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Abstract: The research addresses prefabricated component obsolescence challenges, aiming to develop a robust mitigation model using 

machine learning regression, particularly Support Vector Machine (SVM) regression. The comparative study shows SVM's superiority in 

predicting obsolescence over other models, yet highlights interpretability and scalability improvements. Introducing SVM-based 

prefabricated component Obsolescence Mitigation, a specialized model, the research emphasizes domain-specific features for accurate 

predictions. It encourages further refinement and exploration across industries. Positioned as a valuable tool, the SVM-based model 

offers precise information for decision-making, potentially reducing costs and fortifying supply chains. The three-stage approach 

includes data collection, SVM model development, and mitigation strategy development, providing a comprehensive solution for 

obsolescence management. SVM's accuracy shows an increase with higher regularization factor, ranging from 0.782 at C = 0.01 to 0.907 

at C = 0.1. SVM-based Prefabricated Component Obsolescence Mitigation consistently demonstrates higher accuracy, reaching 0.976 for 

both C values (0.01 and 0.1). The research underscores the critical role of sophisticated models in addressing prefabricated component 

obsolescence challenges. 
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1. Introduction 

In sectors dealing with prefabricated components, evolving 

technologies and practical considerations can lead to 

changes in materials, design, or construction methods. The 

obsolescence of prefabricated components can create 

challenges in supply chains, resulting in increased costs 

and decreased system availability [1]. Recognizing these 

risks, it becomes crucial to develop effective forecasting 

and management models to address and mitigate 

disruptions caused by the obsolescence of prefabricated 

components across diverse industries [2].  

"Prefabricated components obsolescence" refers to the 

condition where prefabricated elements or modules used in 

construction or manufacturing become outdated or no 

longer in use due to various factors such as technological 

advancements, changes in design standards, or the 

availability of more efficient alternatives [3]. This can 

impact industries relying on prefabricated components, 

leading to challenges in supply chains, increased costs, and 

reduced system availability [4]. Addressing prefabricated 

components obsolescence involves developing strategies, 

forecasting models, and management approaches to adapt 

to changes in technology, design, or materials, ensuring the 

continued effectiveness and relevance of prefabricated 

elements in diverse industries [5]. Obsolescence, the state 

of becoming outdated or ineffective, impacts products, 

technologies, and business models, affecting industries 

across sectors [6]. Key effects include market disruption, 

increased costs for redesign and adaptation, supply chain 

disruptions, customer dissatisfaction, environmental 

impact through electronic waste, and technological 

stagnation [7]. To address obsolescence, proactive 

strategies like management, supply chain optimization, 

technology forecasting, and lifecycle planning are crucial. 

Anticipating and mitigating obsolescence risks enables 

companies to stay competitive, minimize costs, and sustain 

operations in a dynamic business environment marked by 

technological advancements and changing market demands 

[8]. 

Proactive planning and product lifecycle management are 

essential strategies for effective obsolescence mitigation in 

organizations. These approaches involve a comprehensive 

assessment of the product lifecycle, including market and 

technology forecasting to anticipate potential risks [9]. 

Design considerations, such as modular components and 

standardized interfaces, contribute to extended product 

lifespans. Collaborating closely with reliable suppliers, 

conducting regular product reviews, and developing end-

of-life strategies are crucial elements in managing 

obsolescence [10]. Communication and collaboration 

among stakeholders, including engineering teams and 

customers, facilitate the early identification of risks and 

informed decision-making. Overall, these proactive 
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strategies enhance organizations' ability to navigate 

obsolescence challenges, extend product lifespans, 

minimize disruptions, and maintain competitiveness in 

dynamic markets [11]. Obsolescence mitigation poses 

challenges that organizations must address to effectively 

manage and minimize negative impacts. Rapid 

technological advancements demand continuous 

monitoring, forecasting, and proactive planning to stay 

ahead of obsolescence risks [12]. Global supply chain 

complexities, including dependencies and potential 

disruptions, require careful coordination. Limited visibility 

into supplier practices and financial implications of 

mitigation efforts add complexity [13]. Industries with 

long product lifecycles face challenges in managing 

obsolescence over extended periods. Regulatory 

compliance, particularly in safety and environmental 

standards, introduces additional complexities [14]. 

Intellectual property concerns arise with strategies like 

reverse engineering. Overcoming these challenges 

necessitates a proactive, multidimensional approach 

involving collaboration, technological monitoring, robust 

supply chain management, effective risk assessment, and 

agile decision-making. By addressing these challenges, 

organizations can develop resilient obsolescence mitigation 

strategies and maintain competitiveness in dynamic 

markets [9]. 

The current state of research in prefabricated component 

obsolescence mitigation and forecasting reveals a 

predominant reliance on traditional statistical methods, 

sidelining the transformative capabilities offered by 

advanced techniques like Artificial Intelligence (AI) and 

Predictive Analytics [15]. Key gaps identified include the 

limited utilization of advanced techniques, a focus on 

singular aspects of forecasting without integrating multiple 

factors, and a reliance on simulated data, emphasizing the 

need for real-world data validation. Moreover, a significant 

gap exists in research regarding mitigation strategies, with 

a lack of emphasis on developing models for alternative 

components and solutions. Studies often generalize 

prefabricated component obsolescence, neglecting 

industry-specific challenges. Broader deficiencies 

encompass insufficient empirical research on proactive 

obsolescence management, inadequate stakeholder 

collaboration attention, and a lack of exploration into the 

long-term economic and environmental impacts. To 

address these gaps, a proposal for a model grounded in 

emerging techniques like AI and Predictive Analytics 

emerges. This advancement holds substantial potential to 

propel the field forward, enabling more effective risk 

management across diverse industries by providing 

accurate predictions and robust mitigation strategies. 

The research addresses prefabricated component 

obsolescence through standards analysis, best practices 

exploration, and the development of a machine learning-

based decision model for resolution strategies. 

2. Methodology 

The proposed methodology for prefabricated component 

obsolescence mitigation and forecasting adopts a machine 

learning-based approach. The process initiates with a Data 

Collection phase, where information concerning 

obsolescence events is amassed from diverse sources, 

including suppliers and industry databases. This is 

succeeded by Data Preprocessing, a crucial phase 

involving the cleaning and organization of data, which is 

fundamental for the development of machine learning 

models. Following this, the methodology encompasses 

Regression Models utilizing diverse techniques such as 

Linear Regression, Decision Tree, Bayesian Regression, 

Neural Networks, Random Forest, and Support Vector 

Machines. These models are designed to anticipate 

obsolescence risks grounded in technical specifications, 

historical data, and other pertinent factors. The Data 

Preprocessing step guarantees the conversion of data into 

an appropriate format for machine learning algorithms. 

The Regression Models, trained on historical data, yield 

insights into obsolescence likelihood, facilitating proactive 

measures. The distinctive challenge of managing 

dynamically changing data in obsolescence forecasting is 

recognized, underscoring the need for adaptability to new 

components and the integration of external data sources. 

Overall, the proposed methodology integrates machine 

learning techniques to improve accuracy in predicting and 

mitigating prefabricated component obsolescence. 

The performance of the machine learning models can be 

evaluated using these statistical metrics to determine their 

accuracy and effectiveness in predicting electronic 

component obsolescence. These metrics provide valuable 

insights into the model's ability to make accurate 

predictions and can be used to optimize the model 

parameters and improve its performance. 

The section from Linear Regression (LR) to Bayes 

Regression (BR) provides crucial theoretical insights into 

the initial stage of exploring data, emphasizing the 

significance of understanding the dataset. The examination 

focuses on prefabricated components, with a specific 

emphasis on the sample quantity and relevant features of 

sold products. The subsequent research aims to develop a 

model for prefabricated component obsolescence 

mitigation and forecasting, leveraging emerging 

techniques. A thorough literature review explores 

prevailing approaches to address obsolescence, 

encompassing aspects like supply chain dynamics and 

predictive analytics. A survey assesses the impact of 

obsolescence on industry stakeholders and identifies 

opportunities for mitigation. Simulation evaluates different 

approaches, concluding that predictive analytics and 
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supply chain integration are effective strategies. Analysis 

reveals opportunities for risk mitigation, emphasizing the 

importance of predictive analytics and emerging 

techniques. The research showcases the successful 

mitigation of prefabricated component obsolescence risk 

through predictive analytics, supply chain integration, and 

emerging techniques. Furthermore, the project utilizes data 

from a loyalty program to analyze past purchasing patterns 

and forecast types, employing predictive models and 

machine learning. The presentation of sales trends from 

2018 to 2022 in Table 1 highlights variations in the sales 

of prefabricated components, emphasizing significant 

increases or decreases for certain products. 

3. Model Selection 

The study involves an extensive review of current 

literature on prefabricated component obsolescence 

prediction, encompassing research articles, books, and 

conference proceedings. Consultations with experts were 

undertaken to identify widely used and effective models in 

the field.  

 
Table 1. A sample quantity of prefabricated 

components sale 

Year 

Product Names 

Base 

Channe

ls 

Cappin

g 

Channel

s 

Doo

rs 

Windo

ws 

Roof 

System 

2018 2904 2478 1312 2553 545 

2019 3839 3488 3124 3462 547 

2020 3948 3476 3221 1945 456 

2021 1704 2938 2080 3578 355 

2022 3948 1458 4530 2326 544 

 

Multiple models were chosen for assessment based on 

criteria such as accuracy, computational efficiency, and 

ease of implementation. Machine learning models, 

particularly neural networks, exhibited high accuracy but 

demanded significant computational resources and 

extensive data for training. Despite their computational 

intensity, machine learning models, specifically neural 

networks, were considered the most suitable for the study 

due to their superior accuracy in predicting obsolescence 

trends in prefabricated components. The selected machine 

learning models comprise LR, BR, Decision Tree (DT), 

Neural Network Regression (NR), and Support Vector 

Machine (SVM). 

SVM regression emerges as the superior choice for 

obsolescence prediction compared to LR, BR, DT, and 

Neural Network Regression (NR). SVM's strength lies in 

its ability to effectively capture nonlinear relationships, 

handle complex decision boundaries, and offer better 

generalization and robustness in the presence of intricate, 

non-linear data patterns. Despite SVM's superiority, there 

is acknowledgment of areas where improvements can be 

made. For instance, SVM can benefit from enhancements 

in interpretability, scalability, handling imbalanced 

datasets, and addressing challenges related to large and 

highly variable datasets. While SVM is deemed more 

interpretable than NR and achieves competitive predictive 

performance, further improvements can be explored by 

incorporating deep learning techniques to handle complex 

and hierarchical data representations. Ongoing research 

and development efforts should be directed toward refining 

SVM, leveraging its strengths, and addressing its 

limitations to enhance its efficacy as a powerful tool in 

obsolescence prediction and related domains.  

4. Prefabricated Component Obsolescence Mitigation 

Using Support Vector Machine 

The section explores the utilization of SVMs for mitigating 

obsolescence in prefabricated components. SVMs are 

employed to identify the optimal hyperplane that separates 

data points in different classes, enhancing classification 

accuracy in the high-dimensional data prevalent in the 

prefabricated component landscape. This approach 

involves analyzing historical data to predict obsolescence 

likelihood, considering factors such as the age of the 

component, availability of alternatives, and demand. The 

integration of SVMs with emerging techniques like deep 

learning and reinforcement learning contributes to 

heightened prediction accuracy. The section details the 

steps for developing SVM models for prefabricated 

components, encompassing data collection, preprocessing, 

feature selection, training, evaluation, and deployment. It 

underscores the necessity for advanced models to 

effectively forecast and address obsolescence trends in 

prefabricated components. The proposed SVM-based 

Prefabricated Component Obsolescence Mitigation 

(SPCOM) technique employs SVM for precise trend 

forecasting and the development of mitigation strategies 

based on diverse data sources, presenting a promising 

approach for industry professionals dealing with 

prefabricated components.  

The SPCOM technique is positioned as an innovative 

solution tailored to address Prefabricated Component 

obsolescence challenges. By leveraging the capabilities of 

SVM algorithms, SPCOM excels in accurately forecasting 

obsolescence trends and providing effective mitigation 

strategies.  

Illustrating the empirical risk function within the SVM 

model, Eq. 1 assigns equal weight to all e-insensitive 

errors between predicted and actual values. The pivotal 

role of the regularization constant (C) comes into play in 

determining the trade-off between empirical risk and the 

regularized term. An increase in C highlights the growing 
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significance of empirical risk over regularization. 

 

𝑅𝑆𝑉𝑀𝑠 = 𝐶 ∑ (𝜉𝑖 +𝑛
𝑖=1

𝜉𝑖
∗)                                                         (1)                                                                                              

 

In the SPCOM, instead of a constant value, the 

regularization constant C adopts a weight functions as 

given in Eq. 2. 

𝐸𝑆𝐸𝐶𝑂𝑀 =  ∑ 𝐶𝑖(𝜉𝑖

𝑛

𝑖=1

+ 𝜉𝑖
∗)                                                       (2) 

Where, 

Ci = wi C    (3)                                                                                                                                        

 

Where wi is the weight function satisfying wi > w (i-1); 

i=2... n. A Linear weight function and an exponential 

weight function are described below. 

• Linear weight functions: 

• 𝑊_𝑖 =   𝑖/(𝑛(𝑛 + 1) ⁄

2)                                                         (4) 

As Ci = w I C 

〖 𝐶〗_𝑖 = 𝑖/(𝑛(𝑛 + 1) ⁄ 2)  𝐶  

          

• Exponential weight functions: 

 

𝑊_𝑖 =   𝑖/(1 + 𝑒^((𝑎 − (2𝑎𝑖

⁄ 𝑛)) ) )                                (5) 

 

  As, 〖 𝐶〗_𝑖 = 𝑖/(1 + 𝑒^((𝑎 − (2𝑎𝑖 ⁄ 𝑛)) ) )  𝐶  

               

 Where 𝑎 is the slope of exponential weight function.  

✓ When 𝐚 → 0;  

Then lim
𝑎→0

𝐶𝑖 =  
1

2
 𝐶. 

In this case, there are the same weights in all the training 

data points. 

✓ When a → ∞ 

lim
𝑎→0

𝐶𝑖 =  {
0,   𝑖 <  

𝑛

2

𝐶,   𝑖 ≥  
𝑛

2

 

In this case, the weights for the second half of the training 

data points are equal to 1, and the weights for the first half 

of the training data points are reduced to zero. 

✓ a 𝛜 [0,∞] and increases 

      The weights for the first half of the training data 

points will become smaller, while the weights for 

the second half of the training data points will 

become larger. 

The SPCOM model augments SVM accuracy by 

introducing advanced feature engineering techniques 

tailored to electronic component obsolescence 

complexities. These techniques extract informative 

features such as component lifecycle stage, technology 

trends, market demand volatility, and supplier reliability. 

By incorporating these nuanced features, SPCOM strives 

to improve predictive accuracy, addressing the intricacies 

of obsolescence factors. 

SPCOM's accuracy enhancement stems from the 

incorporation of domain-specific knowledge and optimized 

feature engineering techniques, allowing it to capture 

obsolescence intricacies effectively. Both SVM and 

SPCOM share the philosophy of identifying decision 

boundaries to maximize the margin between two classes of 

data points. SVM aims for the smallest possible margin to 

correctly classify training data points, utilizing 

hyperplanes. In contrast, SPCOM aligns with SVM's 

philosophy but concentrates on mitigating prefabricated 

component obsolescence risks. SPCOM identifies at-risk 

components, predicts obsolescence timelines, and enables 

proactive mitigation strategies. While both SVM and 

SPCOM maximize the margin between decision 

boundaries and closest data points, their applications and 

objectives differ, with SPCOM addressing the specific 

challenges of prefabricated component obsolescence.  

5. Results and Discussion 

SVM is observed to be sensitive to outliers, while SPCOM 

demonstrates robustness in handling outliers. Regarding 

performance, SVM excels in dealing with small to 

medium-sized datasets, while SPCOM exhibits superior 

performance in handling large and complex datasets. In 

terms of accuracy, SPCOM outperforms SVM, proving to 

be more accurate. The purpose of SVM is noted as a 

general machine learning algorithm used for classification 

and regression tasks, emphasizing the identification of 

optimal hyperplanes for separating data points. On the 

other hand, SPCOM is highlighted as a specialized model 

tailored specifically for electronic component obsolescence 

prediction and mitigation. Although it leverages SVM as a 

core algorithm, SPCOM incorporates domain-specific 

features and considerations.   

The Table 2 provides a focused comparison of accuracy 

models between SVM and SPCOM, considering different 

C values. SVM's accuracy increases with higher C values, 

ranging from 0.782 at C = 0.01 to 0.907 at C = 0.1. In 

contrast, SPCOM consistently demonstrates higher 
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accuracy, reaching 0.976 for both C values (0.01 and 0.1). 

This comparison reinforces SPCOM's superior accuracy in 

electronic component obsolescence prediction. 

The Table 3 presents a comprehensive comparison of 

various algorithms based on their Root Mean Square Error 

(RMSE) values, considering both combined training data 

for all items and separate training data for individual items. 

The items under evaluation encompass Base Channels, 

Capping Channels, Doors, Windows, and Roof Systems. 

For LR, the RMSE values vary for combined and separate 

training data across the different items, illustrating the 

algorithm's performance in predicting each component. 

Similarly, BR, DT, NNR, SVM, and the specialized 

SPCOM model showcase their respective RMSE values for 

both training data scenarios. In summary, the detailed 

analysis sheds light on the nuances of algorithmic 

performance, revealing insights into their effectiveness 

across distinct items. The comparison provides a valuable 

understanding of how training data strategies impact the 

accuracy of predictions for each algorithm and item, 

offering valuable information for algorithm selection in 

specific use cases. 

Table 2. Comparison of SVM and SPCOM 

accuracy models 

Model C Value 
SVM Model 

Accuracy 

SVM 

0.01 0.782 

0.02 0.797 

0.03 0.789 

0.1 0.907 

SPCOM 0.01 and 0.1 0.976 

 

The proposed model emerges as a robust tool, offering 

organizations precise insights into the obsolescence risks 

associated with prefabricated components. This capability 

empowers informed decision-making regarding 

replacement and mitigation strategies, making a significant 

contribution to the domain of prefabricated component 

obsolescence mitigation and forecasting. Operating as a 

comprehensive and efficient solution, the model becomes 

instrumental in reducing costs, enhancing operational 

efficiency, and fortifying supply chain resilience. In 

addressing the challenges posed by prefabricated 

component obsolescence, the need for a model based on 

emerging techniques becomes evident. Traditional 

approaches fall short in forecasting and mitigating 

obsolescence risks, emphasizing the necessity for 

sophisticated models adept at handling high-dimensional 

data, interpreting non-linear relationships, and achieving 

high accuracy. To meet this need, the thesis introduces the 

SPCOM technique—a novel approach proficient in 

accurately forecasting obsolescence trends and formulating 

effective mitigation strategies for prefabricated 

components. 

6. Conclusion 

The innovative SPCOM model, introduced in research on 

prefabricated component obsolescence mitigation and 

forecasting, addresses existing methodological gaps and 

offers a more accurate and robust solution.  

Table 3. Comparison based on Root Mean Square 

Error of the testing for combine training data of all 

items to be predicted and separate data. 

Algorithms Item 

Combine 

training 

data of all 

items to 

be 

predicted 

Separate 

data of 

items to 

be 

predicted 

LR 

Base 

Channels 
0.42 0.66 

Capping 

Channels 
0.36 0.479 

Doors 0.569 0.809 

Windows 0.525 0.765 

Roof 

Systems 
0.445 0.525 

BR 

Base 

Channels 
0.34 0.46 

Capping 

Channels 
0.329 0.479 

Doors 0.359 0.509 

Windows 0.415 0.465 

Roof 

Systems 
0.435 0.525 

DT 

Base 

Channels 
0.51 0.73 

Capping 

Channels 
0.329 0.549 

Doors 0.659 0.879 

Windows 0.615 0.835 

Roof 

Systems 
0.375 0.595 

NNR 

Base 

Channels 
0.207 0.27 

Capping 

Channels 
0.209 0.289 

Doors 0.219 0.319 

Windows 0.285 0.275 

Roof 

Systems 
0.215 0.435 

SVM 

Base 

Channels 
0.467 0.223 

Capping 0.219 0.229 
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Channels 

Doors 0.209 0.249 

Windows 0.265 0.235 

Roof 

Systems 
0.235 0.395 

SPCOM 

Base 

Channels 
0.467 0.223 

Capping 

Channels 
0.219 0.229 

Doors 0.209 0.249 

Windows 0.265 0.235 

Roof 

Systems 
0.235 0.395 

 

With a machine learning-based approach that centers on 

SVM, the proposed model demonstrates superior accuracy 

and effectiveness in predicting and mitigating 

prefabricated component obsolescence. Emphasizing 

proactive strategies, collaboration, and multidimensional 

approaches, the study tackles the challenges of 

obsolescence mitigation in dynamic markets. Positioned as 

a robust tool, the SPCOM model provides precise insights 

into the obsolescence risks associated with prefabricated 

components, empowering informed decision-making on 

replacement and mitigation strategies. Operating as a 

comprehensive and efficient solution, SPCOM becomes 

instrumental in reducing costs, enhancing operational 

efficiency, and fortifying supply chain resilience. The 

necessity for this model arises from the limitations of 

traditional approaches, highlighting the need for 

sophisticated models capable of handling high-dimensional 

data, interpreting non-linear relationships, and achieving 

high accuracy. In response to this need, the SPCOM 

technique is introduced as a novel approach proficient in 

accurately forecasting obsolescence trends and formulating 

effective mitigation strategies for prefabricated 

components. The research highlights the crucial role of 

advanced models in addressing challenges related to 

prefabricated component obsolescence. In conclusion, the 

accuracy of SVM demonstrates enhancement with an 

increased regularization factor, while SVM-based 

Prefabricated Component Obsolescence Mitigation 

consistently shows superior accuracy across various 

regularization values. 
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