

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 4122–4134 | 4122

Automated Classification of Code Review Comments using Deep Neural

Network-based Architecture

Gobind Panditrao*1, Shashank Joshi2, Sunita Dhotre3, Sandeep Vanjale4

Submitted: 28/01/2024 Revised: 06/03/2024 Accepted: 14/03/2024

Abstract: Code review comments are essential components for automated code review systems that facilitate software quality and

productivity of developers. This study demonstrates the classification of code review comments using Deep Neural Networks with a hybrid

architecture consisting of CodeBERT and Long Short-Term Memory. Leveraging a dataset from the OpenDev Nova initiative, this study

employed a five-class classification model to identify specific types of review comments, like discussions, document changes, and false

positives. The approach was modifying and retraining the model already proposed in existing literature and then adapting it to the project

environment by restoring the required attributes using the standard libraries. The performance of this modified model was observed across

different epochs, with precision, recall, F1-score, and accuracy metrics being utilized to establish its efficiency. The main results indicated

major enhancements to the handling of complex comment types as well and overall accuracy compared to previously established models.

After analysis, this research supports the viability of Deep Neural Networks in providing a reliable classification system that considers

code nuances and contexts. The research also identifies the limitations of the generalizability of the study results due to dataset specificity

and suggests possible ways of overcoming this problem, including the use of different neural network architectures and the inclusion of

more development environment types in the datasets.

Keywords: Automated classification, Code review comments, CodeBERT, Long Short-Term Memory, Deep Neural Network

1. Introduction

Automated code review (ACR) and quality improvement

systems leverage advanced algorithms, machine learning

models, and a wide array of programming tools to scrutinize

code, ensuring it not only meets functional requirements but

also adheres to best practices in terms of readability,

maintainability, and performance. The introduction of such

automation into the software development lifecycle

significantly enhances the speed and efficiency of code

reviews, while simultaneously reducing human error and

subjective bias.[1], [2]

Code context and semantic analysis involves the systematic

examination of source code by one or more individuals other

than the original author, for identifying bugs, ensuring

consistency, and facilitating a shared understanding of the

codebase among team members.[3] However, as software

development projects grow in size and complexity, the

volume of comments generated during code reviews (CR)

can become substantial, making it challenging for teams to

prioritize issues, track progress, and derive actionable

insights. Automated classification overcomes this challenge

by using algorithms to categorize comments based on their

nature, urgency, and potential impact on the project.[1], [3]

The incorporation of machine learning (ML) models such as

Deep Neural Networks (DNNs) has been fundamental in the

way CR systems get automated. These models use code

context and CR comments to make an informed guess of the

potential impact of code changes, thereby reducing the time

and effort spent during review.[4], [5] Beyond that, the use

of AI by CR systems includes bots which can review a code

program and give reviewer-friendly suggestions.[6]

Modern deep-learning models based on CodeBERT (an

extension of BERT, i.e., Bidirectional Encoder

Representations from Transformers) offer unprecedented

accuracy as well as efficiency in processing and classifying

text data.[4] When applied to code review feedback, these

models facilitate a more nuanced, intelligent, and automated

approach to analyzing, categorizing, and responding to

comments and suggestions made during the code review

process.[7]

This study aims to integrate the Automated Code Review

process with transformer-based architectures to make use of

CR comments and feedback and incorporate code context

and semantic analysis to classify CR comments into detailed

categories. The study will address the issue of more efficient

and consistent code review processes by developing an

advanced ML model for comment classification, evaluating

its understanding of context and semantics of these

comments, and investigating the impact of code context on

the classification accuracy of feedback.

1, 2, 3, 4 Bharati Vidyapeeth (Deemed to be University) College of

Engineering, Pune – 411043, INDIA
1 ORCID ID : 0009-0006-0138-1345
2 ORCID ID : 0000-0001-8241-5530
3 ORCID ID : 0000-0001-8705-0956
4 ORCID ID : 0000-0001-5944-7120

* Corresponding Author Email: mrgmprao14@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 4122–4134 | 4123

2. Literature Review

2.1. Overview of CR Practices

CR practices adopted by the software development industry

feature an evolution from impromptu critiques to organized

peer evaluations through the emergence of shared platforms

and software configuration management tools.

- In the article by Bosu et al. (2017)[8], the authors

collected survey data regarding CR practices from

Microsoft and Open Source Software (OSS) developers to

evaluate the amount of time and effort spent during CRs. It

was observed that almost 10-15% of the total time is

exhausted in CRs, and the amount of effort is directly

proportional to the experience of the developer. The

developers emphasized the usefulness of code reviews and

the benefits provided from these practices such as error

detections, knowledge-sharing, code maintenance and

community building. The quality of code also enables

reviewers to have a better understanding of their teammates,

thus potentially enabling collaborations in the future. They

noted differences between the two types of respondents, for

instance while OSS respondents consider impression

formation an important benefit of code reviews, while

Microsoft ones find knowledge dissemination to be of

greater significance. The authors noted three key areas that

may require some further research: Non-technical benefits

of CR, articulation of review comments by developers and

improving reviewers’ program comprehension.

They emphasize the need to comprehend interplay among

programmers, which involves both the developers and the

reviewers/maintainers of code. Research shows that the

success of the CRs depends on the interactions established,

and on the environment in which they occur, which can be

as crucial as the technical aspects of the programming itself.

- The research article by Sadowski et al. (2018)[9] has been

critically reviewed on the effectiveness and challenges of

modern CR. The authors explore modern CR at Google via

means of interviews, surveys and analysis of review logs.

They investigate the motivations and purpose behind CR at

Google, current CR practices and developers’ satisfactions

and challenges. Their discovery indicated that while code

reviews act as a gateway in the process of integration before

the actual graduation, the efficacy in terms of pinpointing

complicated bugs is doubtful. However, their results are

useful for the maintenance of code quality, sharing

knowledge among team members, and spotting errors that

can otherwise develop into significant defects.

- In the paper by Bacchelli and Bird (2013)[10], the authors

explain the gap between what developers expect from the

review and what they actually obtain. The authors

conducted interviews and surveys with managers and

developers and classified numerous CR comments at

Microsoft. Their study revealed that despite the main

motivation of error detection behind code reviews, the

fundamental outputs provide additional benefits such as

transfer of knowledge, team awareness and alternate

solutions to challenges. They also discover that

understanding of code and code changes are essential for

code reviews and that developers employ various

mechanisms to meet these needs, especially those not met

by existing technologies.

Furthermore, both groups of researchers identified certain

factors that could alter code review effectiveness, such as

changeset size, code complexity, the level of familiarity of

the reviewer and CR tools.

2.2. Technical Aspects of CR

As for automated methods and tools in code review process

analysis, this field has been developing notably. It is noted

that changeset size measurement is an essential aspect of the

CR effectiveness.

- In the paper by Barnett et al. (2015)[11], the author

proposes certain investigation tools to improve the speed of

the approval process as well as increase the level of detail

by reducing human errors. A changeset is a set of modified

files to be added to a source repository, and code reviews

are often carried out on such sets. Based on this principle,

the authors introduce ClusterChanges, an automatic tool

used for dividing change sets. The effectiveness of this tool

is evaluated quantitatively as well as qualitatively through

their study.

There is also a groundbreaking transformation of AI-driven

systems based on ML and natural language processing

(NLP) that greatly benefits CR processes.

- The article by Fregnan et al. (2022)[12] addresses the

problems that often occur during code reviews and assesses

the usefulness of a machine learning-based technique in

resolving these issues. They point out that manual

classifications are not scalable and are not assessed in terms

of meaningfulness of information to the practitioners. They

used different classifiers such as J48, Random Forest and

Naïve Bayes to evaluate their performances in automatic

classification of review changes. They evaluate the

relevance and usefulness of the review change types by

conducting several interviews and studies with developers.

Key results showed that these automatic classification of

code review changes are potentially valuable for

improvement of the code review process.

These AI systems can also be trained to handle the issues of

context and semantics of the code beyond the scope of

syntax checking. By providing feedback not only on the

code correctness but also on the best review practices and

potential optimizations, it can therefore improve the

educational aspect in code reviews.

- The research article by Tufano et al. (2021)[1] aimed

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 4122–4134 | 4124

towards partial automation of the CR process to potentially

reduce the time required by developers when reviewing

their teammate’s codes. They investigated various Deep

Learning methods that can be used to automate specific CR

tasks. The author makes use of two components of the

automated process, the “contributor” and the “reviewer”.

The “contributor” revises the various versions of the code

before the code is submitted for review. This is achieved by

learning code changes that are executed in real-time by

developers. The “reviewer” sends the revised code along

with comments written in natural language to the human

reviewer commenting on the submitted code.

- In the paper by Turzo et al. (2023)[13], an automated

classifier for CR comments was developed which utilizes

Deep Neural Network (DNN) models for achieving high

accuracy and a reliable performance. When reviewing the

work done by Fregnan (2022), who developed automated

classifiers for classification of changes induced by CR, they

observed two potential areas for improvement: i.

Classifying those comments that do not contribute to CR-

induced changes and ii. Using DNNs and code context to

improve CR performances.

2.2.1. CodeBERT

The use of ML and the deployment of the CodeBERT

model[4] substantially improves the comprehension of the

contextual features that make the code review process

unique.

- The paper by Feng et al. (2020)[4] introduces

CodeBERT, a pre-trained model which is bimodal for both

Natural and Programming Languages (NL-PL). The authors

describe how it shows learning of the general-purpose

representations supporting the downstream NL-PL

applications. A transformer-based neural architecture was

used to develop CodeBERT and was trained with a hybrid

objective function. This function implements “replaced

token detection” which is used to identify plausible

alternatives to a particular token that is sampled from a

network of generators. This can be executed on both the

bimodal and unimodal data. By evaluating its functionality

on NL-PL applications such as NL code search and code

documentation generation, the authors demonstrated how

CodeBERT achieves remarkable performance on them.

The stated method utilizes the hybrid nature of CodeBERT

to create contextual vectors from source code as well as

review comments. Hence, the model can comprehend both

technical aspects and the reviewer’s sentiment.

The findings of this study aim to add to the literature of

deep-learning techniques in CR through the generation of an

elaborate, interconnected framework of the variables that

affect the review outcomes. It will not only close existing

gaps but will also establish the basis for better data-driven

software engineering code reviews.

3. Aim and Objectives

3.1. Aim

To design a DNN-based ACR system which analyzes issues

in code review comments with a higher grade of accuracy

and precision to improve developers' time spent on code

reviews and increasing the reliability and consistency of the

code assessment.

3.2. Objectives

- Investigate advanced machine learning models for

automated code analysis, issue identification, and

recommendation generation.

- Develop comprehensive tools for automated code

analysis, quality metrics and generation of precise and

actionable suggestions.

- Ensure seamless integration of the automated code review

tool into existing software development workflows.

- Establish a continuous feedback mechanism that allows

developers to review the suggestions made by the automated

tool.

4. Methodology

The approach in this study employed comprehensive dataset

preparation that incorporated data selection, mining, and

semiautomatic labels from the OpenDev Nova project.

These labels were generated by adopting tools like Gerrit

which provided access to and hence mining of CR

comments.[8], [14] The data set underwent thorough

processing to guarantee robustness and precision in the

classifier outputs; this aspect was integral in generating

reliable research outcomes. This process was crucial as the

effectiveness of the deployed ML algorithms was directly

dependent on the extent to which the data was

representative, clean and well-organized. This subsequently

impacted the quality of insights that were generated from

the models, aiding in the development of accurate

insights.[12]

4.1. Dataset Preparation

After extensive review of literature, the OpenDev Nova

project was selected for dataset preparation as it uses code

review (CR) tool-based practices.

Data mining was done using the Gerrit platform which

provides CR handling for the OpenDev community. The

Gerrit's REST API was used to extract publicly available

CRs for the period from July 2011 to March 2022 (128

months) of which 795,226 CRs were either merged or

abandoned. In the extraction phase, random sampling and

filtering techniques of data were used to select 2,500 highly

representative and relevant CR comments out of thousands

for more in-depth analysis.

Based on the existing literature,[14] a modified

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 4122–4134 | 4125

classification schema was developed for the manual

labelling of these CR comments. These groups-- Functional,

Refactoring, Documentation, Discussion, False Positive--

were determined to be the most suitable, primarily because

of their capability to handle a wide-range of CR comments

that do not result in direct code changes. The linking

involved two coders labelling comments in a consensus

format, while conflicts were solved by a third coder,

ensuring the reliability of data categorization.

Inter-rater agreement was assessed using Cohen's kappa

(k=0.68), which corresponds to substantial agreement

among annotators.[15] This metric emphasizes the

stringency of the manual labelling process.

4.2. Data Preprocessing

Data preprocessing entailed a detailed cleaning and filtering

of CR comments which would provide quality data for the

machine learning models. The initial step in the process

entailed rectification of entries with missing information or

instances of inconsistency. Combination of imputation

methods with normalization and standardization techniques

were employed, facilitating the overall learning process.[16]

Furthermore, text normalization methods such as

lowercasing and erasure of non-alphanumeric characters

were kept in mind to eliminate noise before feature

extraction.

The relevance of the comments to their particular referred

code was the primary focus of our filtering. CR comments

that had no relation to source code like those pertaining to

documentation and general discussion were disregarded by

using the criteria determined previously. This was done

using the grading scheme given by Turzo and Bosu

(2023)[14] wherein comments that can impact the quality of

code are the only remaining ones. Attribute computation in

turn is the process of computation of features from the text

or the meta-information of the CRs, e.g., length of

comments, presence of specific keywords, and the number

of lines of code that were changed which signify the

influence of comments.[17]

Feature selection played a key role to help improve model

performance by focusing only on relevant predictors. The

chosen characteristics were derived from the generated

syntax in the Abstract Syntax Tree (AST), and semantic

features were also included from the CR comments such as

sentiment scores and technical word frequency. The features

were designed after a careful analysis of the efficacy of such

features in software engineering classification tasks.[18]

The reason justifying attention to the AST-based attributes

is due to their characteristics in embodying the syntactical

and structural core of modifications that align with previous

studies showing that such features strongly correlated with

code quality outcomes.[19]

4.3. Algorithm Implementation

4.3.1. Model Architecture

The proposed machine learning model’s hybrid architecture

is comprised of a Transformer-based model (CodeBERT)

and Long Short-Term Memory (LSTM) network that are

especially effective for sequence data processing, such as

text. The architecture of this design was chosen to cover

both syntax and semantics of CR comments writing. The

CodeBERT model stands for the backbone of this system. It

is trained on a diverse collection of programming and

natural languages and offers enriching contextual vector

representations which are vital in grasping the intricate

pairing of code snippets and the natural language

description.[4]

The LSTM layers are concatenated to tackle the sequential

nature of text data, increasing the model’s power to process

long dependencies in text sequences that are often present

in CR comments describing code changes over multiple

lines.[20] The encoded outputs from CodeBERT and LSTM

are connected to a dense neural network with a SoftMax

layer which classifies comments into categories including

'Functional', 'Documentation', and 'Design discussion'.

Hence, said decision reveals this pipeline as a strong one, in

addition to this, it possesses global contextual embeddings

from CodeBERT and local sequential patterns from LSTMs.

4.3.2. Training Process

The model is based on a categorical cross-entropy loss

function used for providing a multiclass classification. For

the ease in the handling of sparse gradients and the

adaptation of parameters along the training, the Adam

optimizer is applied.[21] The hyperparameters had to be set

very carefully, deploying a learning rate of 1e-5 to guarantee

a steady convergence and a batch size of 8 to get a good

balance between memory constraints and the model

performance.

The training process consisted of a 10% validating split to

prevent model parameters from overfitting while adjusting

any of them as needed. The process of early stopping was

invoked to stop training if the validation loss stopped

improvement for a fixed number of epochs. Also, it

enhanced the model’s generalizability.

4.3.3. Flowchart Description

As shown in Fig. 1., starting with the input layer, the

flowchart provides a model which the CR comments are

designed to feed. This primary stage comprises of the

tokenization of the diversified inputs that are convertible

into tokens that the model can understand. After

tokenization, these tokens were mapped into high-

dimensional vectors which integrated complex contextual

relations during the CodeBERT embedding. To analyze the

interactions, the network used LSTM layers to take

advantage of the length of the vector.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 4122–4134 | 4126

CodeBERT and LSTM's concatenated outputs were then

passed through a virtual dense layer, which is the output

head of the classification task. The dense layer is where the

layers are being mapped to the target classes unvaryingly

and applying SoftMax activation function for the output

probabilities of each class. The complete pipeline defines

these Classifier input processes, from the text paragraphs to

class prediction.

4.4. Evaluation Methodology

Metrics of machine learning model's performance in

classification of code review (CR) comments have been

used to get a comprehensive view about its efficiency. They

encompass parameters of recall, precision, F1-score and

accuracy. Each one of these represents a distinct aspect of

the model output and demonstrate effectiveness under

different conditions and for unique objectives.

Precision is the proportion of true positives and true

negatives among total cases being studied. It is a rapid

comprehensive evaluation of the model but can be

misjudged in datasets with imbalance classes.[22]

Accuracy and recognition play the key role in situations

where the consequences of a false positive are more

pronounced as compared to that of a false negative.

Precision (positive predictive value) is a measure of how

well a positive prediction fits and is defined as the number

of true positive observations divided by the total predicted

positives. Recall (sensitivity) evaluates the model's ability

to spot all of the relevant cases, giving feedback on the cases

that the system misses.[23]

The F1-score is a harmonic mean of precision and recall

which provides a balance between the two. It is effective

when a model that possesses both high precision and high

recall is desired.[24] These metrics were used to evaluate

the model systematically and robustly on a test dataset that

was not employed during the training process to ensure a

fair assessment of its accuracy in real-world scenarios. This

structured hierarchical procedure ensured that the

evaluation results are reliable, hence convincing in terms of

the practical deployability of the model.

Fig. 1. Algorithm Implementation

4.5. Error Analysis and Optimization

An evaluation of the machine learning model's performance

for code review (CR) comments classification was

conducted, revealing error patterns that map out areas of

weakness and where to further improve and optimize the

model. The outcomes of the analysis revealed that some

classes had high rates of misclassification, and those

included 'False Positive' and 'Documentation', which often

got confused with 'Functional' and 'Refactoring' categories

respectively.

The confusion and similarity of the textual information in

the status can be due to the multi-facet issue.[25] Examples

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 4122–4134 | 4127

may contain discussions like code changes that have

keywords typically related to functional modification.

Quantitative errors were assessed by using a confusion

matrix, it was obvious that the differentiation of distinctly

related categories needed adjustments.

Optimization strategies were utilized to address the arising

issues; the model architecture modifications and

hyperparameter tuning were the focus areas. A good

approach was the introduction of a more advanced

tokenization and embedding phase where different parts of

CR comments were encoded separately to catch the context

representation in more detail and the nuances in code

discussions compared to the general commentary

discussions.[26]

Moreover, the hyperparameter optimization was carried out

using the grid search method as it provides the best settings

for parameters like batch size, learning rate and the number

of eras. The approach was based on the need to allocate the

training time for model accuracy, so that the accuracy would

not be affected due to overfitting, yet the model can capture

complex patterns which emerge in the given data.[27]

Changes were also made in the loss function, and a weighted

categorical cross entropy was introduced to consider the

over representation of some of the training data categories.

This is because a higher weight goes to inappropriately

classified categories such as 'False Positives'.[28]

Consequently, the quality of the model improved, which

was illustrated by a solid rise in accuracy and F1 score.

5. Results

The empirical results were obtained from the deep neural

network (DNN) model that was developed to classify code

review comments which would address the research

question of the dissertation. The data is comprised of 1,828

code review comments, which are then thoroughly

categorized and labelled for training and testing the model

across multiple epochs and capture metrics such as loss and

accuracy.

The method being utilized includes a series of training and

validation stages. The model was trained for three epochs

during which it was progressively getting better in accuracy

and lowering the loss. Training was then followed by the

model's testing with the metrics F1-score, recall and

precision being analyzed to measure its performance across

different comment classifications.

Among the statistical techniques applied, confusion

matrices and classification reports were used to assess the

model’s accuracy which also quantified the ability of the

model to generalize across previously unseen data. This

statistical analysis is important for the interpretation of the

practical implications of the automated classification

system, particularly its reliability in real-world practices.

The data was obtained from a database, which has

comments from 1828 software code reviews, giving variety

to the subjects of the software project. These comments

were clustered according to their morphemes and terms used

for designing an algorithm that models the text into five

classes, which the machine learning model will learn and

predict the categories.

5.1. Classification Outcomes

During the testing phase, the model was evaluated on a

separate set of data to determine its real-world applicability.

The final test results of that execution showed an overall

accuracy of 59.84%, with a loss of 1.2193. The F1-score,

precision and recall varied significantly across categories

(as shown in Fig. 2).

The confusion matrix in Fig. 3 from the testing phase

showed that while the model was fairly accurate in

predicting certain categories, it struggled with others,

indicating areas for future refinement.

Table 1. Precision, Recall and F1-score values across

different categories

Cat.

No.

Class

Name
Precision Recall

F1-

score

0
Minor

Issues
0.6 0.67 0.63

1
Major

Issues
0.68 0.71 0.69

2 Suggestions 0.28 0.31 0.3

3 Questions 0.42 0.31 0.36

4 Refactoring 0.67 0.65 0.66

Fig 2. Precision, Recall and F1-score values across

different categories

The matrix is presented as a visualization of the

performance of classification of comments provided during

code review. Every matrix cell signifies the no. of

predictions made by the model with rows showing up as

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 4122–4134 | 4128

actual classes and the columns as predicted classes. The

labels on the axes correspond to different categories of

comments: These contain small fixes, bigger problems,

suggestions, questions, and refactoring of this project.

Fig 3. Confusion Matrix for CR comments classification

5.2. Epoch Results

Training was carried out throughout six epochs using Deep

Neural Network (DNN) framework, which is a group of

algorithms used for promotion in programs such as artificial

intelligence and machine learning.

In the fourth epoch, the training loss was 1.0870 and the

accuracy reached up to 57.90%, while the validation loss

was higher at 1.1659 with validation accuracy of 56.46%.

The high loss score at this stage indicated an initial struggle

in the model to get a grasp of the intricacy of this dataset.

The model was still trying to find a reference point to utilize

the training data sets to generate outputs corresponding to

the novel data.

In the fifth epoch, the results showed some improvement.

The training loss drops from 1.0870 to 0.8938 and the

accuracy increased to 64.74%, while the validation accuracy

went up to 61.22% after rising to 1.1910 validation loss.

This suggests some issues of overfitting, such that the model

was better fitting on the training data than on a validation

set.

The sixth epoch witnessed a drastic decrease in the training

loss where it was just 0.7147 and the accuracy of the model

augmented by 73.40%. It was demonstrated by the

validation loss, which was now 1.1547, and validation

accuracy of 59.18% that the model was now stabilizing and

had a better chance to generalize and perform against new

datasets.

Fig 4a. Training and Validation loss

Fig 4b. Training and Validation accuracy

Figure 4 shows the graphs of the training and validation

metrics for the training epochs 4, 5 and 6 of the model.

Figure 4a displays an overall tendency towards a reduction

in loss for both training and validation which suggests a

better learning curve for the model accuracy. Figure 4b

shows a rise upwards in training accuracy, which means the

model's capability to get the training data right is increasing.

With each iteration of retraining, the accuracy of the model

increases, and the loss decreases for both training and

validation outcomes (as shown in Appendix). This suggests

that the model learns and improves from each training.

6. Discussion

Automated Code Review tools are designed to analyze

source code and identify issues related to syntax, standard

compliance, security vulnerabilities and other quality-

related aspects.[1]-[3] These tools ensure a consistent level

of quality of code and compliance to coding standards. It

can also detect potential problems early in the development

process and can analyze large amounts of code with more

speed and efficiency than manual Code Review. However,

these tools can also inadvertently generate false positive and

false negative results since they lack the ability to fully

understand the context or intent behind the code.[6]

Developing an Automated Code Review tool presents

several challenges and limitations as well, including the

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 4122–4134 | 4129

complexity of the software development and the

architecture used and the accuracy and performance issues

of the ACR tool.

The methodology employed in this study effectively

addresses the research objectives by rigorously selecting,

mining, and processing the dataset from the OpenDev Nova

project. This process involved detailed data cleaning,

manual labelling based on a nuanced classification

scheme[14], and the systematic analysis of error patterns

using a machine learning model. The robust dataset

preparation and insightful error analysis, coupled with the

strategic application of hyperparameter tuning and model

optimization, significantly contributed to understanding and

improving the classification of CR comments, thus fulfilling

the research aims with substantial accuracy.

During many training rounds, the model has a clear upward

trend in terms of training accuracy starting from 57.9% and

ending at 73.4%. The loss is steadily decreasing, which is

an indication of the model learning ability to generalize

from the training data to the validation sets. The research

demonstrated that the DNNs successfully automated

portions of the code review as shown by the precision,

recall, and F1-scores in different classes of code review

comments. The model not only showed strong performance

but also contributed to defining distinctive features of

different categories, which further support the role of DNNs

to automate and improve the quality of code reviews.[4]

The end of the last training results showed an interesting

difference in which the validation accuracy did not follow

the same pattern as the training accuracy, and this highlights

the hardest part of deep learning models which is the

overfitting. Also, at the end of the training classification

report and confusion matrix, mixed responses show across

different categories of the precision, recall, and F1- scores

which vary significantly. To illustrate, Category 1 led to the

achievement of relatively high scores (precision of 0.68 and

recall of 0.71), which revealed good model performance on

this class, while Category 2 yielded very low scores

(precision of 0.28 and recall of 0.31), implying major

difficulties in the accuracy of classification for this group.

On the other hand, in Category 4, which is the most

populated, the precision is 0.67 and the recall is 0.65, F1-

score being 0.66. The higher number of events could be a

source of many data points that can train the model better

and can also cause the metrics to perform better.

6.1. Integration with Existing Literature

The current model used a transformer-based machine

learning algorithm (CodeBERT) and reached an accuracy of

at least 59.84%, compared to Fregnan et al. (2022) who

reached an accuracy of 40.6% with traditional machine

learning algorithm (Random Forest algorithm).[12] This is

also comparable with the results found by Turzo et al.

(2023) who also used BERT and CodeBERT for classifying

code context, review comments and code attributes. Their

model reached an accuracy of 59.3% when classifying code

review comments.[13]

An improved performance can be explained through better

model architecture, as well as through the model's capability

of understanding syntax and semantics of code more

comprehensively, which is known to increase the predictive

capabilities of models working with programming

languages.[29]

The findings in this study agree with already established

theories that argue that the best models for the complexity

of code review tasks are those that can learn feature

representations on their own, while manual feature

extraction models are not as efficient.[4] This becomes

evident from the achieved higher accuracy and precision

levels, pointing at the system robustness for the comment

categories of False Positives and Functionals, which have

been the most challenging to classify so far.

6.2. Limitations and Future Research

The comments labelled ‘False Positives’ did not match up

to actual errors observed in the code but were still useful in

some contexts. The poor performance of the model in this

area indicates the difficulty in differentiating comments that

are quite detailed or context-related, which the current

algorithm is unable to understand properly and is an area for

optimization in the future.

Attention mechanisms or transformer-based models could

be integrated into the model to improve its functionality in

understanding the background of a comment and hence

promote more accurate identification of false positives and

other classes.[30]

Furthermore, the training dataset in this study, though large,

could be further increased by including more balanced

representations of each comment category. The model’s

performance problems might have been caused because of

over-representation of certain categories, such as False

Positives. Creating oversampling for underrepresented

classes or data sets from various software projects is the way

to get a more robust and rather generalized model.

Another possibility that can be considered is to blend hybrid

models where the rule-based and machine learning methods

are combined, thereby most likely increasing the accuracy

of classification with a wide variety of comment types.

7. Conclusion

This study concentrated on building and using a deep

learning model to classify code review comments. The

results show evident progress of the model from one epoch

to another, reaching an overall accuracy of 59.84% (training

accuracy of 73.4% and validation accuracy of 59.18%) by

the end of Epoch 6/6, and the lowest loss at 0.7147. The

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 4122–4134 | 4130

model shows ability to absorb and learn from training data,

and in subsequent iterations of retraining showed increase

in the accuracy and decrease in loss.

Further optimization of the model will help in mitigating

some of the issues encountered here, however, this research

adds to the fact that deep learning techniques for automated

code review are more effective and less error-prone, instead

of the traditional manual procedures.

This research proves the DNNs efficacy in classifying code

review comments. During the implementation of DNNs, it

has been reinforced that these models are not only good in

achieving higher accuracy but also very good at context

understanding, which is vital for classifying comments

correctly. The study thus reveals the capability of DNNs to

improve code review processes through their informed

knowledge about code context, thus improving the precision

and reliability of the automated reviews.

Developing architectures such as Recurrent Neural

Networks (RNNs) or Convolutional Neural Networks

(CNNs) can give special attention to spatial and sequential

data, which will enable the discovery of a robust classifier

for code review comment classification.[29] Integrating

“class-balancing” algorithms like Adaptive Synthetic

Sampling (ADASYN) and Synthetic Minority

Oversampling Technique (SMOTE) would help to better

adjust the model to underrepresented cases of False

Positives. These techniques optimize the training datasets to

better fit the model while it reduces bias and improves

accuracy.[31]

Lastly, it should be a priority to continually update as well

as performing testing of the code review models so that they

become applicable in field settings. Setting grounds for the

continuity of evaluation and improvement including regular

updating of training data and model parameters, would be

useful to keep these systems useful as technology improves

and new difficulties emerge.

Appendix

7.1. Code for Automated Classification of CR comments

using Transformer-based architecture (CodeBERT)

model

Fig 5. Importing datasets and TensorFlow library

Fig 6. Installing Transformers API

Fig 7. Checking GPU availability and preprocessing

dataset

Fig 8. Tokenization

Fig 9. Defining model architecture

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 4122–4134 | 4131

Fig 10. Creating CodeBERT-based classification model

Fig 11. Training and evaluation of model and extracting

results

Fig 12. Displaying results for model training and

evaluation

Fig 13. Plotting line graphs for Precision, Recall and F1-

scores

Fig 14. Creating heatmap for Confusion matrix

Fig 15. Plotting line graphs for Training and Validation

metrics (loss and accuracy)

7.2. Examples of additional results derived from code

execution

7.2.1. Execution No. 1

Fig 16. Precision, Recall and F1-scores for Execution no. 1

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 4122–4134 | 4132

Fig 17. Confusion matrix for Execution no. 1

Fig 18a. Training and Validation loss for Execution no. 1

Fig 18b. Training and Validation accuracy for Execution

no. 1

Table 2. Loss and Accuracy values for Execution no. 1

 Ep. 4 Ep. 5 Ep. 6
Overa

ll

Loss Training
1.061

4

0.857

7

0.640

2
1.211

Validati

on

1.092

8

1.189

4

1.150

6

Accura

cy

Training
59.88

%

66.26

%

75.38

% 60.11

% Validati

on

57.82

%

57.82

%

58.50

%

7.2.2. Execution No. 2

Fig 19. Precision, Recall and F1-scores for Execution no. 2

Fig 20. Confusion matrix for Execution no. 2

Fig 21a. Training and Validation loss for Execution no. 2

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 4122–4134 | 4133

Fig 21b. Training and Validation accuracy for Execution

no. 2

Table 3. Loss and Accuracy values for Execution no. 2

 Ep. 4 Ep. 5 Ep. 6
Overa

ll

Loss

Training
1.130

2

0.961

1

0.776

2
1.169

Validati

on

1.118

9

1.182

0

1.123

1

Accura

cy

Training
55.62

%

62.23

%

70.44

% 60.93

% Validati

on

57.82

%

59.86

%

61.9

%

Acknowledgements

We thank our colleagues from the Department of Computer

Engineering, Bharati Vidyapeeth (Deemed to be University)

College of Engineering who provided expertise and insight

that greatly assisted the research.

Author contributions

Gobind Panditrao: Conceptualization, Methodology,

Software, Validation, Visualization, Investigation, Field

study, Data curation, Execution, Writing-Original draft

preparation, Reviewing and Editing. Shashank Joshi:

Conceptualization, Writing-Original draft preparation,

Validation. Sunita Dhotre: Visualization, Investigation,

Writing-Reviewing and Editing. Sandeep Vanjale:

Reviewing and Editing

Conflicts of interest

The authors declare no conflicts of interest.

References

[1] R. Tufano, L. Pascarella, M. Tufano, D. Poshyvanyk,

and G. Bavota, “Towards automating code review

activities,” in 2021 IEEE/ACM 43rd Int. Conf. on

Software Engineering (ICSE), pp. 163–174, May

2021. doi:10.1109/icse43902.2021.00027.

[2] Y. Yin, Y. Zhao, Y. Sun, and C. Chen, “Automatic

code review by learning the structure information of

code graph,” Sensors, vol. 23, no. 5, p. 2551, Feb.

2023. doi:10.3390/s23052551.

[3] F. Ebert, F. Castor, N. Novielli, and A. Serebrenik,

“An exploratory study on confusion in code reviews,”

Empirical Software Engineering, vol. 26, no. 1, pp. 1–

48, Jan. 2021. doi:10.1007/s10664-020-09909-5.

[4] Z. Feng et al., “CodeBERT: A pre-trained model for

programming and natural languages,” in Findings of

the Association for Computational Linguistics:

EMNLP 2020, 2020. doi:10.18653/v1/2020.findings-

emnlp.139.

[5] X. Zhou, D. Han, and D. Lo, “Assessing

generalizability of CodeBERT,” in 2021 IEEE Int.

Conf. on Software Maintenance and Evolution

(ICSME), pp. 425–436, Sep. 2021.

doi:10.1109/icsme52107.2021.00044.

[6] Z. Li et al., “Automating code review activities by

large-scale pre-training,” in Proc. of the 30th ACM

Joint European Software Engineering Conf. and Symp.

on the Foundations of Software Engineering, pp.

1035–1047, Nov. 2022.

doi:10.1145/3540250.3549081.

[7] A. K. Turzo, “Towards improving code review

effectiveness through task automation,” in Proc. of the

37th IEEE/ACM Int. Conf. on Automated Software

Engineering, Oct. 2022.

doi:10.1145/3551349.3559565.

[8] A. Bosu, J. C. Carver, C. Bird, J. Orbeck, and C.

Chockley, “Process Aspects and Social Dynamics of

Contemporary Code Review: Insights from open

source development and industrial practice at

Microsoft,” IEEE Transactions on Software

Engineering, vol. 43, no. 1, pp. 56–75, Jan. 2017.

doi:10.1109/tse.2016.2576451.

[9] C. Sadowski, E. Söderberg, L. Church, M. Sipko, and

A. Bacchelli, “Modern code review: A case study at

Google,” in Proc. of the 40th Int. Conf. on Software

Engineering: Software Engineering in Practice, pp.

181–190, May 2018. doi:10.1145/3183519.3183525.

[10] A. Bacchelli and C. Bird, “Expectations, outcomes,

and challenges of Modern Code Review,” in 2013 35th

Int. Conf. on Software Engineering (ICSE), pp. 712–

721, May 2013. doi:10.1109/icse.2013.6606617.

[11] M. Barnett, C. Bird, J. Brunet, and S. K. Lahiri,

“Helping developers help themselves: Automatic

decomposition of Code Review changesets,” in 2015

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 4122–4134 | 4134

IEEE/ACM 37th IEEE Int. Conf. on Software

Engineering, pp. 134–144, May 2015.

doi:10.1109/icse.2015.35.

[12] E. Fregnan, F. Petrulio, L. Di Geronimo, and A.

Bacchelli, “What happens in my code reviews? An

investigation on automatically classifying review

changes,” Empirical Software Engineering, vol. 27,

no. 4, p. 89, Apr. 2022. doi:10.1007/s10664-021-

10075-5.

[13] A. K. Turzo et al., “Towards automated classification

of code review feedback to support analytics,” in 2023

ACM/IEEE Int. Symp. on Empirical Software

Engineering and Measurement (ESEM), Oct. 2023.

doi:10.1109/esem56168.2023.10304851.

[14] A. K. Turzo and A. Bosu, “What makes a code review

useful to OpenDev developers? An empirical

investigation,” Empirical Software Engineering, vol.

29, no. 1, p. 6, Nov. 2023. doi:10.1007/s10664-023-

10411-x.

[15] J. R. Landis and G. G. Koch, “The measurement of

observer agreement for categorical data,” Biometrics,

vol. 33, no. 1, p. 159, Mar. 1977.

doi:10.2307/2529310.

[16] T. Hastie, R. Tibshirani, and J. Friedman, The

Elements of Statistical Learning: Data Mining,

Inference, and Prediction, 2nd ed, vol. 2. New York:

Springer, 2009, pp. 1–758.

[17] Y. Zhang, D. Lo, X. Xia, and J. Sun, “An empirical

study of classifier combination for cross-project defect

prediction,” in 2015 IEEE 39th Annu. Computer

Software and Applications Conf., vol. 2, pp. 264–269,

Jul. 2015. doi:10.1109/compsac.2015.58.

[18] E. Doğan and E. Tüzün, “Towards a taxonomy of code

review smells,” Information and Software Technology,

vol. 142, p. 106737, Feb. 2022.

doi:10.1016/j.infsof.2021.106737.

[19] T. J. McCabe, “A complexity measure,” IEEE

Transactions on Software Engineering, vol. SE-2, no.

4, pp. 308–320, Dec. 1976.

doi:10.1109/tse.1976.233837.

[20] S. Hochreiter and J. Schmidhuber, “Long short-term

memory,” Neural Computation, vol. 9, no. 8, pp.

1735–1780, Nov. 1997.

doi:10.1162/neco.1997.9.8.1735.

[21] D. P. Kingma and J. Ba, “Adam: A method for

Stochastic Optimization,” in Proc. of the 3rd Int. Conf.

for Learning Representations (ICLR 2015), Dec. 2014.

doi:10.48550/arXiv.1412.6980.

[22] A. Tharwat, “Classification assessment methods,”

Applied Computing and Informatics, vol. 17, no. 1, pp.

168–192, Jul. 2020. doi:10.1016/j.aci.2018.08.003.

[23] M. Sokolova and G. Lapalme, “A systematic analysis

of performance measures for classification tasks,”

Information Processing & Management, vol. 45, no. 4,

pp. 427–437, Jul. 2009.

doi:10.1016/j.ipm.2009.03.002.

[24] D. M. Powers, “Evaluation: From precision, recall and

F-measure to ROC, informedness, markedness &

correlation,” International Journal of Machine

Learning Technology, vol. 2, no. 1, pp. 37–63, Oct.

2020. doi:10.48550/arXiv.2010.16061.

[25] P. C. Rigby, D. M. German, L. Cowen, and M.-A.

Storey, “Peer review on open-source software

projects,” ACM Transactions on Software Engineering

and Methodology, vol. 23, no. 4, pp. 1–33, Sep. 2014.

doi:10.1145/2594458.

[26] J. Zhang et al., “A novel neural source code

representation based on Abstract Syntax Tree,” in

2019 IEEE/ACM 41st Int. Conf. on Software

Engineering (ICSE), pp. 783–794, May 2019.

doi:10.1109/icse.2019.00086.

[27] J. Bergstra and Y. Bengio, “Random Search for Hyper-

Parameter Optimization,” The Journal of Machine

Learning Research, vol. 13, pp. 281–305, Feb. 2012.

doi:10.5555/2188385.2188395.

[28] M. Kukar and I. Kononenko, “Cost-sensitive learning

with neural networks,” in Proc. of the 13th European

Conf. on Artificial Intelligence (ECAI 98), vol. 15, no.

27, pp. 88–94, Aug. 1998.

[29] K. Liu, G. Yang, X. Chen, and Y. Zhou, “EL-

CodeBERT: Better exploiting CodeBERT to support

source code-related classification tasks,” in Proc. of

the 13th Asia-Pacific Symp. on Internetware, pp. 147–

155, Jun. 2022. doi:10.1145/3545258.3545260.

[30] A. Vaswani et al., “Attention is All you need,” in Proc.

of the 31st Int. Conf. on Neural Information

Processing Systems (NIPS 2017), Jun. 2017.

doi:10.48550/arXiv.1706.03762.

[31] H. He, Y. Bai, E. A. Garcia, and S. Li, “ADASYN:

Adaptive Synthetic Sampling Approach for

Imbalanced Learning,” in 2008 IEEE Int. Joint Conf.

on Neural Networks (IEEE World Congress on

Computational Intelligence), pp. 1322–1328, Jun.

2008. doi:10.1109/ijcnn.2008.4633969.

