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Abstract: Code review comments are essential components for automated code review systems that facilitate software quality and 

productivity of developers. This study demonstrates the classification of code review comments using Deep Neural Networks with a hybrid 

architecture consisting of CodeBERT and Long Short-Term Memory. Leveraging a dataset from the OpenDev Nova initiative, this study 

employed a five-class classification model to identify specific types of review comments, like discussions, document changes, and false 

positives. The approach was modifying and retraining the model already proposed in existing literature and then adapting it to the project 

environment by restoring the required attributes using the standard libraries. The performance of this modified model was observed across 

different epochs, with precision, recall, F1-score, and accuracy metrics being utilized to establish its efficiency. The main results indicated 

major enhancements to the handling of complex comment types as well and overall accuracy compared to previously established models. 

After analysis, this research supports the viability of Deep Neural Networks in providing a reliable classification system that considers 

code nuances and contexts. The research also identifies the limitations of the generalizability of the study results due to dataset specificity 

and suggests possible ways of overcoming this problem, including the use of different neural network architectures and the inclusion of 

more development environment types in the datasets. 
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1. Introduction 

Automated code review (ACR) and quality improvement 

systems leverage advanced algorithms, machine learning 

models, and a wide array of programming tools to scrutinize 

code, ensuring it not only meets functional requirements but 

also adheres to best practices in terms of readability, 

maintainability, and performance. The introduction of such 

automation into the software development lifecycle 

significantly enhances the speed and efficiency of code 

reviews, while simultaneously reducing human error and 

subjective bias.[1], [2] 

Code context and semantic analysis involves the systematic 

examination of source code by one or more individuals other 

than the original author, for identifying bugs, ensuring 

consistency, and facilitating a shared understanding of the 

codebase among team members.[3] However, as software 

development projects grow in size and complexity, the 

volume of comments generated during code reviews (CR) 

can become substantial, making it challenging for teams to 

prioritize issues, track progress, and derive actionable 

insights. Automated classification overcomes this challenge 

by using algorithms to categorize comments based on their 

nature, urgency, and potential impact on the project.[1], [3] 

The incorporation of machine learning (ML) models such as 

Deep Neural Networks (DNNs) has been fundamental in the 

way CR systems get automated. These models use code 

context and CR comments to make an informed guess of the 

potential impact of code changes, thereby reducing the time 

and effort spent during review.[4], [5] Beyond that, the use 

of AI by CR systems includes bots which can review a code 

program and give reviewer-friendly suggestions.[6] 

Modern deep-learning models based on CodeBERT (an 

extension of BERT, i.e., Bidirectional Encoder 

Representations from Transformers) offer unprecedented 

accuracy as well as efficiency in processing and classifying 

text data.[4] When applied to code review feedback, these 

models facilitate a more nuanced, intelligent, and automated 

approach to analyzing, categorizing, and responding to 

comments and suggestions made during the code review 

process.[7] 

This study aims to integrate the Automated Code Review 

process with transformer-based architectures to make use of 

CR comments and feedback and incorporate code context 

and semantic analysis to classify CR comments into detailed 

categories. The study will address the issue of more efficient 

and consistent code review processes by developing an 

advanced ML model for comment classification, evaluating 

its understanding of context and semantics of these 

comments, and investigating the impact of code context on 

the classification accuracy of feedback. 
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2. Literature Review 

2.1. Overview of CR Practices 

CR practices adopted by the software development industry 

feature an evolution from impromptu critiques to organized 

peer evaluations through the emergence of shared platforms 

and software configuration management tools. 

- In the article by Bosu et al. (2017)[8], the authors 

collected survey data regarding CR practices from 

Microsoft and Open Source Software (OSS) developers to 

evaluate the amount of time and effort spent during CRs. It 

was observed that almost 10-15% of the total time is 

exhausted in CRs, and the amount of effort is directly 

proportional to the experience of the developer. The 

developers emphasized the usefulness of code reviews and 

the benefits provided from these practices such as error 

detections, knowledge-sharing, code maintenance and 

community building. The quality of code also enables 

reviewers to have a better understanding of their teammates, 

thus potentially enabling collaborations in the future. They 

noted differences between the two types of respondents, for 

instance while OSS respondents consider impression 

formation an important benefit of code reviews, while 

Microsoft ones find knowledge dissemination to be of 

greater significance. The authors noted three key areas that 

may require some further research: Non-technical benefits 

of CR, articulation of review comments by developers and 

improving reviewers’ program comprehension. 

They emphasize the need to comprehend interplay among 

programmers, which involves both the developers and the 

reviewers/maintainers of code. Research shows that the 

success of the CRs depends on the interactions established, 

and on the environment in which they occur, which can be 

as crucial as the technical aspects of the programming itself. 

- The research article by Sadowski et al. (2018)[9] has been 

critically reviewed on the effectiveness and challenges of 

modern CR. The authors explore modern CR at Google via 

means of interviews, surveys and analysis of review logs. 

They investigate the motivations and purpose behind CR at 

Google, current CR practices and developers’ satisfactions 

and challenges. Their discovery indicated that while code 

reviews act as a gateway in the process of integration before 

the actual graduation, the efficacy in terms of pinpointing 

complicated bugs is doubtful. However, their results are 

useful for the maintenance of code quality, sharing 

knowledge among team members, and spotting errors that 

can otherwise develop into significant defects. 

- In the paper by Bacchelli and Bird (2013)[10], the authors 

explain the gap between what developers expect from the 

review and what they actually obtain. The authors 

conducted interviews and surveys with managers and 

developers and classified numerous CR comments at 

Microsoft. Their study revealed that despite the main 

motivation of error detection behind code reviews, the 

fundamental outputs provide additional benefits such as 

transfer of knowledge, team awareness and alternate 

solutions to challenges. They also discover that 

understanding of code and code changes are essential for 

code reviews and that developers employ various 

mechanisms to meet these needs, especially those not met 

by existing technologies. 

Furthermore, both groups of researchers identified certain 

factors that could alter code review effectiveness, such as 

changeset size, code complexity, the level of familiarity of 

the reviewer and CR tools.  

2.2. Technical Aspects of CR 

As for automated methods and tools in code review process 

analysis, this field has been developing notably. It is noted 

that changeset size measurement is an essential aspect of the 

CR effectiveness. 

- In the paper by Barnett et al. (2015)[11], the author 

proposes certain investigation tools to improve the speed of 

the approval process as well as increase the level of detail 

by reducing human errors. A changeset is a set of modified 

files to be added to a source repository, and code reviews 

are often carried out on such sets. Based on this principle, 

the authors introduce ClusterChanges, an automatic tool 

used for dividing change sets. The effectiveness of this tool 

is evaluated quantitatively as well as qualitatively through 

their study. 

There is also a groundbreaking transformation of AI-driven 

systems based on ML and natural language processing 

(NLP) that greatly benefits CR processes. 

- The article by Fregnan et al. (2022)[12] addresses the 

problems that often occur during code reviews and assesses 

the usefulness of a machine learning-based technique in 

resolving these issues. They point out that manual 

classifications are not scalable and are not assessed in terms 

of meaningfulness of information to the practitioners. They 

used different classifiers such as J48, Random Forest and 

Naïve Bayes to evaluate their performances in automatic 

classification of review changes. They evaluate the 

relevance and usefulness of the review change types by 

conducting several interviews and studies with developers. 

Key results showed that these automatic classification of 

code review changes are potentially valuable for 

improvement of the code review process. 

These AI systems can also be trained to handle the issues of 

context and semantics of the code beyond the scope of 

syntax checking. By providing feedback not only on the 

code correctness but also on the best review practices and 

potential optimizations, it can therefore improve the 

educational aspect in code reviews. 

- The research article by Tufano et al. (2021)[1] aimed 
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towards partial automation of the CR process to potentially 

reduce the time required by developers when reviewing 

their teammate’s codes. They investigated various Deep 

Learning methods that can be used to automate specific CR 

tasks. The author makes use of two components of the 

automated process, the “contributor” and the “reviewer”. 

The “contributor” revises the various versions of the code 

before the code is submitted for review. This is achieved by 

learning code changes that are executed in real-time by 

developers. The “reviewer” sends the revised code along 

with comments written in natural language to the human 

reviewer commenting on the submitted code. 

- In the paper by Turzo et al. (2023)[13], an automated 

classifier for CR comments was developed which utilizes 

Deep Neural Network (DNN) models for achieving high 

accuracy and a reliable performance. When reviewing the 

work done by Fregnan (2022), who developed automated 

classifiers for classification of changes induced by CR, they 

observed two potential areas for improvement: i. 

Classifying those comments that do not contribute to CR-

induced changes and ii. Using DNNs and code context to 

improve CR performances. 

2.2.1. CodeBERT 

The use of ML and the deployment of the CodeBERT 

model[4] substantially improves the comprehension of the 

contextual features that make the code review process 

unique. 

- The paper by Feng et al. (2020)[4] introduces 

CodeBERT, a pre-trained model which is bimodal for both 

Natural and Programming Languages (NL-PL). The authors 

describe how it shows learning of the general-purpose 

representations supporting the downstream NL-PL 

applications. A transformer-based neural architecture was 

used to develop CodeBERT and was trained with a hybrid 

objective function. This function implements “replaced 

token detection” which is used to identify plausible 

alternatives to a particular token that is sampled from a 

network of generators. This can be executed on both the 

bimodal and unimodal data. By evaluating its functionality 

on NL-PL applications such as NL code search and code 

documentation generation, the authors demonstrated how 

CodeBERT achieves remarkable performance on them. 

The stated method utilizes the hybrid nature of CodeBERT 

to create contextual vectors from source code as well as 

review comments. Hence, the model can comprehend both 

technical aspects and the reviewer’s sentiment. 

The findings of this study aim to add to the literature of 

deep-learning techniques in CR through the generation of an 

elaborate, interconnected framework of the variables that 

affect the review outcomes. It will not only close existing 

gaps but will also establish the basis for better data-driven 

software engineering code reviews.  

3. Aim and Objectives 

3.1. Aim 

To design a DNN-based ACR system which analyzes issues 

in code review comments with a higher grade of accuracy 

and precision to improve developers' time spent on code 

reviews and increasing the reliability and consistency of the 

code assessment. 

3.2. Objectives 

- Investigate advanced machine learning models for 

automated code analysis, issue identification, and 

recommendation generation. 

- Develop comprehensive tools for automated code 

analysis, quality metrics and generation of precise and 

actionable suggestions. 

- Ensure seamless integration of the automated code review 

tool into existing software development workflows. 

- Establish a continuous feedback mechanism that allows 

developers to review the suggestions made by the automated 

tool. 

4. Methodology 

The approach in this study employed comprehensive dataset 

preparation that incorporated data selection, mining, and 

semiautomatic labels from the OpenDev Nova project. 

These labels were generated by adopting tools like Gerrit 

which provided access to and hence mining of CR 

comments.[8], [14] The data set underwent thorough 

processing to guarantee robustness and precision in the 

classifier outputs; this aspect was integral in generating 

reliable research outcomes. This process was crucial as the 

effectiveness of the deployed ML algorithms was directly 

dependent on the extent to which the data was 

representative, clean and well-organized. This subsequently 

impacted the quality of insights that were generated from 

the models, aiding in the development of accurate 

insights.[12] 

4.1. Dataset Preparation 

After extensive review of literature, the OpenDev Nova 

project was selected for dataset preparation as it uses code 

review (CR) tool-based practices. 

Data mining was done using the Gerrit platform which 

provides CR handling for the OpenDev community. The 

Gerrit's REST API was used to extract publicly available 

CRs for the period from July 2011 to March 2022 (128 

months) of which 795,226 CRs were either merged or 

abandoned. In the extraction phase, random sampling and 

filtering techniques of data were used to select 2,500 highly 

representative and relevant CR comments out of thousands 

for more in-depth analysis. 

Based on the existing literature,[14] a modified 
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classification schema was developed for the manual 

labelling of these CR comments. These groups-- Functional, 

Refactoring, Documentation, Discussion, False Positive-- 

were determined to be the most suitable, primarily because 

of their capability to handle a wide-range of CR comments 

that do not result in direct code changes. The linking 

involved two coders labelling comments in a consensus 

format, while conflicts were solved by a third coder, 

ensuring the reliability of data categorization. 

Inter-rater agreement was assessed using Cohen's kappa 

(k=0.68), which corresponds to substantial agreement 

among annotators.[15] This metric emphasizes the 

stringency of the manual labelling process. 

4.2. Data Preprocessing 

Data preprocessing entailed a detailed cleaning and filtering 

of CR comments which would provide quality data for the 

machine learning models. The initial step in the process 

entailed rectification of entries with missing information or 

instances of inconsistency. Combination of imputation 

methods with normalization and standardization techniques 

were employed, facilitating the overall learning process.[16] 

Furthermore, text normalization methods such as 

lowercasing and erasure of non-alphanumeric characters 

were kept in mind to eliminate noise before feature 

extraction. 

The relevance of the comments to their particular referred 

code was the primary focus of our filtering. CR comments 

that had no relation to source code like those pertaining to 

documentation and general discussion were disregarded by 

using the criteria determined previously. This was done 

using the grading scheme given by Turzo and Bosu 

(2023)[14] wherein comments that can impact the quality of 

code are the only remaining ones. Attribute computation in 

turn is the process of computation of features from the text 

or the meta-information of the CRs, e.g., length of 

comments, presence of specific keywords, and the number 

of lines of code that were changed which signify the 

influence of comments.[17] 

Feature selection played a key role to help improve model 

performance by focusing only on relevant predictors. The 

chosen characteristics were derived from the generated 

syntax in the Abstract Syntax Tree (AST), and semantic 

features were also included from the CR comments such as 

sentiment scores and technical word frequency. The features 

were designed after a careful analysis of the efficacy of such 

features in software engineering classification tasks.[18] 

The reason justifying attention to the AST-based attributes 

is due to their characteristics in embodying the syntactical 

and structural core of modifications that align with previous 

studies showing that such features strongly correlated with 

code quality outcomes.[19] 

4.3. Algorithm Implementation 

4.3.1. Model Architecture 

The proposed machine learning model’s hybrid architecture 

is comprised of a Transformer-based model (CodeBERT) 

and Long Short-Term Memory (LSTM) network that are 

especially effective for sequence data processing, such as 

text. The architecture of this design was chosen to cover 

both syntax and semantics of CR comments writing. The 

CodeBERT model stands for the backbone of this system. It 

is trained on a diverse collection of programming and 

natural languages and offers enriching contextual vector 

representations which are vital in grasping the intricate 

pairing of code snippets and the natural language 

description.[4] 

The LSTM layers are concatenated to tackle the sequential 

nature of text data, increasing the model’s power to process 

long dependencies in text sequences that are often present 

in CR comments describing code changes over multiple 

lines.[20] The encoded outputs from CodeBERT and LSTM 

are connected to a dense neural network with a SoftMax 

layer which classifies comments into categories including 

'Functional', 'Documentation', and 'Design discussion'. 

Hence, said decision reveals this pipeline as a strong one, in 

addition to this, it possesses global contextual embeddings 

from CodeBERT and local sequential patterns from LSTMs. 

4.3.2. Training Process 

The model is based on a categorical cross-entropy loss 

function used for providing a multiclass classification. For 

the ease in the handling of sparse gradients and the 

adaptation of parameters along the training, the Adam 

optimizer is applied.[21] The hyperparameters had to be set 

very carefully, deploying a learning rate of 1e-5 to guarantee 

a steady convergence and a batch size of 8 to get a good 

balance between memory constraints and the model 

performance. 

The training process consisted of a 10% validating split to 

prevent model parameters from overfitting while adjusting 

any of them as needed. The process of early stopping was 

invoked to stop training if the validation loss stopped 

improvement for a fixed number of epochs. Also, it 

enhanced the model’s generalizability.  

4.3.3. Flowchart Description 

As shown in Fig. 1., starting with the input layer, the 

flowchart provides a model which the CR comments are 

designed to feed. This primary stage comprises of the 

tokenization of the diversified inputs that are convertible 

into tokens that the model can understand. After 

tokenization, these tokens were mapped into high-

dimensional vectors which integrated complex contextual 

relations during the CodeBERT embedding. To analyze the 

interactions, the network used LSTM layers to take 

advantage of the length of the vector. 
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CodeBERT and LSTM's concatenated outputs were then 

passed through a virtual dense layer, which is the output 

head of the classification task. The dense layer is where the 

layers are being mapped to the target classes unvaryingly 

and applying SoftMax activation function for the output 

probabilities of each class. The complete pipeline defines 

these Classifier input processes, from the text paragraphs to 

class prediction. 

4.4. Evaluation Methodology 

Metrics of machine learning model's performance in 

classification of code review (CR) comments have been 

used to get a comprehensive view about its efficiency. They 

encompass parameters of recall, precision, F1-score and 

accuracy. Each one of these represents a distinct aspect of 

the model output and demonstrate effectiveness under 

different conditions and for unique objectives. 

Precision is the proportion of true positives and true 

negatives among total cases being studied. It is a rapid 

comprehensive evaluation of the model but can be 

misjudged in datasets with imbalance classes.[22] 

Accuracy and recognition play the key role in situations 

where the consequences of a false positive are more 

pronounced as compared to that of a false negative. 

Precision (positive predictive value) is a measure of how 

well a positive prediction fits and is defined as the number 

of true positive observations divided by the total predicted 

positives. Recall (sensitivity) evaluates the model's ability 

to spot all of the relevant cases, giving feedback on the cases 

that the system misses.[23] 

The F1-score is a harmonic mean of precision and recall 

which provides a balance between the two. It is effective 

when a model that possesses both high precision and high 

recall is desired.[24] These metrics were used to evaluate 

the model systematically and robustly on a test dataset that 

was not employed during the training process to ensure a 

fair assessment of its accuracy in real-world scenarios. This 

structured hierarchical procedure ensured that the 

evaluation results are reliable, hence convincing in terms of 

the practical deployability of the model. 

 

Fig. 1.  Algorithm Implementation 

4.5. Error Analysis and Optimization 

An evaluation of the machine learning model's performance 

for code review (CR) comments classification was 

conducted, revealing error patterns that map out areas of 

weakness and where to further improve and optimize the 

model. The outcomes of the analysis revealed that some 

classes had high rates of misclassification, and those 

included 'False Positive' and 'Documentation', which often 

got confused with 'Functional' and 'Refactoring' categories 

respectively. 

The confusion and similarity of the textual information in 

the status can be due to the multi-facet issue.[25] Examples 
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may contain discussions like code changes that have 

keywords typically related to functional modification. 

Quantitative errors were assessed by using a confusion 

matrix, it was obvious that the differentiation of distinctly 

related categories needed adjustments. 

Optimization strategies were utilized to address the arising 

issues; the model architecture modifications and 

hyperparameter tuning were the focus areas. A good 

approach was the introduction of a more advanced 

tokenization and embedding phase where different parts of 

CR comments were encoded separately to catch the context 

representation in more detail and the nuances in code 

discussions compared to the general commentary 

discussions.[26] 

Moreover, the hyperparameter optimization was carried out 

using the grid search method as it provides the best settings 

for parameters like batch size, learning rate and the number 

of eras. The approach was based on the need to allocate the 

training time for model accuracy, so that the accuracy would 

not be affected due to overfitting, yet the model can capture 

complex patterns which emerge in the given data.[27] 

Changes were also made in the loss function, and a weighted 

categorical cross entropy was introduced to consider the 

over representation of some of the training data categories. 

This is because a higher weight goes to inappropriately 

classified categories such as 'False Positives'.[28] 

Consequently, the quality of the model improved, which 

was illustrated by a solid rise in accuracy and F1 score. 

5. Results 

The empirical results were obtained from the deep neural 

network (DNN) model that was developed to classify code 

review comments which would address the research 

question of the dissertation. The data is comprised of 1,828 

code review comments, which are then thoroughly 

categorized and labelled for training and testing the model 

across multiple epochs and capture metrics such as loss and 

accuracy. 

The method being utilized includes a series of training and 

validation stages. The model was trained for three epochs 

during which it was progressively getting better in accuracy 

and lowering the loss. Training was then followed by the 

model's testing with the metrics F1-score, recall and 

precision being analyzed to measure its performance across 

different comment classifications. 

Among the statistical techniques applied, confusion 

matrices and classification reports were used to assess the 

model’s accuracy which also quantified the ability of the 

model to generalize across previously unseen data. This 

statistical analysis is important for the interpretation of the 

practical implications of the automated classification 

system, particularly its reliability in real-world practices. 

The data was obtained from a database, which has 

comments from 1828 software code reviews, giving variety 

to the subjects of the software project. These comments 

were clustered according to their morphemes and terms used 

for designing an algorithm that models the text into five 

classes, which the machine learning model will learn and 

predict the categories. 

5.1. Classification Outcomes 

During the testing phase, the model was evaluated on a 

separate set of data to determine its real-world applicability. 

The final test results of that execution showed an overall 

accuracy of 59.84%, with a loss of 1.2193. The F1-score, 

precision and recall varied significantly across categories 

(as shown in Fig. 2). 

The confusion matrix in Fig. 3 from the testing phase 

showed that while the model was fairly accurate in 

predicting certain categories, it struggled with others, 

indicating areas for future refinement. 

Table 1. Precision, Recall and F1-score values across 

different categories 

Cat. 

No. 

Class 

Name 
Precision Recall 

F1-

score 

0 
Minor 

Issues 
0.6 0.67 0.63 

1 
Major 

Issues 
0.68 0.71 0.69 

2 Suggestions 0.28 0.31 0.3 

3 Questions 0.42 0.31 0.36 

4 Refactoring 0.67 0.65 0.66 

 

 

Fig 2. Precision, Recall and F1-score values across 

different categories 

The matrix is presented as a visualization of the 

performance of classification of comments provided during 

code review. Every matrix cell signifies the no. of 

predictions made by the model with rows showing up as 
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actual classes and the columns as predicted classes. The 

labels on the axes correspond to different categories of 

comments: These contain small fixes, bigger problems, 

suggestions, questions, and refactoring of this project. 

 

Fig 3.  Confusion Matrix for CR comments classification 

5.2. Epoch Results 

Training was carried out throughout six epochs using Deep 

Neural Network (DNN) framework, which is a group of 

algorithms used for promotion in programs such as artificial 

intelligence and machine learning. 

In the fourth epoch, the training loss was 1.0870 and the 

accuracy reached up to 57.90%, while the validation loss 

was higher at 1.1659 with validation accuracy of 56.46%. 

The high loss score at this stage indicated an initial struggle 

in the model to get a grasp of the intricacy of this dataset. 

The model was still trying to find a reference point to utilize 

the training data sets to generate outputs corresponding to 

the novel data. 

In the fifth epoch, the results showed some improvement. 

The training loss drops from 1.0870 to 0.8938 and the 

accuracy increased to 64.74%, while the validation accuracy 

went up to 61.22% after rising to 1.1910 validation loss. 

This suggests some issues of overfitting, such that the model 

was better fitting on the training data than on a validation 

set. 

The sixth epoch witnessed a drastic decrease in the training 

loss where it was just 0.7147 and the accuracy of the model 

augmented by 73.40%. It was demonstrated by the 

validation loss, which was now 1.1547, and validation 

accuracy of 59.18% that the model was now stabilizing and 

had a better chance to generalize and perform against new 

datasets. 

 

Fig 4a.  Training and Validation loss  

 

Fig 4b. Training and Validation accuracy 

Figure 4 shows the graphs of the training and validation 

metrics for the training epochs 4, 5 and 6 of the model. 

Figure 4a displays an overall tendency towards a reduction 

in loss for both training and validation which suggests a 

better learning curve for the model accuracy. Figure 4b 

shows a rise upwards in training accuracy, which means the 

model's capability to get the training data right is increasing. 

With each iteration of retraining, the accuracy of the model 

increases, and the loss decreases for both training and 

validation outcomes (as shown in Appendix). This suggests 

that the model learns and improves from each training. 

6. Discussion 

Automated Code Review tools are designed to analyze 

source code and identify issues related to syntax, standard 

compliance, security vulnerabilities and other quality-

related aspects.[1]-[3] These tools ensure a consistent level 

of quality of code and compliance to coding standards. It 

can also detect potential problems early in the development 

process and can analyze large amounts of code with more 

speed and efficiency than manual Code Review. However, 

these tools can also inadvertently generate false positive and 

false negative results since they lack the ability to fully 

understand the context or intent behind the code.[6] 

Developing an Automated Code Review tool presents 

several challenges and limitations as well, including the 
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complexity of the software development and the 

architecture used and the accuracy and performance issues 

of the ACR tool. 

The methodology employed in this study effectively 

addresses the research objectives by rigorously selecting, 

mining, and processing the dataset from the OpenDev Nova 

project. This process involved detailed data cleaning, 

manual labelling based on a nuanced classification 

scheme[14], and the systematic analysis of error patterns 

using a machine learning model. The robust dataset 

preparation and insightful error analysis, coupled with the 

strategic application of hyperparameter tuning and model 

optimization, significantly contributed to understanding and 

improving the classification of CR comments, thus fulfilling 

the research aims with substantial accuracy. 

During many training rounds, the model has a clear upward 

trend in terms of training accuracy starting from 57.9% and 

ending at 73.4%. The loss is steadily decreasing, which is 

an indication of the model learning ability to generalize 

from the training data to the validation sets. The research 

demonstrated that the DNNs successfully automated 

portions of the code review as shown by the precision, 

recall, and F1-scores in different classes of code review 

comments. The model not only showed strong performance 

but also contributed to defining distinctive features of 

different categories, which further support the role of DNNs 

to automate and improve the quality of code reviews.[4] 

The end of the last training results showed an interesting 

difference in which the validation accuracy did not follow 

the same pattern as the training accuracy, and this highlights 

the hardest part of deep learning models which is the 

overfitting. Also, at the end of the training classification 

report and confusion matrix, mixed responses show across 

different categories of the precision, recall, and F1- scores 

which vary significantly. To illustrate, Category 1 led to the 

achievement of relatively high scores (precision of 0.68 and 

recall of 0.71), which revealed good model performance on 

this class, while Category 2 yielded very low scores 

(precision of 0.28 and recall of 0.31), implying major 

difficulties in the accuracy of classification for this group. 

On the other hand, in Category 4, which is the most 

populated, the precision is 0.67 and the recall is 0.65, F1-

score being 0.66. The higher number of events could be a 

source of many data points that can train the model better 

and can also cause the metrics to perform better. 

6.1. Integration with Existing Literature 

The current model used a transformer-based machine 

learning algorithm (CodeBERT) and reached an accuracy of 

at least 59.84%, compared to Fregnan et al. (2022) who 

reached an accuracy of 40.6% with traditional machine 

learning algorithm (Random Forest algorithm).[12] This is 

also comparable with the results found by Turzo et al. 

(2023) who also used BERT and CodeBERT for classifying 

code context, review comments and code attributes. Their 

model reached an accuracy of 59.3% when classifying code 

review comments.[13] 

An improved performance can be explained through better 

model architecture, as well as through the model's capability 

of understanding syntax and semantics of code more 

comprehensively, which is known to increase the predictive 

capabilities of models working with programming 

languages.[29] 

The findings in this study agree with already established 

theories that argue that the best models for the complexity 

of code review tasks are those that can learn feature 

representations on their own, while manual feature 

extraction models are not as efficient.[4] This becomes 

evident from the achieved higher accuracy and precision 

levels, pointing at the system robustness for the comment 

categories of False Positives and Functionals, which have 

been the most challenging to classify so far. 

6.2. Limitations and Future Research 

The comments labelled ‘False Positives’ did not match up 

to actual errors observed in the code but were still useful in 

some contexts. The poor performance of the model in this 

area indicates the difficulty in differentiating comments that 

are quite detailed or context-related, which the current 

algorithm is unable to understand properly and is an area for 

optimization in the future. 

Attention mechanisms or transformer-based models could 

be integrated into the model to improve its functionality in 

understanding the background of a comment and hence 

promote more accurate identification of false positives and 

other classes.[30] 

Furthermore, the training dataset in this study, though large, 

could be further increased by including more balanced 

representations of each comment category. The model’s 

performance problems might have been caused because of 

over-representation of certain categories, such as False 

Positives. Creating oversampling for underrepresented 

classes or data sets from various software projects is the way 

to get a more robust and rather generalized model. 

Another possibility that can be considered is to blend hybrid 

models where the rule-based and machine learning methods 

are combined, thereby most likely increasing the accuracy 

of classification with a wide variety of comment types. 

7. Conclusion 

This study concentrated on building and using a deep 

learning model to classify code review comments. The 

results show evident progress of the model from one epoch 

to another, reaching an overall accuracy of 59.84% (training 

accuracy of 73.4% and validation accuracy of 59.18%) by 

the end of Epoch 6/6, and the lowest loss at 0.7147. The 
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model shows ability to absorb and learn from training data, 

and in subsequent iterations of retraining showed increase 

in the accuracy and decrease in loss. 

Further optimization of the model will help in mitigating 

some of the issues encountered here, however, this research 

adds to the fact that deep learning techniques for automated 

code review are more effective and less error-prone, instead 

of the traditional manual procedures. 

This research proves the DNNs efficacy in classifying code 

review comments. During the implementation of DNNs, it 

has been reinforced that these models are not only good in 

achieving higher accuracy but also very good at context 

understanding, which is vital for classifying comments 

correctly. The study thus reveals the capability of DNNs to 

improve code review processes through their informed 

knowledge about code context, thus improving the precision 

and reliability of the automated reviews. 

Developing architectures such as Recurrent Neural 

Networks (RNNs) or Convolutional Neural Networks 

(CNNs) can give special attention to spatial and sequential 

data, which will enable the discovery of a robust classifier 

for code review comment classification.[29] Integrating 

“class-balancing” algorithms like Adaptive Synthetic 

Sampling (ADASYN) and Synthetic Minority 

Oversampling Technique (SMOTE) would help to better 

adjust the model to underrepresented cases of False 

Positives. These techniques optimize the training datasets to 

better fit the model while it reduces bias and improves 

accuracy.[31] 

Lastly, it should be a priority to continually update as well 

as performing testing of the code review models so that they 

become applicable in field settings. Setting grounds for the 

continuity of evaluation and improvement including regular 

updating of training data and model parameters, would be 

useful to keep these systems useful as technology improves 

and new difficulties emerge. 

Appendix 

7.1. Code for Automated Classification of CR comments 

using Transformer-based architecture (CodeBERT) 

model 

 

Fig 5. Importing datasets and TensorFlow library 

 

Fig 6. Installing Transformers API 

 

Fig 7. Checking GPU availability and preprocessing 

dataset 

 

Fig 8. Tokenization 

 

Fig 9. Defining model architecture 
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Fig 10. Creating CodeBERT-based classification model 

 

Fig 11. Training and evaluation of model and extracting 

results 

 

Fig 12. Displaying results for model training and 

evaluation 

 

Fig 13. Plotting line graphs for Precision, Recall and F1-

scores 

 

Fig 14. Creating heatmap for Confusion matrix 

 

Fig 15. Plotting line graphs for Training and Validation 

metrics (loss and accuracy) 

7.2. Examples of additional results derived from code 

execution 

7.2.1. Execution No. 1 

 

Fig 16. Precision, Recall and F1-scores for Execution no. 1 
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Fig 17. Confusion matrix for Execution no. 1 

 

Fig 18a. Training and Validation loss for Execution no. 1 

 

Fig 18b. Training and Validation accuracy for Execution 

no. 1 

Table 2. Loss and Accuracy values for Execution no. 1 

  Ep. 4 Ep. 5 Ep. 6 
Overa

ll 

Loss Training 
1.061

4 

0.857

7 

0.640

2 
1.211 

Validati

on 

1.092

8 

1.189

4 

1.150

6 

Accura

cy 

Training 
59.88

% 

66.26

% 

75.38

% 60.11

% Validati

on 

57.82

% 

57.82

% 

58.50

% 

 

7.2.2. Execution No. 2 

 

Fig 19. Precision, Recall and F1-scores for Execution no. 2 

 

 

Fig 20. Confusion matrix for Execution no. 2 

 

Fig 21a. Training and Validation loss for Execution no. 2 
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Fig 21b. Training and Validation accuracy for Execution 

no. 2 

Table 3. Loss and Accuracy values for Execution no. 2 

  Ep. 4 Ep. 5 Ep. 6 
Overa

ll 

Loss 

Training 
1.130

2 

0.961

1 

0.776

2 
1.169 

Validati

on 

1.118

9 

1.182

0 

1.123

1 

Accura

cy 

Training 
55.62

% 

62.23

% 

70.44

% 60.93

% Validati

on 

57.82

% 

59.86

% 

61.9

% 
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