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Abstract: Short-term load forecasting is crucial for efficiently managing electricity usage, spanning from weekly down to sub-hourly 

intervals. This practice not only saves resources but also ensures customer needs are met promptly. Day-ahead peak demand forecasting 

plays a vital role in load management, aiding in power system planning and operation. Yet, due to its complex non-linear nature, 

accurately predicting peak loads presents significant challenges. Therefore, this research proposed a hybrid predictive deep learning with 

an optimization algorithm to forecast precise electricity for 30-minute intervals. First, the maximum and minimum ranges of various 

parameters are determined by looking at historical data. The real-time datasets from January 1 to December 31st 2021 were used to derive 

hourly real-time system demand load data. The original dataset undergoes preprocessing to reconstruct its electrical characteristics. Zero-

mean normalization is applied to both load and temperature data to standardize them. In intricate electric load systems, redundant 

information can hinder accurate pattern extraction for load forecasting. Principal Component Analysis Network (PCANet) identifies 

relevant features while eliminating redundancy. A DeepWalk Gated Recurrent Unit Model (DWGRU) framework is then constructed to 

capture temporal dependencies from historical sequences, integrating spatial, temporal, and semantic features for load forecasting. These 

extracted features are dynamically combined using an attention mechanism. Subsequently, a Hybrid Sampling and Self Attention with 

Deep Neural Network (HSSA-DNN) is employed to forecast 30-minute peak loads efficiently, utilizing Improved Moth Flame 

Optimization (IMFO). The proposed methodology is implemented using Matlab Simulink software. Forecasting accuracy is assessed 

using statistical error metrics such as Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE), and Root Mean Square 

Error (RMSE) to identify optimal models. Experimental results showcase the superior accuracy of the proposed approach, evidenced by 

precise direction, equality, stability, correlation, comprehensive accuracy, and statistical performance analysis. Comparisons with 

existing methods reveal a reduction in Mean Absolute Scaled Error of up to 0.2088. Achieving a high day-ahead net load forecasting 

accuracy of 99.15% underscores the effectiveness of load forecasting. This highlights the critical role of input data structure and quality 

in further enhancing forecasting accuracy and reliability. 

Keywords: Short-Term Peak Load, Real-Time System, Zero-Mean Normalization, Principal Component Analysis Network, Electricity 

Load Forecasting System, Sampling and Self Attention, Improved Moth Flame Optimization 

1. Introduction  

An electric power system, also referred to as an electric 

grid, encompasses a collection of electrical components 

that distribute, transmit, and utilize power for residential 

and industrial purposes [1]. Traditional power systems 

typically produce electricity in centralized facilities such 

as power plants. These plants generate power, which 

then travels across extensive transmission lines to radial 

distribution networks. Along this journey, voltage is 

decreased, ultimately reaching consumers for utilization. 

[2]. Traditional power systems face challenges like 

network reliability, robustness, and energy price 

reduction. Distributed generations have been rapidly 

increased to address these issues [3-4]. The integration of 

distributed generation alongside advanced 

communication technologies has led to the emergence of 

smart grids [5]. A key focus within smart grid 

development revolves around devising novel strategies 

for demand response, aiming to maximize efficiency 

during peak periods without necessitating an increase in 

production capacity [6]. 

  

These networks are required to make critical 

operational decisions based on electricity consumption 

levels. Long short-term memory (LSTM) plays a vital 

role in ensuring the effective management of such 

networks [7]. 

Short-term load forecasting (STLF) plays a crucial role 

in enabling networks to make numerous operational 

decisions effectively. The behavior of load time series 

tends to be intricate [8], thus necessitating the use of 

artificial intelligence (AI) models capable of handling 

nonlinear functions for electricity load forecasting. 

Commonly employed AI models include artificial 

neural networks (ANN), support vector machines 

(SVM), bagged regression trees, and random forests. 

Over time, numerous ANN-based prediction models, 
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such as extreme learning machines (ELM), have been 

proposed [9]. A diverse range of AI algorithms, 

including Deep Learning and Neuro-Fuzzy methods, 

have been developed and applied in the electrical 

systems domain to optimize power system operation and 

management, as well as for load and electricity price 

forecasting [10]. AI-based techniques are increasingly 

being adopted for load forecasting in smart grids, 

distributed systems, and next-day demand forecasting. 

Additional AI-based approaches encompass fuzzy 

logistic techniques, specialized network structures, 

Bayesian neural systems, and support vector machines 

[11]. Despite extensive research efforts, achieving error-

free and precise STLF remains challenging due to the 

non-stationary nature of load data and the persistent 

dependencies associated with forecasting horizons [12]. 

This research aims to investigate short-term load 

forecasting in electrical power systems using AI 

techniques. Unlike other AI methods that rely on load 

statistics, the study utilizes Long Short-Term Memory 

(LSTM) for forecasting over long time horizons. The 

study is structured into sections covering literature 

review, problem definition and motivation, proposed 

methodology, experimentation and result discussion, and 

research conclusions. 

2. Literature Survey 

Panagiotou et al [13] A novel integrated model was 

proposed for short-term electricity load forecasting. The 

findings demonstrate that the accuracy of this dynamic 

integrated model reaches up to 99% Hu et al [14]. 

Another study Rao et al. [15] examined a dynamic 

Artificial Neural Network (ANN) model called Meta-

ANN, specifically developed for short-term grid load 

forecasting. Results from numerical analysis indicate 

that Meta-ANN achieves superior accuracy and 

robustness by effectively capturing nonstationary 

patterns in grid loads. In a separate investigatio,a load 

forecasting method was developed for cluster microgrids 

employing machine learning algorithms such as linear 

regression, support vector machines, and ANN, with the 

Levenberg-Marquardt optimization algorithm yielding 

the most favorable outcomes. Furthermore, a study 

Bashir et al [16] assessed the performance of a hybrid 

technique by evaluating metrics like MAPE, RMSE, and 

Mean Average Error (MAE). Results affirm that the 

proposed hybrid models surpass standalone approaches 

such as Autoregressive Integrated Moving Average 

(ARIMA), LSTM, and Prophet Model, showcasing 

reduced errors with minimal computation time. Tang et 

al. [17] They suggested a Short-Term Load Forecasting 

(STLF) model based on Temporal Convolutional 

Network (TCN), illustrating its efficacy in enhancing 

both forecast accuracy and generalization capacity. 

Liu et al [18] They introduced a hybrid method for 

short-term building load probability density forecasting, 

which combines Orthogonal Maximum Correlation 

Coefficient (OMCC) feature selection with 

Convolutional Gated Recurrent Unit (CGRU) quantile 

regression. Results from simulations conducted across 

three different buildings confirm the dependability of 

the proposed model for short-term building-level 

probabilistic load forecasting tasks. Ghenai et al [19] 

They constructed a predictive model aimed at building 

energy planning, with the objective of balancing the 

supply from renewable power systems with the 

building's electrical load demand. Key findings indicate 

that the predictive model exhibits exceptional accuracy 

in forecasting a building's energy consumption. Meng 

et al [20] Explored a short-term load forecasting 

method that incorporates empirical mode 

decomposition (EMD), bidirectional long short-term 

memory (BiLSTM), and an attention mechanism. The 

experiments indicated that the optimal number of 

Intrinsic Mode Functions (IMFs) recommended for this 

approach is either three or four, considering both 

prediction accuracy and computational efficiency. 

Matrenin et al [21] Executed the method for identifying 

the most impactful features. Analysis of the total 

forecast error has demonstrated that the attributes of the 

proposed models exhibit high quality and precision, 

thereby making them suitable for accurately forecasting 

the actual load of a power system. Alrasheedi et al [22] 

Suggested hybrid deep learning (DL) techniques to 

improve outcomes in load forecasting for Saudi smart 

grids. The forecasted results showcase the efficacy of 

the proposed hybrid DL models. Specifically, CNN-

GRU and CNN-RNN achieved improvements of 

1.4673% and 1.222% in load forecasting accuracy 

measured by NRMSE, respectively. This research 

significantly contributes to short-term load forecasting 

in electrical power systems through the utilization of 

hybrid machine learning algorithms. 

3. Research Problem Definition And Motivation 

Electric power companies are responsible for providing 

high-quality electricity to consumers safely and 

efficiently. They must plan, manage, and operate the 

system while addressing economic and technological 

challenges. Accurate assessment of current and 

projected demand is crucial for optimal planning and 

operation. Electric load forecasting helps predict the 

amount of electricity needed to meet demand. Load 

forecasting can be categorized into three main types: 

short-term, mid-term, and long-term. Short-term 

forecasting stands out for its widespread usage, 

especially for facilitating day-to-day operations. 

The electrical system's infrastructure has undergone 

significant changes, impacting customer consumption 
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habits. The study seeks to create a hybrid model to 

precisely forecast load consumption in power networks, 

aiming to rectify deficiencies observed in current AI-

based systems such as linear segments, complexity, and 

convergence challenges. It particularly focuses on 

forecasting peak load demand and day-ahead load for 

30-minute intervals. 

4. Proposed Research Methodology  

Demand forecasting is crucial for power management 

and decision-making due to technological challenges 

and rising electrical load. Time series models like linear 

regression struggle with complex nonlinear load time 

series. AI models, deep learning, and machine learning 

offer reliable, quick, and efficient solutions. A hybrid 

approach incorporating deep learning techniques 

optimizes parameters for short-term load forecasting. 
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Fig. 1: Block Diagram of the Proposed Work 

The proposed methodology utilizes real-time data from 

Tamilnadu, which is pre-processed to enhance the 

learning of the input-output relationship, as depicted in 

Figure 1. During pre-processing, mathematical 

operations like normalization, ranking, and correlation 

are applied. The process utilizes zero-mean 

normalization, principal component analysis network, 

and Deep Walk Gated Recurrent Unit Model, and 

presents a STLF model using hybrid deep learning and 

optimization algorithms for improved convergence speed 

and accuracy. 

4.1. Data Collection 

The dataset includes year, month, date, day, hour, 

weekday, working/holiday, dew point, dry bulb 

temperatures, and hourly load. The Southern region 

power grid website, the TNEB load dispatch centre 

website, and official documents were used to gather real-

time data from the Tamil Nadu districts of Madurai and 

Chennai. The data covered one year. The dataset 

included data for each hour from January 1, 2021, to 

December 31, 2021, including power load, temperatures, 

humidity, wind speed, day type, and other variables. The 

weather data, time indicators, and load demand statistics 

are all part of the first dataset-gathering process. Tests 

are administered to each one-year group. The data are 

also combined with the load data from the previous week 

(as a redundant input) and the most recent day (24 

hours), likewise as a redundant input.  

4.2. Zero-Mean Normalization Technique for Data 

Pre-Processing 

The study uses a zero-mean normalization technique for 

data normalization on load and temperature variables, 

enhancing numerical stability in NN training. The Z-

norm method uses mean and variance estimates for 

distribution scaling, allowing off-line parameter 

calculation during training. Log-likelihood scores are 

used to estimate the mean and variance specific to each 

speaker for the imposter distribution, following the 

testing of a speaker model against sample impostor 

utterances. The form of normalisation exists in 

Equation (1). 

𝑆 =
log(𝑃(𝑚|𝑂))−𝜇𝐼

𝜎𝐼
           (1) 

Where, 𝑆 is the distribution-normalized score 𝜇𝐼 and 

𝜎𝐼are the estimated impostor parameters for speaker 

model 𝑚. 

Different normalisation methods can be categorized 

based on their intended application, such as distribution 

scaling or score normalisation. Distribution scaling can 

be speaker-centric or impostor-centric, with two 

primary methods: Bayesian world model 

implementation and cohort normalisation. Cohort 

normalisation compares speaker models to 

unconstrained cohorts, using similarity metrics. The 

size of the cohort influences normalisation behavior, 

with larger groups exhibiting impostor-centric behavior. 
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Cohort normalisation becomes more speaker-centric as 

the number of speakers decreases. For text-dependent 

verification, a cohort size of less than five yields the best 

results. 

4.3. Feature Extraction and Selection 

The study investigates the influence of multiple variables 

on load parameters in electric power load series, 

highlighting the potential for load signal instability. To 

enhance precision, the research converts load data into 

time-series data using the Principal Component Analysis 

Network and Deep Walk Gated Recurrent Unit Model. 

The system involves tagging and embedding procedures. 

4.3.1. Principal Component Analysis Network 

(PCANet) 

The feature extraction processes utilize the Principal 

Component Analysis Network (PCANet) model to 

provide high-dimensional features. The PCANet 

architecture represents a streamlined and faster variant of 

CNN designed for image classification. It employs 

cascaded principal component analysis (PCA), binary 

hashing, and blockwise histograms across three layers. 

Its key components are PCA filters, which extract the 

highest energy eigenvectors from input training data, and 

convolution filters, which capture the primary variance 

of the input. 

Input Layer: The preceding phase produced 𝑁 input data 

of size 𝑚 × 𝑛, allowing us to assume that the filter size 

is {𝐼𝑖}𝑖=1
𝑁  throughout. Equation (2) illustrates the matrix 

representation of the i-th dataset.  

𝐼𝑖 = [

𝑖11 𝑖12

𝑖21 𝑖22

⋯ 𝑖1𝑛

⋯ 𝑖2𝑛

⋮ ⋮
𝑖𝑚1 𝑖𝑚2

⋱ ⋮
⋯ 𝑖𝑚𝑛

]      (2)  

Wherein, m and n represent the width and height 

dimensions of the data, respectively. 

Hidden Layer: This layer consists of two stages. In the 

first stage, the border of Ii is zero-padded, then 

convolved with the k1×k2 filter to extract patches of the i-

th data. This process enables the determination of local 

features within the filter patch in a single step. To 

achieve 𝑥𝑖,1, 𝑥𝑖,2, … . , 𝑥𝑖,𝑚𝑛 ∈ ℝ𝑘1𝑘2  where 𝑥̅𝑖,𝑗a mean-

removed patch is, the developers must first remove the 

patch mean from each patch. The identity matrix is 

established by uniformly transforming each input data, 

and this method yields 𝑋 (Equation (3)). 

𝑋 = [𝑋̅1, 𝑋̅2, … , 𝑋̅𝑁] ∈ ℝ𝑘1𝑘2×𝑁𝑚𝑛     (3) 

The PCA filters are gathered following the PCA 

technique and may be expressed as Equation (4). 

𝑊𝑙
1 = 𝑚𝑎𝑡𝑘1, 𝑘2(𝑞𝑙(𝑋𝑋𝑇)) ∈ ℝ𝑘1𝑘2 , 𝑙 = 1,2, … , 𝐿1 (4) 

In this context, Li denotes the number of filters, and ql 

(XXT) selects the l-th primary eigenvector of XXT. 

matk1, k2 (v) represents a function that converts column 

vectors to matrices, while Wl
1 corresponds to the l-th 

PCA filter used to extract high-dimensional features in 

the first stage. Convoluting the 𝑙 − 𝑡ℎ PCA filter with 

the input data provides the first stage's 𝑙 − 𝑡ℎ filter 

output. 

𝐼𝑖
𝑙 = 𝐼𝑖 ∗ 𝑊𝑙

1,     𝑖 = 1,2, … , 𝑁                    (5) 

While it is zero-padded before convolution with 𝑊𝑙
1, 

𝐼𝑖
𝑙also has the same size as 𝐼𝑖 . The process is reiterated 

similarly to the first stage: aggregating all patches of 𝐼𝑖
𝑙 

(Equation (5)),  subtracting the mean of each patch, and 

then deriving 𝑌̅𝑖
𝑙 = [𝑦̅𝑖,𝑙,1, 𝑦̅𝑖,𝑙,2, … , 𝑦̅𝑖,𝑙,𝑚𝑛] ∈ ℝ𝑘1𝑘2×𝑚𝑛, 

where 𝑦̅𝑖,𝑙,𝑗  𝑌𝑙 = [𝑌̅1
𝑙 , 𝑌̅2

𝑙 , … . , 𝑌̅𝑁
𝑙 ] ∈ ℝ𝑘1𝑘2×𝑁𝑚𝑛 for the 

matrix, and amalgamating the output of all  𝑙th filters to 

yield the following Equation (6). 

𝑌 = [𝑌1, 𝑌2, . . , 𝑌𝐿1] ∈ ℝ𝑘1𝑘2×𝐿1𝑁𝑚𝑛    (6) 

The next step is utilising the PCA technique to obtain 

the second-stage PCA filters illustrates Equation (7).  

𝑊𝑙
2 = 𝑚𝑎𝑡𝑘1, 𝑘2(𝑞𝑙(𝑌𝑌𝑇)) ∈ ℝ𝑘1,𝑘2 ,    𝑙 =

1,2, … 𝐿2  (7) 

According to the Equation (8), each input 𝐼𝑖
𝑙  of the 

second stage will produce 𝐿2 𝑡ℎ𝑒 data size of 𝑚 × 𝑛,  

𝑂𝑖
𝑙 = {𝐼𝑖

𝑙 ∗ 𝑊𝑙
2}𝑙=1

𝐿2              

(8) 

Where 𝑂𝑖
𝑙 represents the output of the 𝑖 −  𝑡ℎ image, 

and 𝐿1𝐿2 ignifies the number of output images. 

Output Layer: The results from the second stage, 

{𝐼𝑖
𝑙 ∗ 𝑊𝑙

2}𝑙=2
𝐿2  will be binarized in this layer before being 

transformed into decimal matrices as follows Equation 

(9) and (10). 

Γ𝑖
𝑙 = ∑ 2𝑙−1𝐻(𝐼𝑖

𝑙 ∗ 𝑊𝑙
2)

𝐿2
𝑙=1                 

(9) 

 𝑓𝑖 = [𝐵ℎ𝑖𝑠𝑡(Γ𝑖
𝑙), … . , 𝐵ℎ𝑖𝑠𝑡(Γ𝑖

𝐿1)]𝑇 ∈ ℝ(2𝐿2)𝐿1𝐵            

(10) 

The 𝑖 − 𝑡ℎ data's output is a decimal matrix, and H (∙)  

represents a Heaviside step function, with a value of 

one for positive entries and zero otherwise. After this 

encoding process, the input image  Ii   is converted into 

a set of block-wise histograms for eachΓ𝑖
𝑙, 𝑙 = 1, … . 𝐿1. 

This is achieved by calculating histograms for each of 

these blocks and then combining all of the B histograms 

into a single vector, denoted as Bhist (Γ𝑖
𝑙).  

4.3.2. Deep Walk Gated Recurrent Unit Model 

In this phase, they provide further detail about the ST-

DWGU ensemble deep learning framework's 
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architecture. The ST-DWGRU comprises multiple 

layers, each consisting of three elements: the extraction 

of spatial and temporal features, and the extraction of 

semantic features. The outcomes of the prediction are 

output by the final prediction component in Equation 

(11). 

𝑦𝑡+𝑇 = 𝑓(𝑥𝑡−ℎ,….,; 𝑚𝑡−ℎ,...,𝑡; 𝐴),                           

(11) 

In contrast to the prior prediction model, each layer of 

ST-DWGRU also learns semantic and spatiotemporal 

features. GCNs cannot fully learn the position 

information of nodes since the majority of graph neural 

networks construct node embedding by combining data 

from each node's q-hop neighbourhood and are hence 

structure-aware. varied location crossings play varied 

roles in the road network, thus to describe the semantic 

information of various intersections, they require the 

position information that is encoded in the nodes. The 

suggested ST-DWGRU learns semantic and 

spatiotemporal features, which is more appropriate for 

the real case. 

In Euclidean space, a CNN effectively captures spatial 

effects by considering the weights of neighboring pixels. 

However, CNNs face limitations in directly extracting 

spatial aspects from the structure of a road network, 

especially when the number of neighboring junctions 

and road segments varies. The urban road network is 

represented by an undirected graph 𝐺 = (𝑉, 𝐸) where 𝑉 

represents the set of graph vertices and 𝐸 represents the 

set of graph edges. Utilizing the input of the adjacency 

matrix of the road network, the graph convolution 

operation extracts the characteristics of the road network 

structure. A two-layer Graph Convolutional Network 

(GCN) can be described as Equation (12): 

𝑍 = 𝑓(𝑋, 𝐴) = 𝑠𝑜𝑓𝑡 max(𝐴̂𝑅𝑒𝐿𝑈(𝐴̂𝑋𝑊(0))𝑊(1))   (12) 

Apart from the input gate, output gate, and forget gate 

found in LSTM, GRU is a simplified version of an 

LSTM network with only two gates: an update gate and 

a reset gate. Let 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑡)  be the input 

sequence, and input X to GRU to have GCN learn 

temporal properties beforehand. The following is a 

diagram of the precise calculation Equation (13). 

𝑠𝑡 = 𝐺𝐶𝑁(𝑥𝑡),                  (13) 

In this context, 𝑟𝑡  represents the reset gate,  𝑧𝑡 denotes 

the update gate,  ℎ𝑡 signifies the current memory content, 

and  ℎ𝑡  represents the current hidden state. Additionally, 

𝑠𝑡  denotes the output of the GCN at time t, ℎ𝑡 represents 

the hidden state at time t, 𝑥𝑡 stands for the current input,   

ℎ𝑡−1 denotes the hidden state at the previous time step, 

and  𝑟𝑡  indicates the reset gate. The weights and biases of 

the network are denoted by 𝑊 and 𝑏  respectively, the 

sigmoid activation function is represented by σ and the 

hyperbolic tangent activation function is denoted by 

𝑡𝑎𝑛ℎ. Thus, both temporal and spatial characteristics 

are present in the final GRU output. 

Position-aware node embedding representation learning 

technique DeepWalk has lately gained much popularity. 

The method is composed of the random walk and 

update process components. The root node of a path is 

designated by the symbol 𝑊𝑠𝑖
 , and all other nodes are 

labelled as {𝑊𝑠𝑖
1, 𝑊𝑠𝑖

2, 𝑊𝑠𝑖
3, … , 𝑊𝑠𝑖

𝑘}, where 𝑊𝑠𝑖
𝑘 indicates 

the k-th intersection or segment along the path. The 

optimisation result and the associated vector 

representation is 𝑠𝑡
𝑖  generated via the Skip-gram 

technique (Equation (14)). 

𝑠̂ = 𝑓(𝑊𝑖 . 𝑆𝑖 + 𝑏𝑖),                                    

(14) 

After obtaining the vector representation, this study 

generates the ultimate semantic information 

representation using a fully connected layer. In a 

truncated random walk, each random walk shares the 

same length, and upon traversing every junction or road 

segment, the random walk sequence matrix for the 

entire journey is obtained. 

4.4. Short-Term Load Forecasting Model 

The research suggests short-term peak load and day-

ahead load forecasting through the utilization of the 

Hybrid Sampling and Self-Attention with Deep Neural 

Network (HSSA-DNN) and the Improved Moth Flame 

Optimization (IMFO) algorithm. The model predicts 

complex choice patterns, examines finite and infinite 

decision horizons, and uses transfer learning for spatial-

temporal correlation. The IMFO algorithm accelerates 

convergence, improving load forecasts for power grid 

operations. 

4.4.1. Hybrid Sampling and Self-Attention with 

Deep Neural Networks Mechanism 

The research devised a deep learning model 

incorporating a sparse self-attention mechanism, which 

enhances model training by capturing data-specific 

features and improving model accuracy. The model 

consists of N layers, enhancing the recognition of 

hidden features. 

Here, the approximating softmax by sampling a set 𝑆, a 

set of adjacent keys for each query created by the union 

of colliding keys using 𝑚 hash tables. The estimator is 

computed using|𝑆|−1 ∑
𝑝(𝑄𝑖,𝐾𝑗)

𝑞(𝑄𝑖,𝐾𝑗)𝑗∈𝑆 𝑉𝑗, where, 𝑄𝑖  is a 

query vector, 𝐾𝑗, 𝑉𝑗 are key and value vectors in the 

sampling set 𝑆, and 𝑝(𝑄𝑖 , 𝐾𝑗) and 𝑞(𝑄𝑖 , 𝐾𝑗) are softmax 

probability and collision probability of given pairings. 

Due to the importance of sampling without replacement 
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used in this technique, the samples become dependent on 

one another. 

Initially, the extracted load data were inputted into the 

fully connected layer and softmax layer to train the self-

attention score (Equation (15)). 

𝑎 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑔(𝑙))                              

(15) 

Here, 𝑙 represents the load binary vector, 𝑎 signifies the 

attention score vector, and 𝑔(∙) denotes the fully 

connected layer without activation. Specifically, 𝑔(∙) 

serves as a linear operator, while 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (∙) functions 

as a non-linear activation operator. However, the sparse 

attention distribution is then computed as Equation (16): 

 𝜌(𝑒𝑖𝑗) = 𝑝𝑖𝑗 = 𝑚𝑎𝑥 {0,
𝑒𝑖𝑗−𝜏(𝑒𝑖)

1−𝜆
}                     (16) 

Where, 𝑗 ∈ {1,· · · 𝐿} and τ is the threshold function. 

Thus, in order to emphasize the importance of critical 

features' influence on the sequence, the attention layer 

allocates the feature weight learned by the model to the 

input vector of the subsequent time step. Subsequently, 

the fully connected layer processes the final data. The 

estimated load value is determined after the fully linked 

layer's virtual function processing. The self-attention 

process unfolds as outlined below: 

• Step 1: Compute the correlation between each 

current input feature and the present load. 

• Step 2: Apply the Softmax formula to transform 

each correlation into a probabilistic form. 

• Step 3: Multiply each resulting probability by 

the implicit representation of the corresponding input 

feature to signify the contribution of the feature to the 

predicted load. To forecast the subsequent load data, the 

contributions of all input features are then aggregated. 

To denote the impact of each obtained probability on 

the anticipated load, multiply each outcome by the 

implicit representation of the corresponding input 

characteristic. Equations (17) - (19) can be used to 

describe the process. 

𝑒𝑡 = 𝑉𝑡𝑎𝑛ℎ(𝑊ℎ𝑡 + 𝑏)                        (17) 

    𝛼𝑡 =
𝑒𝑥𝑝(𝑒𝑡)

∑ 𝑒𝑥𝑝(𝑒𝑗)𝑛
𝑗=1

                                      (18) 

𝐶𝑡 = ∑ 𝑎𝑡ℎ𝑡
𝑛
𝑡=1                              (19) 

Where, the attention weight at time 𝑡 and the weight 

score associated with certain aspects are 𝑒𝑡 and 𝛼𝑡 is 

The size of the input vector for the prediction model; V 

and W represent the weights of the multilayer 

perceptron used in calculating the attention weight; 𝑏 

stands for the bias parameter of the multilayer 

perceptron during attention weight calculation; and c 

denotes the output of the attention mechanism at time𝑡. 

This research introduces attention mechanisms that 

leverage both past and future information 

characteristics, assigning different weights to input data 

to emphasize strong correlations and diminish less 

correlated components. 
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Fig. 2: Architecture of Self-Attention Deep Neural Network 

Figure 2 presents a high-level conceptual framework 

featuring 3D convolution blocks, residual self-attention 

blocks, and explainable blocks. Conventional load 

fluctuation is primarily due to user energy use changes. 

Techniques like time series prediction and linear 

extrapolation can provide short-term forecasting precision.  

Due to the widespread availability of distributed energy 

sources, Equation (20) can be used to express the net load. 

The actual net load is denoted by 𝑝𝑡 , the user's electrical 

load is denoted by 𝑝′, and power generation is indicated by 

𝑝𝑡
𝑔

. 

𝑝𝑡 = 𝑝′𝑡 + 𝑝𝑡
𝑔

                             (20) 
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The power generation is considered a load due to its erratic 

nature and differs from traditional power supplies. The 

prediction layer comprises three interconnected layers and 

a self-attention layer, which enriches load exploration. A 

solitary neuron utilizing a sigmoid activation function 

transforms input from the preceding layer into an output 

score. The formula is represented as Equation (21): 

𝑃(𝑃1, 𝑃2) = 𝑠(𝐷𝑒𝑛𝑠(𝐹))                               (21) 

Here, s represents a dense layer comprising one unit 

activated by the sigmoid function. As a result, load 

uncertainty rises, the fluctuation range widens, and on 

sunny days, power reversals will happen around noon. The 

usual forecasting approach will result in greater 

inaccuracies and be unable to predict the load preciselyThe 

study introduces a novel short-term prediction model 

utilizing phase space reconstruction and HSSA-DNN, 

utilizing Bhattacharyya Distance for data cluster 

classification and enhanced moth-flame optimization for 

real-time applications. 

4.4.2. Improved Moth-Flame Optimization Algorithm 

The MFO algorithm employs a moth to conduct local 

searches, thereby balancing global exploration and local 

mining capabilities. Incorporating the linear inertia weight 

method improves upon the sine-cosine algorithm, thereby 

enhancing optimization potential and accelerating 

convergence, as depicted in Equation (22). 

𝑀𝑖 = 𝐷𝑖 ∙ 𝑒𝑏𝑡 ∙ 𝑐𝑜𝑠(2𝜋𝑡) + 𝑤 ∙ 𝐹𝑗      (22) 

The MFO algorithm's convergence speed and global search 

capability are enhanced by a modified mechanism for 

updating moth positions, utilizing a hybrid search strategy 

and mutation operator. 

The Bhattacharyya distance serves as a metric for 

assessing the similarity between two probability density 

functions, thereby enhancing the convergence rate. If we 

denote the two probability density functions as P and Q, 

then their Bhattacharyya distance is defined as Equation 

(23):  

𝐵𝐷(𝑃, 𝑄) = −𝑙𝑛(𝐵𝐶(𝑃, 𝑄))                             (23) 

The probability density function is derived using kernel 

density estimation. This study suggests substituting the 

probability density with variance, formulating the 

Bhattacharyya distance Equation (24) based on variance, 

and employing the Bhattacharyya distance to quantify the 

variance difference between the two probability 

distributions.         𝐵𝐷(𝐷(𝑋), 𝐷(𝑌)) =

−𝑙𝑛 (𝐵𝐶(𝐷(𝑋), 𝐷(𝑌)))   (24) 

Where, 𝐵𝐶(𝐷(𝑋), 𝐷(𝑌)) The Bhattacharyya coefficient, 

for discrete probability distributions. However, during the 

iterative search process, when 𝑑𝑖 ≤ 𝑤 · 𝐷𝐸 , a linear search 

mechanism is introduced. The positions of moths are then 

updated as Equation (25): 

𝑀𝑖(𝑙 + 1) = {
𝐹𝑖 − 𝐴 ∙ 𝐷𝑖

′,                                         𝑖 ≤ 𝑓𝑛𝑜

𝐷𝑖 ∙ 𝑒𝑏𝑡 ∙ 𝑐𝑜𝑠(2𝜋𝑡) + 𝐹𝑓𝑛𝑜
(𝑙), 𝑖 > 𝑓𝑛𝑜

                                                                 (25) 

Where, 𝐷𝑖
′ and 𝐷𝑖  are given as 𝐷𝑖

′ = |𝐶 ∙ 𝐹𝑖 − 𝑀𝑖| and 𝐷𝑖 =

|𝐹𝑓𝑛𝑜
− 𝑀𝑖|. Where W represents the weight coefficient, 

and its value is chosen as 0.1; 𝐴 = 2𝑎 · 𝑅 − 𝑎; 𝐶 = 2 · 𝑅; 

𝑎 = −1 + 𝑙 ∗ (−1/𝐿); 𝑅 A is a random constant within the 

range [0,1]. Adjusting the values of A and C enables 

reaching various locations around the flame relative to the 

current position. 

Table 1: Pseudocode for Improved Moth Flame 

Optimization 

Algorithm 1: Improved Moth Flame Optimization 

Algorithm 

Randomly initialize each individual in moths using 

population in equation () 

𝑀𝑖𝑗 = 𝑙𝑏𝑖 + 𝑢𝑗(𝑢𝑏𝑖 − 𝑙𝑏𝑖) 

Initialize the iteration count 𝑙 = 1; 

while 𝑙 < 𝐿 + 1 

Update 𝑓𝑛𝑜; 

𝑂𝑀 = 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝑀); 

if 𝑙 == 1 

𝐹 = 𝑠𝑜𝑟𝑡(𝑀); 𝑂𝐹 = 𝑠𝑜𝑟𝑡(𝑂𝑀); 

else 

𝐹 = 𝑠𝑜𝑟𝑡(𝑀(𝑙 − 1), 𝑀(𝑙)); 𝑂𝐹 = 𝑠𝑜𝑟𝑡(𝑂𝑀(𝑙 −

1), 𝑂𝑀(𝑙)); 

end if 

for 𝑖 = 1: 𝑛 

for 𝑗 = 𝑗: 𝑑 

Update 𝑟 and t; calculate D; 

Update 𝑀𝑖𝑗; 

end for 

end for 

𝑙 = 1 + 1 

end while 

Based on this, the pseudo-code of the IMFO algorithm is 

shown in algorithm 1 and the steps of IMFO are illustrated 

in the above Table 1. However, the expression of 𝑤 is 

shown in Equation (26). 

𝑤 = (𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛)∗(1 − (1 𝐿⁄ )2)
1

2   (26) 
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Where, the iteration times 𝐿 and 𝑙 stand for maximum and 

current, respectively. With each repetition, w changes 

nonlinearly from large to small. The iteration begins with 

random moth placement, allowing for global exploration. 

As information transmission increases, differences 

between individuals decrease. The low, declining w value 

allows for local exploration and mining, enhancing the 

month population's mining capabilities. The modified 

approach has been continuously tested, and it performs 

best when 𝑤𝑚𝑎𝑥 = 0.8, 𝑤𝑚𝑖𝑛 = 0.3. 

5. Experimentation and Result Discussion 

This research presents the evaluation findings for a 

proposed method using real-time datasets from Madurai 

and Chennai from January 1st to December 31st, 2021. 

The data includes hourly load values, temperature, 

humidity, wind speed, economic events, and public 

holidays. The model was evaluated in MATLAB to 

validate its effectiveness, minimizing cost functions based 

on parameter values and using the MATLAB R2022a 

programming language. The model predicts loads using 

weather, scheduling, and holiday information, historical 

loads, parallel PCANet and DWGRU components, and a 

sliding window. It divides datasets into training, 

validation, and testing sets, evaluating short-term load 

forecasting methods using MAPE and MAE (Equation 

(27)- (29)). 

    𝑀𝐴𝑃𝐸 =  
1

𝑁
∑ |

𝑦𝑖−𝑦̂𝑖

𝑦𝑖
| ×𝑁

𝑖=1 100                       (27) 

   𝑀𝐴𝐸 =
1

𝑁
∑ 𝑦𝑖 − 𝑦̂𝑖

𝑁
𝑖=1                                      (28) 

  𝑅𝑀𝑆𝐸 = √
1

𝑇
∑ (𝑦̂𝑖 − 𝑦𝑖)

2𝑁
𝑖=1                                       

(29) 

Here, 𝑁 represents the total number of testing samples, 𝑦𝑖  

denotes the actual load value for a specific hour, 

𝑦̂𝑖  represents the forecasted load value, and so forth. 

 

Fig. 3. Objective Value vs. Number of Iterations  

Figure 3 shows IMFO algorithm results show higher 

connection leads to higher convergence rates, while far 

sparser topologies can still achieve acceptable long-term 

performance. 

 

Fig. 4. Forecast Bias Graph  

Figure 4 shows a forecast bias graph for 1000 samples, 

highlighting the importance of understanding load demand 

trends, including external factors like the economy, 

weather, and time index. Time index data is the easiest, but 

obtaining such factors is challenging. 

 

Fig. 5(a). MAPE Evaluation Results for Load Forecasting 

 

Fig. 5(b). RMSE Evaluation Results for Load Forecasting 

Figures 5 displays MAPE and RMSE error distributions, 

plotted by DNN candidate model and historical pre-

dispatch forecast. The lowest error is 0.092 for MAPE and 

10 for RMSE, with outliers indicating significant errors. 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 4135–4145 |  4143 

 

Fig. 6. Mean Squared Error Plot  

Figure 6 above shows the MSE graph for the suggested 

work. The study uses real-time data from 20 samples over 

a year, showing train and test losses across iterations, 

indicating the model is not overfitting. 

 

Fig. 7. Percentage Error Graph  

Figure 7 depicts the anticipated percentage inaccuracy. 

More than 60% of errors are compounded between 5 and 

10. The suggested distribution net load forecasting 

approach's accuracy and efficacy are shown by the forecast 

error analysis.  

 

Fig. 8. PI Coverage Graph  

Figure 8 shows a plot of PI coverage comparing the 

proposed model and benchmark models, indicating its 

stability and reliability, crucial for accurate decision-

making based on accurate predictions. 

 

Fig. 9. SMAPE of Load Forecast Model  

Figure 9 shows SMAPE for multiple models, considering 

1000 real-time data samples. It collects temporal and 

spatial aspects from historical data and metadata, despite 

noise and mistakes. 

 

Fig. 10. Normalized RMSE Graph  

The network's performance is not superior to random 

predictions, as shown in Figure 10. The NRMSE curves 

reveal significant variation in prediction performance 

based on the test sample. 

Table 2: Comparison Results 

Techniques Accuracy 

(%) 

R2 MAPE RMSE 

ARIMA 

[23] 

93 0.85 - 40.12 

FE-SAMF-

WNN [24] 

98 0.944 0.234 - 

LSTM-FA 

[25] 

- 0.95 - 35.26 

LF-NSNP 

[26] 

- - 0.2487 - 

Proposed 99.15 0.96 0.2088 33 

 

Table 2 present proposed method outperforms existing 

methods in accuracy and regression performance. 
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6. Research Conclusion 

The manuscript discusses the importance of various factors 

in load forecasting, including seasonal data, wind speed, 

temperature, and historical load patterns. Pre-processing 

techniques like zero-mean normalization and feature 

selection through PCANet are employed to enhance data 

quality. Feature extraction is achieved using DWGRU to 

incorporate spatial, temporal, and semantic features. A 

hybrid deep learning model incorporating optimization 

algorithms is introduced for short-term load forecasting. In 

particular, the proposed model is a hybrid sampling and 

self-attention with deep neural network (HSSA-DNN) 

aimed at forecasting peak loads at 30-minute intervals. The 

proposed approach is implemented using Matlab Simulink 

and achieves high accuracy, with a MAPE of 0.2088 and 

RMSE of 19. Various inputs including load demand profile 

and weather information are considered to improve model 

generalization. Comparative analyses reveal the 

effectiveness of the proposed approach compared to other 

models such as ARIMA and LSTM-FA, achieving a 

prediction accuracy of 99.15%. The study also assesses 

parameters to enhance error reduction and computational 

efficiency, emphasizing the cost-effectiveness of the 

proposed hybrid model. In summary, the research suggests 

that the HSSA-DNN model offers accurate and efficient 

predictions of peak loads. 
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