.64 8.29 0.8706 
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synthetic data yields a more accurate model, as highlighted 

by the increased R2 (0. 8656 for the mixed dataset versus 

0.8444 for the real dataset). It is noteworthy that while the 

GBRT model shows heightened accuracy on mixed 

datasets, its performance is closely rivalled by the RF 

model, which offers consistent RMSE improvements across 

most combinations. The SVR model also demonstrates 

robust performance, particularly in the mixed dataset 

context, suggesting

 

Table 4. Comparison of real, synthetic, and mixed dataset on twin feature set 

Feature set Algorithm 
Real Dataset Synthetic Dataset Mixed Dataset 

RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 

P1_P2 

RF 15.94 12.63 0.7986 13.87 11.04 0.831 12.11 8.80 0.8634 

XGB 17.79 14.24 0.7779 14.05 11.18 0.8291 12.10 8.80 0.8638 

KNN 14.93 12.00 0.8084 14.55 11.59 0.8218 12.42 9.28 0.8556 

SVR 13.31 10.45 0.8282 13.10 10.26 0.8416 11.55 7.89 0.8762 

GBRT 15.76 12.86 0.7959 13.23 10.46 0.8394 11.64 8.22 0.8716 

P1_P3 

RF 12.17 9.51 0.8495 13.78 11.04 0.8317 12.09 8.88 0.8622 

XGB 14.37 11.34 0.8221 15.28 12.31 0.8134 13.02 9.93 0.8473 

KNN 13.80 11.05 0.8243 14.21 11.28 0.8281 12.61 9.59 0.8520 

SVR 12.76 10.09 0.8333 13.13 10.30 0.8413 11.54 7.89 0.8761 

GBRT 12.99 10.31 0.8362 13.31 10.60 0.8375 11.55 8.23 0.8715 

P1_P4 

RF 15.61 12.09 0.8083 14.56 11.66 0.8236 12.69 9.62 0.8517 

XGB 19.00 14.31 0.7779 14.63 11.55 0.8248 12.65 9.47 0.8544 

KNN 14.32 11.05 0.8202 14.42 11.53 0.8251 12.37 9.44 0.8548 

SVR 12.61 9.62 0.8405 13.10 10.27 0.8415 11.55 7.89 0.8762 

GBRT 17.05 12.59 0.8028 13.31 10.55 0.8380 11.64 8.24 0.8712 

P1_P5 

RF 14.16 11.24 0.8211 14.34 11.42 0.8260 12.91 9.70 0.8509 

XGB 16.19 12.70 0.7993 14.71 11.69 0.8216 12.68 9.61 0.8523 

KNN 14.00 10.59 0.8260 13.98 11.18 0.8294 12.62 9.46 0.8541 

SVR 12.89 9.90 0.8351 13.07 10.26 0.8418 11.54 7.90 0.8761 

GBRT 14.00 11.20 0.8216 13.09 10.30 0.8416 11.62 8.29 0.8707 

P2_P3 

RF 12.56 10.07 0.8417 13.46 10.82 0.8352 11.86 8.71 0.8645 

XGB 14.19 10.94 0.8262 15.07 12.14 0.8154 12.82 9.74 0.8497 

KNN 13.89 10.77 0.8259 14.00 11.31 0.8277 12.49 9.46 0.8535 

SVR 12.92 10.05 0.8351 13.05 10.24 0.8422 11.54 7.91 0.8759 

GBRT 12.90 10.01 0.8417 13.32 10.59 0.8378 11.67 8.31 0.8699 

P2_P4 

RF 14.20 11.29 0.8229 14.87 12.09 0.8192 12.73 9.53 0.8535 

XGB 16.84 13.49 0.7884 15.11 12.10 0.8185 12.78 9.70 0.8510 

KNN 12.95 10.44 0.8342 14.71 11.83 0.8214 12.62 9.47 0.8541 

SVR 12.83 9.90 0.8379 13.10 10.28 0.8411 11.55 7.90 0.8761 

GBRT 14.18 11.06 0.8242 13.39 10.64 0.8372 11.68 8.20 0.8718 
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Fig. 5. RMSE comparison of single feature set on different datasets and algorithms 

 

Fig. 6. RMSE comparison of twin feature set on different datasets and algorithms 

P2_P5 

RF 13.34 10.52 0.8322 14.35 11.45 0.8249 12.57 9.45 0.8538 

XGB 14.79 11.67 0.8116 15.07 12.08 0.8158 12.98 9.89 0.8476 

KNN 14.02 10.60 0.8233 14.41 11.54 0.8236 12.93 9.77 0.8496 

SVR 12.71 9.78 0.8383 13.06 10.26 0.8417 11.55 7.91 0.8760 

GBRT 12.67 9.93 0.8442 13.25 10.44 0.8392 11.68 8.33 0.8698 

P3_P4 

RF 12.28 9.58 0.8464 13.56 10.82 0.8351 11.71 8.55 0.8668 

XGB 14.22 10.77 0.8319 15.20 12.25 0.8139 12.70 9.73 0.8500 

KNN 13.68 10.81 0.8246 14.52 11.46 0.8249 12.56 9.62 0.8534 

SVR 13.06 10.19 0.8317 13.09 10.26 0.8416 11.54 7.91 0.8759 

GBRT 12.93 9.95 0.8444 13.40 10.60 0.8375 11.56 8.23 0.8710 

P3_P5 

RF 12.66 10.21 0.8406 13.44 10.70 0.8363 11.74 8.55 0.8672 

XGB 14.05 11.16 0.8281 15.26 12.13 0.8137 12.58 9.62 0.8523 

KNN 13.34 10.79 0.8257 14.49 11.57 0.8230 12.66 9.59 0.8516 

SVR 12.63 9.86 0.8370 13.04 10.22 0.8424 11.54 7.91 0.8759 

GBRT 13.46 10.31 0.8376 13.30 10.51 0.8381 11.62 8.30 0.8705 

P4_P5 

RF 13.68 11.03 0.8270 13.50 10.81 0.8350 11.97 8.82 0.8634 

XGB 15.02 12.26 0.8112 14.85 11.88 0.8197 12.84 9.77 0.8499 

KNN 13.85 11.04 0.8219 14.31 11.49 0.8249 12.60 9.61 0.8515 

SVR 12.48 9.64 0.8405 13.08 10.30 0.8410 11.54 7.91 0.8760 

GBRT 14.14 11.14 0.8268 13.22 10.47 0.8389 11.64 8.25 0.8711 
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Fig. 7.  RMSE comparison of triple feature set on different datasets and algorithms 

its effective handling of composite data inputs. The RF 

model stands out as a particularly effective algorithm across 

various combinations, making it a strong candidate for 

academic performance prediction tasks in blending learning 

environments.

Four and Five Feature set: Table 5 and Fig. 7. indicates 

that the RF algorithm consistently outperforms other models 

across quad and five-feature sets. While the XGB model 

shows promise, especially in mixed datasets, it does exhibit 

higher RMSE values in more complex feature 

combinations, suggesting possible limitations in handling 

intricate data structures. KNN remains a viable model, with 

performance that closely follows the RF model, especially 

in mixed datasets where data diversity is inherent. SVR 

maintains commendable accuracy levels, although it 

presents slightly higher RMSE figures in mixed datasets, 

hinting at a trade-off between error rate and accuracy. 

GBRT, while showing moderate increases in error metrics, 

secures the highest accuracy rates in mixed dataset 

conditions, reinforcing the benefits of feature diversity in 

predictive modeling. The range of RMSE values observed 

spans from 11.53 to 17.34 for the quad feature sets and from 

11.54 to 15.35 for the five-feature sets. Notably, the most 

comprehensive feature set, "P1_P2_P3_P4_P5," when 

processed through the RF algorithm and applied to mixed 

datasets, achieved an optimal balance between complexity 

and accuracy, marking the lowest RMSE value of 11.54, 

showcasing the effectiveness of the RF model in complex 

modeling scenarios. 

 

 
Fig. 8. RMSE comparison quad and five feature set on different datasets and algorithms 

Table 5.  Comparison of real, synthetic, and mixed dataset on quad and five-feature set 

Feature set Algorithm 
Real Dataset Synthetic Dataset Mixed Dataset 

RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 

P1_P2_P3_P4 

RF 12.67 10.32 0.8373 13.53 10.76 0.8363 11.69 8.49 0.8680 

XGB 17.34 13.34 0.7973 14.78 11.91 0.8189 12.33 9.34 0.8560 

KNN 14.71 11.78 0.8112 14.52 11.62 0.8231 12.63 9.65 0.8520 

SVR 12.55 9.84 0.8378 13.11 10.30 0.8409 11.53 7.92 0.8759 

GBRT 15.39 12.08 0.8137 13.35 10.56 0.8382 11.63 8.29 0.8703 

P1_P2_P3_P5 

RF 12.94 10.55 0.8340 13.25 10.58 0.8381 11.69 8.46 0.8683 

XGB 14.15 11.17 0.8257 15.21 12.26 0.8130 12.79 9.64 0.8509 

KNN 14.09 10.86 0.8245 14.35 11.53 0.8240 12.69 9.67 0.8511 
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RQ2. What is the comparative predictive performance of 

models across actual, generated, and augmented datasets for 

academic performance prediction in BL? 

Fig. 9. consistently illustrates a clear trend in which the 

mixed dataset surpasses the synthetic dataset, and the 

synthetic dataset outperforms the real dataset across a range 

of machine learning algorithms. This trend underscores the 

effectiveness of combining real and synthetic data for 

predicting learner performance in BL environments. 

Specifically, the SVR model achieves the highest R2 Co-

efficient of 0.8756 when applied to the mixed dataset, 

indicating its superior performance. Thus, mixed dataset 

encompasses a wider array of scenarios and learner data 

variations, enhancing the algorithms' predictive capacity. 

The diversity and increased data volume offer richer 

insights, resulting in improved accuracy for all algorithms 

tested. 

 

Fig. 9.  Comparison of accuracy on P1_P2_P3_P4_P5 feature set on different dataset and algorithms 

 

4. Conclusion and Future scope 

This work provides a comprehensive comparative analysis 

between real and synthetic data, generated via the Tabular- 

ACTGAN-based algorithm, for synthesizing high-quality 

data while ensuring privacy protection for learner 

performance prediction in online learning portals. The 

findings suggest that synthetic data shows promise as a 

viable alternative to real data, with ML models trained on 

synthetic data demonstrating competitive performance. The 

mixed dataset showcases a notable advantage, where ML 

models trained on this hybrid data exhibit even more robust 

and accurate performance.  

 

Future research directions include refining the techniques 

for generating high-quality synthetic data, exploring the 

transferability of models trained on mixed data to real-world 

SVR 12.73 9.98 0.8351 13.10 10.28 0.8413 11.54 7.93 0.8757 

GBRT 13.30 10.94 0.828 13.40 10.62 0.8369 11.66 8.33 0.8699 

P1_P3_P4_P5 

RF 12.58 10.42 0.8362 13.24 10.55 0.8389 11.63 8.39 0.8696 

XGB 14.92 11.64 0.8202 15.00 12.02 0.8180 12.49 9.53 0.8529 

KNN 13.10 10.38 0.8316 14.21 11.37 0.8260 12.53 9.56 0.8529 

SVR 12.46 9.70 0.8392 13.09 10.28 0.8413 11.54 7.92 0.8757 

GBRT 13.81 11.04 0.8304 13.35 10.57 0.8380 11.57 8.31 0.8704 

P1_P2_P4_P5 

RF 12.65 10.4 0.8369 13.27 10.55 0.8389 11.65 8.37 0.8697 

XGB 14.09 11.13 0.8289 14.95 12.01 0.8180 12.46 9.48 0.8540 

KNN 12.86 10.22 0.8351 14.36 11.44 0.8252 12.45 9.46 0.8545 

SVR 12.64 9.85 0.8373 13.09 10.28 0.8413 11.54 7.92 0.8758 

GBRT 13.64 10.87 0.8325 13.4 10.59 0.8376 11.59 8.3 0.8704 

P2_P3_P4_P5 

RF 12.71 10.38 0.8375 13.30 10.55 0.8388 11.66 8.35 0.8698 

XGB 13.26 10.62 0.8376 14.90 12.00 0.8180 12.42 9.43 0.8550 

KNN 12.61 10.06 0.8386 14.51 11.51 0.8243 12.36 9.35 0.8561 

SVR 12.81 9.99 0.8353 13.09 10.28 0.8412 11.53 7.92 0.8758 

GBRT 13.46 10.69 0.8345 13.45 10.61 0.8371 11.60 8.29 0.8704 

P1_P2_P3_P4_P5 

RF 12.76 10.63 0.8329 13.24 10.50 0.8397 11.57 8.33 0.8703 

XGB 15.35 12.31 0.8125 14.47 11.53 0.8246 12.81 9.69 0.8504 

KNN 13.78 10.88 0.8246 14.18 11.29 0.8283 12.51 9.41 0.8550 

SVR 12.53 9.77 0.8384 13.09 10.28 0.8412 11.54 7.93 0.8756 

GBRT 14.66 11.63 0.8220 13.42 10.61 0.8372 11.59 8.32 0.8701 
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scenarios, addressing biases, and ensuring fairness in 

synthetic data generation, along with extending our analysis 

to predict long-term learner performance. Additionally, the 

success of mixed data integration encourages further 

investigation into innovative data synthesis approaches, 

reinforcing the importance of data quality and privacy while 

advancing the field of ML for educational purposes.   
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