

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 4135–4145 | 4135

Real-Time Efficient Short-Term Peak Load and Day-Ahead Electricity

Load Forecasting System Using Machine Learning Approach

S. Vasudevan1*, Dr. K. Jothinathan2

Submitted: 26/01/2024 Revised: 04/03/2024 Accepted: 12/03/2024

Abstract: Short-term load forecasting is crucial for efficiently managing electricity usage, spanning from weekly down to sub-hourly

intervals. This practice not only saves resources but also ensures customer needs are met promptly. Day-ahead peak demand forecasting

plays a vital role in load management, aiding in power system planning and operation. Yet, due to its complex non-linear nature,

accurately predicting peak loads presents significant challenges. Therefore, this research proposed a hybrid predictive deep learning with

an optimization algorithm to forecast precise electricity for 30-minute intervals. First, the maximum and minimum ranges of various

parameters are determined by looking at historical data. The real-time datasets from January 1 to December 31st 2021 were used to derive

hourly real-time system demand load data. The original dataset undergoes preprocessing to reconstruct its electrical characteristics. Zero-

mean normalization is applied to both load and temperature data to standardize them. In intricate electric load systems, redundant

information can hinder accurate pattern extraction for load forecasting. Principal Component Analysis Network (PCANet) identifies

relevant features while eliminating redundancy. A DeepWalk Gated Recurrent Unit Model (DWGRU) framework is then constructed to

capture temporal dependencies from historical sequences, integrating spatial, temporal, and semantic features for load forecasting. These

extracted features are dynamically combined using an attention mechanism. Subsequently, a Hybrid Sampling and Self Attention with

Deep Neural Network (HSSA-DNN) is employed to forecast 30-minute peak loads efficiently, utilizing Improved Moth Flame

Optimization (IMFO). The proposed methodology is implemented using Matlab Simulink software. Forecasting accuracy is assessed

using statistical error metrics such as Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE), and Root Mean Square

Error (RMSE) to identify optimal models. Experimental results showcase the superior accuracy of the proposed approach, evidenced by

precise direction, equality, stability, correlation, comprehensive accuracy, and statistical performance analysis. Comparisons with

existing methods reveal a reduction in Mean Absolute Scaled Error of up to 0.2088. Achieving a high day-ahead net load forecasting

accuracy of 99.15% underscores the effectiveness of load forecasting. This highlights the critical role of input data structure and quality

in further enhancing forecasting accuracy and reliability.

Keywords: Short-Term Peak Load, Real-Time System, Zero-Mean Normalization, Principal Component Analysis Network, Electricity

Load Forecasting System, Sampling and Self Attention, Improved Moth Flame Optimization

1. Introduction

An electric power system, also referred to as an electric

grid, encompasses a collection of electrical components

that distribute, transmit, and utilize power for residential

and industrial purposes [1]. Traditional power systems

typically produce electricity in centralized facilities such

as power plants. These plants generate power, which

then travels across extensive transmission lines to radial

distribution networks. Along this journey, voltage is

decreased, ultimately reaching consumers for utilization.

[2]. Traditional power systems face challenges like

network reliability, robustness, and energy price

reduction. Distributed generations have been rapidly

increased to address these issues [3-4]. The integration of

distributed generation alongside advanced

communication technologies has led to the emergence of

smart grids [5]. A key focus within smart grid

development revolves around devising novel strategies

for demand response, aiming to maximize efficiency

during peak periods without necessitating an increase in

production capacity [6].

These networks are required to make critical

operational decisions based on electricity consumption

levels. Long short-term memory (LSTM) plays a vital

role in ensuring the effective management of such

networks [7].

Short-term load forecasting (STLF) plays a crucial role

in enabling networks to make numerous operational

decisions effectively. The behavior of load time series

tends to be intricate [8], thus necessitating the use of

artificial intelligence (AI) models capable of handling

nonlinear functions for electricity load forecasting.

Commonly employed AI models include artificial

neural networks (ANN), support vector machines

(SVM), bagged regression trees, and random forests.

Over time, numerous ANN-based prediction models,

1Research Scholar, Department of Electrical Engineering, Annamalai

University, Annamalai Nagar, Chidambaram, 608 002, Tamil Nadu,

India, Email: vasudevanaetneb@gmail.com
2Associate Professor, Department of Electrical Engineering, Annamalai

University, Annamalai Nagar, Chidambaram, 608 002, Tamil Nadu,

India, Email: jothi.eeau@yahoo.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 4135–4145 | 4136

such as extreme learning machines (ELM), have been

proposed [9]. A diverse range of AI algorithms,

including Deep Learning and Neuro-Fuzzy methods,

have been developed and applied in the electrical

systems domain to optimize power system operation and

management, as well as for load and electricity price

forecasting [10]. AI-based techniques are increasingly

being adopted for load forecasting in smart grids,

distributed systems, and next-day demand forecasting.

Additional AI-based approaches encompass fuzzy

logistic techniques, specialized network structures,

Bayesian neural systems, and support vector machines

[11]. Despite extensive research efforts, achieving error-

free and precise STLF remains challenging due to the

non-stationary nature of load data and the persistent

dependencies associated with forecasting horizons [12].

This research aims to investigate short-term load

forecasting in electrical power systems using AI

techniques. Unlike other AI methods that rely on load

statistics, the study utilizes Long Short-Term Memory

(LSTM) for forecasting over long time horizons. The

study is structured into sections covering literature

review, problem definition and motivation, proposed

methodology, experimentation and result discussion, and

research conclusions.

2. Literature Survey

Panagiotou et al [13] A novel integrated model was

proposed for short-term electricity load forecasting. The

findings demonstrate that the accuracy of this dynamic

integrated model reaches up to 99% Hu et al [14].

Another study Rao et al. [15] examined a dynamic

Artificial Neural Network (ANN) model called Meta-

ANN, specifically developed for short-term grid load

forecasting. Results from numerical analysis indicate

that Meta-ANN achieves superior accuracy and

robustness by effectively capturing nonstationary

patterns in grid loads. In a separate investigatio,a load

forecasting method was developed for cluster microgrids

employing machine learning algorithms such as linear

regression, support vector machines, and ANN, with the

Levenberg-Marquardt optimization algorithm yielding

the most favorable outcomes. Furthermore, a study

Bashir et al [16] assessed the performance of a hybrid

technique by evaluating metrics like MAPE, RMSE, and

Mean Average Error (MAE). Results affirm that the

proposed hybrid models surpass standalone approaches

such as Autoregressive Integrated Moving Average

(ARIMA), LSTM, and Prophet Model, showcasing

reduced errors with minimal computation time. Tang et

al. [17] They suggested a Short-Term Load Forecasting

(STLF) model based on Temporal Convolutional

Network (TCN), illustrating its efficacy in enhancing

both forecast accuracy and generalization capacity.

Liu et al [18] They introduced a hybrid method for

short-term building load probability density forecasting,

which combines Orthogonal Maximum Correlation

Coefficient (OMCC) feature selection with

Convolutional Gated Recurrent Unit (CGRU) quantile

regression. Results from simulations conducted across

three different buildings confirm the dependability of

the proposed model for short-term building-level

probabilistic load forecasting tasks. Ghenai et al [19]

They constructed a predictive model aimed at building

energy planning, with the objective of balancing the

supply from renewable power systems with the

building's electrical load demand. Key findings indicate

that the predictive model exhibits exceptional accuracy

in forecasting a building's energy consumption. Meng

et al [20] Explored a short-term load forecasting

method that incorporates empirical mode

decomposition (EMD), bidirectional long short-term

memory (BiLSTM), and an attention mechanism. The

experiments indicated that the optimal number of

Intrinsic Mode Functions (IMFs) recommended for this

approach is either three or four, considering both

prediction accuracy and computational efficiency.

Matrenin et al [21] Executed the method for identifying

the most impactful features. Analysis of the total

forecast error has demonstrated that the attributes of the

proposed models exhibit high quality and precision,

thereby making them suitable for accurately forecasting

the actual load of a power system. Alrasheedi et al [22]

Suggested hybrid deep learning (DL) techniques to

improve outcomes in load forecasting for Saudi smart

grids. The forecasted results showcase the efficacy of

the proposed hybrid DL models. Specifically, CNN-

GRU and CNN-RNN achieved improvements of

1.4673% and 1.222% in load forecasting accuracy

measured by NRMSE, respectively. This research

significantly contributes to short-term load forecasting

in electrical power systems through the utilization of

hybrid machine learning algorithms.

3. Research Problem Definition And Motivation

Electric power companies are responsible for providing

high-quality electricity to consumers safely and

efficiently. They must plan, manage, and operate the

system while addressing economic and technological

challenges. Accurate assessment of current and

projected demand is crucial for optimal planning and

operation. Electric load forecasting helps predict the

amount of electricity needed to meet demand. Load

forecasting can be categorized into three main types:

short-term, mid-term, and long-term. Short-term

forecasting stands out for its widespread usage,

especially for facilitating day-to-day operations.

The electrical system's infrastructure has undergone

significant changes, impacting customer consumption

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 4135–4145 | 4137

habits. The study seeks to create a hybrid model to

precisely forecast load consumption in power networks,

aiming to rectify deficiencies observed in current AI-

based systems such as linear segments, complexity, and

convergence challenges. It particularly focuses on

forecasting peak load demand and day-ahead load for

30-minute intervals.

4. Proposed Research Methodology

Demand forecasting is crucial for power management

and decision-making due to technological challenges

and rising electrical load. Time series models like linear

regression struggle with complex nonlinear load time

series. AI models, deep learning, and machine learning

offer reliable, quick, and efficient solutions. A hybrid

approach incorporating deep learning techniques

optimizes parameters for short-term load forecasting.

Real Time Data

Collection
Pre-processing

Zero-Mean

Normalization

Technique

Feature

Extraction

Principal Component

Analysis Network

(PCANet)

Remove Redundant

Features

DeepWalk Gated

Recurrent Unit

Model (DWGRU)

Short Term Load (Daily

Peak Load and Day A-

head Load) Forecasting

Model

Hybrid Deep Learning

with Optimization

Algorithm

Hybrid Sampling and Self Attention

Deep Neural Network (HSSA-DNN)

With Improved Moth Flame

Optimization (IMFO)

Improve Convergence Speed with High

Accuracy

Fig. 1: Block Diagram of the Proposed Work

The proposed methodology utilizes real-time data from

Tamilnadu, which is pre-processed to enhance the

learning of the input-output relationship, as depicted in

Figure 1. During pre-processing, mathematical

operations like normalization, ranking, and correlation

are applied. The process utilizes zero-mean

normalization, principal component analysis network,

and Deep Walk Gated Recurrent Unit Model, and

presents a STLF model using hybrid deep learning and

optimization algorithms for improved convergence speed

and accuracy.

4.1. Data Collection

The dataset includes year, month, date, day, hour,

weekday, working/holiday, dew point, dry bulb

temperatures, and hourly load. The Southern region

power grid website, the TNEB load dispatch centre

website, and official documents were used to gather real-

time data from the Tamil Nadu districts of Madurai and

Chennai. The data covered one year. The dataset

included data for each hour from January 1, 2021, to

December 31, 2021, including power load, temperatures,

humidity, wind speed, day type, and other variables. The

weather data, time indicators, and load demand statistics

are all part of the first dataset-gathering process. Tests

are administered to each one-year group. The data are

also combined with the load data from the previous week

(as a redundant input) and the most recent day (24

hours), likewise as a redundant input.

4.2. Zero-Mean Normalization Technique for Data

Pre-Processing

The study uses a zero-mean normalization technique for

data normalization on load and temperature variables,

enhancing numerical stability in NN training. The Z-

norm method uses mean and variance estimates for

distribution scaling, allowing off-line parameter

calculation during training. Log-likelihood scores are

used to estimate the mean and variance specific to each

speaker for the imposter distribution, following the

testing of a speaker model against sample impostor

utterances. The form of normalisation exists in

Equation (1).

𝑆 =
log(𝑃(𝑚|𝑂))−𝜇𝐼

𝜎𝐼
 (1)

Where, 𝑆 is the distribution-normalized score 𝜇𝐼 and

𝜎𝐼are the estimated impostor parameters for speaker

model 𝑚.

Different normalisation methods can be categorized

based on their intended application, such as distribution

scaling or score normalisation. Distribution scaling can

be speaker-centric or impostor-centric, with two

primary methods: Bayesian world model

implementation and cohort normalisation. Cohort

normalisation compares speaker models to

unconstrained cohorts, using similarity metrics. The

size of the cohort influences normalisation behavior,

with larger groups exhibiting impostor-centric behavior.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 4135–4145 | 4138

Cohort normalisation becomes more speaker-centric as

the number of speakers decreases. For text-dependent

verification, a cohort size of less than five yields the best

results.

4.3. Feature Extraction and Selection

The study investigates the influence of multiple variables

on load parameters in electric power load series,

highlighting the potential for load signal instability. To

enhance precision, the research converts load data into

time-series data using the Principal Component Analysis

Network and Deep Walk Gated Recurrent Unit Model.

The system involves tagging and embedding procedures.

4.3.1. Principal Component Analysis Network

(PCANet)

The feature extraction processes utilize the Principal

Component Analysis Network (PCANet) model to

provide high-dimensional features. The PCANet

architecture represents a streamlined and faster variant of

CNN designed for image classification. It employs

cascaded principal component analysis (PCA), binary

hashing, and blockwise histograms across three layers.

Its key components are PCA filters, which extract the

highest energy eigenvectors from input training data, and

convolution filters, which capture the primary variance

of the input.

Input Layer: The preceding phase produced 𝑁 input data

of size 𝑚 × 𝑛, allowing us to assume that the filter size

is {𝐼𝑖}𝑖=1
𝑁 throughout. Equation (2) illustrates the matrix

representation of the i-th dataset.

𝐼𝑖 = [

𝑖11 𝑖12

𝑖21 𝑖22

⋯ 𝑖1𝑛

⋯ 𝑖2𝑛

⋮ ⋮
𝑖𝑚1 𝑖𝑚2

⋱ ⋮
⋯ 𝑖𝑚𝑛

] (2)

Wherein, m and n represent the width and height

dimensions of the data, respectively.

Hidden Layer: This layer consists of two stages. In the

first stage, the border of Ii is zero-padded, then

convolved with the k1×k2 filter to extract patches of the i-

th data. This process enables the determination of local

features within the filter patch in a single step. To

achieve 𝑥𝑖,1, 𝑥𝑖,2, … . , 𝑥𝑖,𝑚𝑛 ∈ ℝ𝑘1𝑘2 where 𝑥̅𝑖,𝑗a mean-

removed patch is, the developers must first remove the

patch mean from each patch. The identity matrix is

established by uniformly transforming each input data,

and this method yields 𝑋 (Equation (3)).

𝑋 = [𝑋̅1, 𝑋̅2, … , 𝑋̅𝑁] ∈ ℝ𝑘1𝑘2×𝑁𝑚𝑛 (3)

The PCA filters are gathered following the PCA

technique and may be expressed as Equation (4).

𝑊𝑙
1 = 𝑚𝑎𝑡𝑘1, 𝑘2(𝑞𝑙(𝑋𝑋𝑇)) ∈ ℝ𝑘1𝑘2 , 𝑙 = 1,2, … , 𝐿1 (4)

In this context, Li denotes the number of filters, and ql

(XXT) selects the l-th primary eigenvector of XXT.

matk1, k2 (v) represents a function that converts column

vectors to matrices, while Wl
1 corresponds to the l-th

PCA filter used to extract high-dimensional features in

the first stage. Convoluting the 𝑙 − 𝑡ℎ PCA filter with

the input data provides the first stage's 𝑙 − 𝑡ℎ filter

output.

𝐼𝑖
𝑙 = 𝐼𝑖 ∗ 𝑊𝑙

1, 𝑖 = 1,2, … , 𝑁 (5)

While it is zero-padded before convolution with 𝑊𝑙
1,

𝐼𝑖
𝑙also has the same size as 𝐼𝑖 . The process is reiterated

similarly to the first stage: aggregating all patches of 𝐼𝑖
𝑙

(Equation (5)), subtracting the mean of each patch, and

then deriving 𝑌̅𝑖
𝑙 = [𝑦̅𝑖,𝑙,1, 𝑦̅𝑖,𝑙,2, … , 𝑦̅𝑖,𝑙,𝑚𝑛] ∈ ℝ𝑘1𝑘2×𝑚𝑛,

where 𝑦̅𝑖,𝑙,𝑗 𝑌𝑙 = [𝑌̅1
𝑙 , 𝑌̅2

𝑙 , … . , 𝑌̅𝑁
𝑙] ∈ ℝ𝑘1𝑘2×𝑁𝑚𝑛 for the

matrix, and amalgamating the output of all 𝑙th filters to

yield the following Equation (6).

𝑌 = [𝑌1, 𝑌2, . . , 𝑌𝐿1] ∈ ℝ𝑘1𝑘2×𝐿1𝑁𝑚𝑛 (6)

The next step is utilising the PCA technique to obtain

the second-stage PCA filters illustrates Equation (7).

𝑊𝑙
2 = 𝑚𝑎𝑡𝑘1, 𝑘2(𝑞𝑙(𝑌𝑌𝑇)) ∈ ℝ𝑘1,𝑘2 , 𝑙 =

1,2, … 𝐿2 (7)

According to the Equation (8), each input 𝐼𝑖
𝑙 of the

second stage will produce 𝐿2 𝑡ℎ𝑒 data size of 𝑚 × 𝑛,

𝑂𝑖
𝑙 = {𝐼𝑖

𝑙 ∗ 𝑊𝑙
2}𝑙=1

𝐿2

(8)

Where 𝑂𝑖
𝑙 represents the output of the 𝑖 − 𝑡ℎ image,

and 𝐿1𝐿2 ignifies the number of output images.

Output Layer: The results from the second stage,

{𝐼𝑖
𝑙 ∗ 𝑊𝑙

2}𝑙=2
𝐿2 will be binarized in this layer before being

transformed into decimal matrices as follows Equation

(9) and (10).

Γ𝑖
𝑙 = ∑ 2𝑙−1𝐻(𝐼𝑖

𝑙 ∗ 𝑊𝑙
2)

𝐿2
𝑙=1

(9)

 𝑓𝑖 = [𝐵ℎ𝑖𝑠𝑡(Γ𝑖
𝑙), … . , 𝐵ℎ𝑖𝑠𝑡(Γ𝑖

𝐿1)]𝑇 ∈ ℝ(2𝐿2)𝐿1𝐵

(10)

The 𝑖 − 𝑡ℎ data's output is a decimal matrix, and H (∙)

represents a Heaviside step function, with a value of

one for positive entries and zero otherwise. After this

encoding process, the input image Ii is converted into

a set of block-wise histograms for eachΓ𝑖
𝑙, 𝑙 = 1, … . 𝐿1.

This is achieved by calculating histograms for each of

these blocks and then combining all of the B histograms

into a single vector, denoted as Bhist (Γ𝑖
𝑙).

4.3.2. Deep Walk Gated Recurrent Unit Model

In this phase, they provide further detail about the ST-

DWGU ensemble deep learning framework's

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 4135–4145 | 4139

architecture. The ST-DWGRU comprises multiple

layers, each consisting of three elements: the extraction

of spatial and temporal features, and the extraction of

semantic features. The outcomes of the prediction are

output by the final prediction component in Equation

(11).

𝑦𝑡+𝑇 = 𝑓(𝑥𝑡−ℎ,….,; 𝑚𝑡−ℎ,...,𝑡; 𝐴),

(11)

In contrast to the prior prediction model, each layer of

ST-DWGRU also learns semantic and spatiotemporal

features. GCNs cannot fully learn the position

information of nodes since the majority of graph neural

networks construct node embedding by combining data

from each node's q-hop neighbourhood and are hence

structure-aware. varied location crossings play varied

roles in the road network, thus to describe the semantic

information of various intersections, they require the

position information that is encoded in the nodes. The

suggested ST-DWGRU learns semantic and

spatiotemporal features, which is more appropriate for

the real case.

In Euclidean space, a CNN effectively captures spatial

effects by considering the weights of neighboring pixels.

However, CNNs face limitations in directly extracting

spatial aspects from the structure of a road network,

especially when the number of neighboring junctions

and road segments varies. The urban road network is

represented by an undirected graph 𝐺 = (𝑉, 𝐸) where 𝑉

represents the set of graph vertices and 𝐸 represents the

set of graph edges. Utilizing the input of the adjacency

matrix of the road network, the graph convolution

operation extracts the characteristics of the road network

structure. A two-layer Graph Convolutional Network

(GCN) can be described as Equation (12):

𝑍 = 𝑓(𝑋, 𝐴) = 𝑠𝑜𝑓𝑡 max(𝐴̂𝑅𝑒𝐿𝑈(𝐴̂𝑋𝑊(0))𝑊(1)) (12)

Apart from the input gate, output gate, and forget gate

found in LSTM, GRU is a simplified version of an

LSTM network with only two gates: an update gate and

a reset gate. Let 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑡) be the input

sequence, and input X to GRU to have GCN learn

temporal properties beforehand. The following is a

diagram of the precise calculation Equation (13).

𝑠𝑡 = 𝐺𝐶𝑁(𝑥𝑡), (13)

In this context, 𝑟𝑡 represents the reset gate, 𝑧𝑡 denotes

the update gate, ℎ𝑡 signifies the current memory content,

and ℎ𝑡 represents the current hidden state. Additionally,

𝑠𝑡 denotes the output of the GCN at time t, ℎ𝑡 represents

the hidden state at time t, 𝑥𝑡 stands for the current input,

ℎ𝑡−1 denotes the hidden state at the previous time step,

and 𝑟𝑡 indicates the reset gate. The weights and biases of

the network are denoted by 𝑊 and 𝑏 respectively, the

sigmoid activation function is represented by σ and the

hyperbolic tangent activation function is denoted by

𝑡𝑎𝑛ℎ. Thus, both temporal and spatial characteristics

are present in the final GRU output.

Position-aware node embedding representation learning

technique DeepWalk has lately gained much popularity.

The method is composed of the random walk and

update process components. The root node of a path is

designated by the symbol 𝑊𝑠𝑖
 , and all other nodes are

labelled as {𝑊𝑠𝑖
1, 𝑊𝑠𝑖

2, 𝑊𝑠𝑖
3, … , 𝑊𝑠𝑖

𝑘}, where 𝑊𝑠𝑖
𝑘 indicates

the k-th intersection or segment along the path. The

optimisation result and the associated vector

representation is 𝑠𝑡
𝑖 generated via the Skip-gram

technique (Equation (14)).

𝑠̂ = 𝑓(𝑊𝑖 . 𝑆𝑖 + 𝑏𝑖),

(14)

After obtaining the vector representation, this study

generates the ultimate semantic information

representation using a fully connected layer. In a

truncated random walk, each random walk shares the

same length, and upon traversing every junction or road

segment, the random walk sequence matrix for the

entire journey is obtained.

4.4. Short-Term Load Forecasting Model

The research suggests short-term peak load and day-

ahead load forecasting through the utilization of the

Hybrid Sampling and Self-Attention with Deep Neural

Network (HSSA-DNN) and the Improved Moth Flame

Optimization (IMFO) algorithm. The model predicts

complex choice patterns, examines finite and infinite

decision horizons, and uses transfer learning for spatial-

temporal correlation. The IMFO algorithm accelerates

convergence, improving load forecasts for power grid

operations.

4.4.1. Hybrid Sampling and Self-Attention with

Deep Neural Networks Mechanism

The research devised a deep learning model

incorporating a sparse self-attention mechanism, which

enhances model training by capturing data-specific

features and improving model accuracy. The model

consists of N layers, enhancing the recognition of

hidden features.

Here, the approximating softmax by sampling a set 𝑆, a

set of adjacent keys for each query created by the union

of colliding keys using 𝑚 hash tables. The estimator is

computed using|𝑆|−1 ∑
𝑝(𝑄𝑖,𝐾𝑗)

𝑞(𝑄𝑖,𝐾𝑗)𝑗∈𝑆 𝑉𝑗, where, 𝑄𝑖 is a

query vector, 𝐾𝑗, 𝑉𝑗 are key and value vectors in the

sampling set 𝑆, and 𝑝(𝑄𝑖 , 𝐾𝑗) and 𝑞(𝑄𝑖 , 𝐾𝑗) are softmax

probability and collision probability of given pairings.

Due to the importance of sampling without replacement

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 4135–4145 | 4140

used in this technique, the samples become dependent on

one another.

Initially, the extracted load data were inputted into the

fully connected layer and softmax layer to train the self-

attention score (Equation (15)).

𝑎 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑔(𝑙))

(15)

Here, 𝑙 represents the load binary vector, 𝑎 signifies the

attention score vector, and 𝑔(∙) denotes the fully

connected layer without activation. Specifically, 𝑔(∙)

serves as a linear operator, while 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (∙) functions

as a non-linear activation operator. However, the sparse

attention distribution is then computed as Equation (16):

 𝜌(𝑒𝑖𝑗) = 𝑝𝑖𝑗 = 𝑚𝑎𝑥 {0,
𝑒𝑖𝑗−𝜏(𝑒𝑖)

1−𝜆
} (16)

Where, 𝑗 ∈ {1,· · · 𝐿} and τ is the threshold function.

Thus, in order to emphasize the importance of critical

features' influence on the sequence, the attention layer

allocates the feature weight learned by the model to the

input vector of the subsequent time step. Subsequently,

the fully connected layer processes the final data. The

estimated load value is determined after the fully linked

layer's virtual function processing. The self-attention

process unfolds as outlined below:

• Step 1: Compute the correlation between each

current input feature and the present load.

• Step 2: Apply the Softmax formula to transform

each correlation into a probabilistic form.

• Step 3: Multiply each resulting probability by

the implicit representation of the corresponding input

feature to signify the contribution of the feature to the

predicted load. To forecast the subsequent load data, the

contributions of all input features are then aggregated.

To denote the impact of each obtained probability on

the anticipated load, multiply each outcome by the

implicit representation of the corresponding input

characteristic. Equations (17) - (19) can be used to

describe the process.

𝑒𝑡 = 𝑉𝑡𝑎𝑛ℎ(𝑊ℎ𝑡 + 𝑏) (17)

 𝛼𝑡 =
𝑒𝑥𝑝(𝑒𝑡)

∑ 𝑒𝑥𝑝(𝑒𝑗)𝑛
𝑗=1

 (18)

𝐶𝑡 = ∑ 𝑎𝑡ℎ𝑡
𝑛
𝑡=1 (19)

Where, the attention weight at time 𝑡 and the weight

score associated with certain aspects are 𝑒𝑡 and 𝛼𝑡 is

The size of the input vector for the prediction model; V

and W represent the weights of the multilayer

perceptron used in calculating the attention weight; 𝑏

stands for the bias parameter of the multilayer

perceptron during attention weight calculation; and c

denotes the output of the attention mechanism at time𝑡.

This research introduces attention mechanisms that

leverage both past and future information

characteristics, assigning different weights to input data

to emphasize strong correlations and diminish less

correlated components.

3D Conv

Block

Residual Self-

Attention

Block

Key

Qurey

Value

Grad Layer

+

Residual Self-Attention Block

Conv3D

3D Conv Block

x

x +

Conv1D

Attention

Map

Softmax
Conv1D

Conv1D

Conv1D

Y

Self Attention Layer

Pooling

ReLU

Self

Attention

Fig. 2: Architecture of Self-Attention Deep Neural Network

Figure 2 presents a high-level conceptual framework

featuring 3D convolution blocks, residual self-attention

blocks, and explainable blocks. Conventional load

fluctuation is primarily due to user energy use changes.

Techniques like time series prediction and linear

extrapolation can provide short-term forecasting precision.

Due to the widespread availability of distributed energy

sources, Equation (20) can be used to express the net load.

The actual net load is denoted by 𝑝𝑡 , the user's electrical

load is denoted by 𝑝′, and power generation is indicated by

𝑝𝑡
𝑔

.

𝑝𝑡 = 𝑝′𝑡 + 𝑝𝑡
𝑔

 (20)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 4135–4145 | 4141

The power generation is considered a load due to its erratic

nature and differs from traditional power supplies. The

prediction layer comprises three interconnected layers and

a self-attention layer, which enriches load exploration. A

solitary neuron utilizing a sigmoid activation function

transforms input from the preceding layer into an output

score. The formula is represented as Equation (21):

𝑃(𝑃1, 𝑃2) = 𝑠(𝐷𝑒𝑛𝑠(𝐹)) (21)

Here, s represents a dense layer comprising one unit

activated by the sigmoid function. As a result, load

uncertainty rises, the fluctuation range widens, and on

sunny days, power reversals will happen around noon. The

usual forecasting approach will result in greater

inaccuracies and be unable to predict the load preciselyThe

study introduces a novel short-term prediction model

utilizing phase space reconstruction and HSSA-DNN,

utilizing Bhattacharyya Distance for data cluster

classification and enhanced moth-flame optimization for

real-time applications.

4.4.2. Improved Moth-Flame Optimization Algorithm

The MFO algorithm employs a moth to conduct local

searches, thereby balancing global exploration and local

mining capabilities. Incorporating the linear inertia weight

method improves upon the sine-cosine algorithm, thereby

enhancing optimization potential and accelerating

convergence, as depicted in Equation (22).

𝑀𝑖 = 𝐷𝑖 ∙ 𝑒𝑏𝑡 ∙ 𝑐𝑜𝑠(2𝜋𝑡) + 𝑤 ∙ 𝐹𝑗 (22)

The MFO algorithm's convergence speed and global search

capability are enhanced by a modified mechanism for

updating moth positions, utilizing a hybrid search strategy

and mutation operator.

The Bhattacharyya distance serves as a metric for

assessing the similarity between two probability density

functions, thereby enhancing the convergence rate. If we

denote the two probability density functions as P and Q,

then their Bhattacharyya distance is defined as Equation

(23):

𝐵𝐷(𝑃, 𝑄) = −𝑙𝑛(𝐵𝐶(𝑃, 𝑄)) (23)

The probability density function is derived using kernel

density estimation. This study suggests substituting the

probability density with variance, formulating the

Bhattacharyya distance Equation (24) based on variance,

and employing the Bhattacharyya distance to quantify the

variance difference between the two probability

distributions. 𝐵𝐷(𝐷(𝑋), 𝐷(𝑌)) =

−𝑙𝑛 (𝐵𝐶(𝐷(𝑋), 𝐷(𝑌))) (24)

Where, 𝐵𝐶(𝐷(𝑋), 𝐷(𝑌)) The Bhattacharyya coefficient,

for discrete probability distributions. However, during the

iterative search process, when 𝑑𝑖 ≤ 𝑤 · 𝐷𝐸 , a linear search

mechanism is introduced. The positions of moths are then

updated as Equation (25):

𝑀𝑖(𝑙 + 1) = {
𝐹𝑖 − 𝐴 ∙ 𝐷𝑖

′, 𝑖 ≤ 𝑓𝑛𝑜

𝐷𝑖 ∙ 𝑒𝑏𝑡 ∙ 𝑐𝑜𝑠(2𝜋𝑡) + 𝐹𝑓𝑛𝑜
(𝑙), 𝑖 > 𝑓𝑛𝑜

 (25)

Where, 𝐷𝑖
′ and 𝐷𝑖 are given as 𝐷𝑖

′ = |𝐶 ∙ 𝐹𝑖 − 𝑀𝑖| and 𝐷𝑖 =

|𝐹𝑓𝑛𝑜
− 𝑀𝑖|. Where W represents the weight coefficient,

and its value is chosen as 0.1; 𝐴 = 2𝑎 · 𝑅 − 𝑎; 𝐶 = 2 · 𝑅;

𝑎 = −1 + 𝑙 ∗ (−1/𝐿); 𝑅 A is a random constant within the

range [0,1]. Adjusting the values of A and C enables

reaching various locations around the flame relative to the

current position.

Table 1: Pseudocode for Improved Moth Flame

Optimization

Algorithm 1: Improved Moth Flame Optimization

Algorithm

Randomly initialize each individual in moths using

population in equation ()

𝑀𝑖𝑗 = 𝑙𝑏𝑖 + 𝑢𝑗(𝑢𝑏𝑖 − 𝑙𝑏𝑖)

Initialize the iteration count 𝑙 = 1;

while 𝑙 < 𝐿 + 1

Update 𝑓𝑛𝑜;

𝑂𝑀 = 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝑀);

if 𝑙 == 1

𝐹 = 𝑠𝑜𝑟𝑡(𝑀); 𝑂𝐹 = 𝑠𝑜𝑟𝑡(𝑂𝑀);

else

𝐹 = 𝑠𝑜𝑟𝑡(𝑀(𝑙 − 1), 𝑀(𝑙)); 𝑂𝐹 = 𝑠𝑜𝑟𝑡(𝑂𝑀(𝑙 −

1), 𝑂𝑀(𝑙));

end if

for 𝑖 = 1: 𝑛

for 𝑗 = 𝑗: 𝑑

Update 𝑟 and t; calculate D;

Update 𝑀𝑖𝑗;

end for

end for

𝑙 = 1 + 1

end while

Based on this, the pseudo-code of the IMFO algorithm is

shown in algorithm 1 and the steps of IMFO are illustrated

in the above Table 1. However, the expression of 𝑤 is

shown in Equation (26).

𝑤 = (𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛)∗(1 − (1 𝐿⁄)2)
1

2 (26)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 4135–4145 | 4142

Where, the iteration times 𝐿 and 𝑙 stand for maximum and

current, respectively. With each repetition, w changes

nonlinearly from large to small. The iteration begins with

random moth placement, allowing for global exploration.

As information transmission increases, differences

between individuals decrease. The low, declining w value

allows for local exploration and mining, enhancing the

month population's mining capabilities. The modified

approach has been continuously tested, and it performs

best when 𝑤𝑚𝑎𝑥 = 0.8, 𝑤𝑚𝑖𝑛 = 0.3.

5. Experimentation and Result Discussion

This research presents the evaluation findings for a

proposed method using real-time datasets from Madurai

and Chennai from January 1st to December 31st, 2021.

The data includes hourly load values, temperature,

humidity, wind speed, economic events, and public

holidays. The model was evaluated in MATLAB to

validate its effectiveness, minimizing cost functions based

on parameter values and using the MATLAB R2022a

programming language. The model predicts loads using

weather, scheduling, and holiday information, historical

loads, parallel PCANet and DWGRU components, and a

sliding window. It divides datasets into training,

validation, and testing sets, evaluating short-term load

forecasting methods using MAPE and MAE (Equation

(27)- (29)).

 𝑀𝐴𝑃𝐸 =
1

𝑁
∑ |

𝑦𝑖−𝑦̂𝑖

𝑦𝑖
| ×𝑁

𝑖=1 100 (27)

 𝑀𝐴𝐸 =
1

𝑁
∑ 𝑦𝑖 − 𝑦̂𝑖

𝑁
𝑖=1 (28)

 𝑅𝑀𝑆𝐸 = √
1

𝑇
∑ (𝑦̂𝑖 − 𝑦𝑖)

2𝑁
𝑖=1

(29)

Here, 𝑁 represents the total number of testing samples, 𝑦𝑖

denotes the actual load value for a specific hour,

𝑦̂𝑖 represents the forecasted load value, and so forth.

Fig. 3. Objective Value vs. Number of Iterations

Figure 3 shows IMFO algorithm results show higher

connection leads to higher convergence rates, while far

sparser topologies can still achieve acceptable long-term

performance.

Fig. 4. Forecast Bias Graph

Figure 4 shows a forecast bias graph for 1000 samples,

highlighting the importance of understanding load demand

trends, including external factors like the economy,

weather, and time index. Time index data is the easiest, but

obtaining such factors is challenging.

Fig. 5(a). MAPE Evaluation Results for Load Forecasting

Fig. 5(b). RMSE Evaluation Results for Load Forecasting

Figures 5 displays MAPE and RMSE error distributions,

plotted by DNN candidate model and historical pre-

dispatch forecast. The lowest error is 0.092 for MAPE and

10 for RMSE, with outliers indicating significant errors.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 4135–4145 | 4143

Fig. 6. Mean Squared Error Plot

Figure 6 above shows the MSE graph for the suggested

work. The study uses real-time data from 20 samples over

a year, showing train and test losses across iterations,

indicating the model is not overfitting.

Fig. 7. Percentage Error Graph

Figure 7 depicts the anticipated percentage inaccuracy.

More than 60% of errors are compounded between 5 and

10. The suggested distribution net load forecasting

approach's accuracy and efficacy are shown by the forecast

error analysis.

Fig. 8. PI Coverage Graph

Figure 8 shows a plot of PI coverage comparing the

proposed model and benchmark models, indicating its

stability and reliability, crucial for accurate decision-

making based on accurate predictions.

Fig. 9. SMAPE of Load Forecast Model

Figure 9 shows SMAPE for multiple models, considering

1000 real-time data samples. It collects temporal and

spatial aspects from historical data and metadata, despite

noise and mistakes.

Fig. 10. Normalized RMSE Graph

The network's performance is not superior to random

predictions, as shown in Figure 10. The NRMSE curves

reveal significant variation in prediction performance

based on the test sample.

Table 2: Comparison Results

Techniques Accuracy

(%)

R2 MAPE RMSE

ARIMA

[23]

93 0.85 - 40.12

FE-SAMF-

WNN [24]

98 0.944 0.234 -

LSTM-FA

[25]

- 0.95 - 35.26

LF-NSNP

[26]

- - 0.2487 -

Proposed 99.15 0.96 0.2088 33

Table 2 present proposed method outperforms existing

methods in accuracy and regression performance.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 4135–4145 | 4144

6. Research Conclusion

The manuscript discusses the importance of various factors

in load forecasting, including seasonal data, wind speed,

temperature, and historical load patterns. Pre-processing

techniques like zero-mean normalization and feature

selection through PCANet are employed to enhance data

quality. Feature extraction is achieved using DWGRU to

incorporate spatial, temporal, and semantic features. A

hybrid deep learning model incorporating optimization

algorithms is introduced for short-term load forecasting. In

particular, the proposed model is a hybrid sampling and

self-attention with deep neural network (HSSA-DNN)

aimed at forecasting peak loads at 30-minute intervals. The

proposed approach is implemented using Matlab Simulink

and achieves high accuracy, with a MAPE of 0.2088 and

RMSE of 19. Various inputs including load demand profile

and weather information are considered to improve model

generalization. Comparative analyses reveal the

effectiveness of the proposed approach compared to other

models such as ARIMA and LSTM-FA, achieving a

prediction accuracy of 99.15%. The study also assesses

parameters to enhance error reduction and computational

efficiency, emphasizing the cost-effectiveness of the

proposed hybrid model. In summary, the research suggests

that the HSSA-DNN model offers accurate and efficient

predictions of peak loads.

Declaration of Conflicting Interests

The authors stated that they have no conflicts of interest

regarding the research, authorship, and publication of this

article.

Funding

The authors stated that they have no conflicts of interest

regarding the research, authorship, and publication of this

article.

References

[1] Huang, N., Wang, S., Wang, R., Cai, G., Liu, Y., and

Dai, Q., “Gated spatial-temporal graph neural

network based short-term load forecasting for wide-

area multiple buses”. International Journal of

Electrical Power & Energy Systems, 145, pp.108651,

(2023). https://doi.org/10.1016/j.ijepes.2022.108651

[2] Yang, Y., Wang, Z., Zhao, S., and Wu, J., “An

integrated federated learning algorithm for short-term

load forecasting”. Electric Power Systems Research,

214, pp.108830, (2023).

https://doi.org/10.1016/j.epsr.2022.108830

[3] Hua, H., Liu, M., Li, Y., Deng, S., and Wang, Q.,

“An ensemble framework for short-term load

forecasting based on parallel CNN and GRU with

improved ResNet”. Electric Power Systems Research,

216, pp.109057, (2023).

https://doi.org/10.1016/j.epsr.2022.109057

[4] Zhang, T., Zhang, X., Chau, T.K., Chow, Y.,

Fernando, T., and Iu, H.H.C., “Highly accurate peak

and valley prediction short-term net load forecasting

approach based on decomposition for power systems

with high PV penetration”. Applied Energy, 333,

pp.120641, (2023).

https://doi.org/10.1016/j.apenergy.2023.120641

[5] Sekhar, C., and Dahiya, R., “Robust framework based

on hybrid deep learning approach for short-term load

forecasting of building electricity demand”. Energy,

pp.126660, (2023).

https://doi.org/10.1016/j.energy.2023.126660

[6] Ribeiro, M.H.D.M., da Silva, R.G., Ribeiro, G.T.,

Mariani, V.C. and dos Santos Coelho, L.,

“Cooperative ensemble learning model improves

electric short-term load forecasting”. Chaos, Solitons

& Fractals, 166, pp.112982, (2023).

https://doi.org/10.1016/j.chaos.2022.112982

[7] Ran, P., Dong, K., Liu, X., and Wang, J., “Short-term

load forecasting based on ceemdan and transformer”.

Electric Power Systems Research, 214, pp.108885,

(2023). https://doi.org/10.1016/j.epsr.2022.108885

[8] Li, S., Kong, X., Yue, L., Liu, C., Khan, M.A., Yang,

Z., and Zhang, H., “Short-term electrical load

forecasting using hybrid model of manta ray foraging

optimization and support vector regression”. Journal

of Cleaner Production, pp.135856, (2023).

https://doi.org/10.1016/j.jclepro.2023.135856

[9] Shahare, K., Mitra, A., Naware, D., Keshri, R., and

Suryawanshi, H.M., “Performance analysis and

comparison of various techniques for short-term load

forecasting”. Energy Reports, 9, pp.799-808, (2023).

https://doi.org/10.1016/j.egyr.2022.11.086

[10] Srivastava, A.K., Pandey, A.S., Houran, M.A.,

Kumar, V., Kumar, D., Tripathi, S.M., Gangatharan,

S. and Elavarasan, R.M., “A Day-Ahead Short-Term

Load Forecasting Using M5P Machine Learning

Algorithm along with Elitist Genetic Algorithm

(EGA) and Random Forest-Based Hybrid Feature

Selection”. Energies, 16(2), pp.867, (2023).

https://doi.org/10.3390/en16020867

[11] Heidarpanah, M., Hooshyaripor, F., and Fazeli, M.,

“Daily electricity price forecasting using artificial

intelligence models in the Iranian electricity market”.

Energy, 263, pp.126011, (2023).

https://doi.org/10.1016/j.energy.2022.126011

[12] Zambrano-Asanza, S., Morales, R.E., Montalvan,

J.A., and Franco, J.F., “Integrating artificial neural

networks and cellular automata model for spatial-

temporal load forecasting”. International Journal of

Electrical Power & Energy Systems, 148,

 pp.108906, (2023).

https://doi.org/10.1016/j.ijepes.2022.108906

[13] Panagiotou, D.K., and Dounis, A.I., “Comparison of

Hospital Building’s Energy Consumption Prediction

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 4135–4145 | 4145

Using Artificial Neural Networks, ANFIS, and

LSTM Network”. Energies, 15(17), pp.6453, (2022).

https://doi.org/10.3390/en15176453

[14] Hu, Y., Li, J., Hong, M., Ren, J., and Man, Y.,

“Industrial artificial intelligence-based energy

management system: Integrated framework for

electricity load forecasting and fault prediction”.

Energy, 244, pp.123195, (2022).

https://doi.org/10.1016/j.energy.2022.123195

[15] Rao, S.N.V.B., Yellapragada, V.P.K., Padma, K.,

Pradeep, D.J., Reddy, C.P., Amir, M., and Refaat,

S.S., “Day-ahead load demand forecasting in urban

community cluster microgrids using machine learning

methods”. Energies, 15(17), pp.6124, (2022).

https://doi.org/10.3390/en15176124

[16] Bashir, T., Haoyong, C., Tahir, M.F., and Liqiang, Z.,

“Short-term electricity load forecasting using a

hybrid prophet-LSTM model optimized by BPNN”.

Energy Reports, 8, pp.1678-1686, (2022).

https://doi.org/10.1016/j.egyr.2021.12.067

[17] Tang, X., Chen, H., Xiang, W., Yang, J., and Zou,

M., “Short-term load forecasting using channel and

temporal attention based temporal convolutional

network”. Electric Power Systems Research, 205,

pp.107761, (2022).

https://doi.org/10.1016/j.epsr.2021.107761

[18] Liu, R., Chen, T., Sun, G., Muyeen, S.M., Lin, S.,

and Mi, Y., “Short-term probabilistic building load

forecasting based on feature-integrated artificial

intelligent approach”. Electric Power Systems

Research, 206, pp.107802, (2022).

https://doi.org/10.1016/j.epsr.2022.107802

[19] Ghenai, C., Al-Mufti, O.A.A., Al-Isawi, O.A.M.,

Amirah, L.H.L., and Merabet, A., “Short-term

building electrical load forecasting using adaptive

neuro-fuzzy inference system (ANFIS)”. Journal of

Building Engineering, 52, pp.104323, (2022).

https://doi.org/10.1016/j.jobe.2022.104323

[20] Meng, Z., Xie, Y., and Sun, J., “Short-term load

forecasting using neural attention model based on

EMD”. Electrical Engineering, pp.1-10, (2022).

https://doi.org/10.1007/s00202-021-01420-4

[21] Matrenin, P., Safaraliev, M., Dmitriev, S., Kokin, S.,

Ghulomzoda, A., and Mitrofanov, S., “Medium-term

load forecasting in isolated power systems based on

ensemble machine learning models”. Energy Reports,

8, pp.612-618, (2022).

https://doi.org/10.1016/j.egyr.2021.11.175

[22] Alrasheedi, A., and Almalaq, A., “Hybrid Deep

Learning Applied on Saudi Smart Grids for Short-

Term Load Forecasting”. Mathematics, 10(15),

pp.2666, (2022).

https://doi.org/10.3390/math10152666

[23] Sayed, H.A., William, A., and Said, A.M., “Smart

Electricity Meter Load Prediction in Dubai Using

MLR, ANN, RF, and ARIMA”. Electronics, 12(2),

pp.389, (2023).

https://doi.org/10.3390/electronics12020389

[24] ZulfiqAr, M., Kamran, M., Rasheed, M.B.,

Alquthami, T., and Milyani, A.H., “A Short-Term

Load Forecasting Model Based on Self-Adaptive

Momentum Factor and Wavelet Neural Network in

Smart Grid”. IEEE Access, 10, pp.77587-77602,

(2022). DOI: 10.1109/ACCESS.2022.3192433

[25] Bacanin, N., Stoean, C., Zivkovic, M., Rakic, M.,

Strulak-Wójcikiewicz, R., and Stoean, R., “On the

benefits of using metaheuristics in the

hyperparameter tuning of deep learning models for

energy load forecasting”. Energies, 16(3), pp.1434,

(2023). https://doi.org/10.3390/en16031434

[26] Li, L., Guo, L., Wang, J., and Peng, H., “Short-Term

Load Forecasting Based on Spiking Neural P

Systems”. Applied Sciences, 13(2), pp.792. (2023).

https://doi.org/10.3390/app13020792

https://doi.org/10.3390/en16031434

