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Abstract: Cloud storage services utilize deduplication to optimize capacity and minimize bandwidth demands. This process efficiently 

reduces redundant data to a single instance, thereby conserving storage space. Deduplication is particularly effective when multiple users 

upload identical information to the cloud. However, deduplication poses challenges related to security and copyright issues. Implementing 

secure deduplication can significantly cut down on both storage and communication costs in cloud services, making it highly relevant in 

the era of big data. Systems that verify the proof-of-ownership allow individuals who have uploaded the same data to credibly assert their 

ownership to the cloud service. However, the common practice of encrypting data before uploading it for privacy reasons complicates 

deduplication efforts because encryption introduces randomness that prevents identifying duplicates. To overcome this, various schemes 

have been introduced that permit users to encrypt data with a common key for identical data sets. Nevertheless, many of these schemes are 

susceptible to security flaws, particularly not addressing the frequent changes in data ownership in a dynamic cloud storage environment. 

Therefore, creating a secure data deduplication model that overcomes the limitations of current approaches is essential. The implemented 

framework consists of data collection, deduplication phase and encryption. Initially, attributes likes “filename, size, block name, size, file-

type hash tag, file location, file updated date and data pattern” are used for the deduplication process. Next, the collected data is provided 

as the input to the Optimized Serial Cascaded Deep Network (OSCDN)-based data deduplication model, which is the fusion of “Deep 

Belief Network (DBN) with Dilated Convolution Long Short Term Memory (DConv-LSTM)”, Here the parameters of OSCDN is tuned 

using “Enhanced Red-Tailed Hawk algorithm (ERTH)”. Further, the de-duplicated data is encrypted using “Hyper-Elliptic Curve 

Cryptography with Optimal Key (HECC-OK)”. In this setup, the ERTH algorithm selects keys in the most optimal manner. Subsequently, 

the encrypted data is stored on the cloud platform. The developed architecture then undergoes several experimental validations to showcase 

its enhanced performance rate relative to traditional deduplication methods. 

Keywords: Data Deduplication; Cloud Environment; Optimized Serial Cascaded Deep Network; Enhanced Red-Tailed Hawk algorithm; 

Hyper-Elliptic Curve Cryptography with Optimal Key. 

 

1. Introduction 

The Internet of Things (IoT) is a burgeoning concept with 

significant applications in the manufacturing sector. In these 

environments, “Wireless Sensor Networks (WSN) and Wireless 

Sensor-Actuator Networks (WSAN)” are employed to gather data 

on various aspects, such as "energy savings, air quality 

management, predictive maintenance, resource forecasting, and 

product planning" [9]. In the context of Smart Factories utilizing 

IoT, optimizing energy consumption and production time are key 

priorities [10]. A considerable portion of the data outsourced in IoT 

systems is redundant, leading to unnecessary storage costs [11]. 

The effective strategy to mitigate these costs is by purging 

duplicate data prior to its storage on cloud platforms. However, 

given that cloud servers are often owned by third parties, there's a 

valid concern regarding the security of sensitive information 

during the deduplication process [12]. Integrating data 

compression techniques within cloud storage solutions offers a 

way to significantly reduce storage demands and, by extension, 

lower the costs associated with data storage. Specifically, data 

deduplication is a method employed to detect and eliminate 

duplicate data within a storage system.  

Deduplication streamlines storage by replacing duplicate data 

segments (either entire files or parts of files) with references to a 

single instance of that data already stored on the disk [14]. Unlike 

traditional compression techniques, deduplication can eliminate 

redundancies not just within a single file, but also across multiple 

files [15]. However, spotting these duplicates requires analyzing 

vast volumes of data, a process that is both computationally 

intensive and heavy on input/output (I/O) operations, potentially 

slowing down server performance significantly [16]. To alleviate 

the negative impact of deduplication on server performance, an 

effective strategy involves distributing the deduplication workload 

across multiple nodes within a storage cluster. By leveraging the 

collective computational power and storage capacity of these 

nodes, the challenges of data deduplication can be more 

manageably addressed [17]. One of the key technological 

challenges in this distributed approach is to achieve scalable 
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performance that still maintains a system-wide data reduction ratio 

on par with centralized deduplication systems [18]. The optimal 

data deduplication ratio requires a global assessment and 

comparison of data, which becomes increasingly feasible as vast 

amounts of information are now stored in cloud environments 

[19].The inability of a data disk to identify and eliminate duplicate 

information can lead to unnecessary consumption of disk storage 

space. This redundancy not only occupies precious space but also 

impacts disk performance, affecting speed and other key 

performance metrics [20]. By strategically managing 

deduplication across distributed systems, it's possible to minimize 

these drawbacks and optimize storage efficiency. 

Cloud platforms offer their users significant computational and 

storage benefits, enhancing efficiency and reducing operational 

costs. Integrating data compression techniques within these cloud 

services can significantly diminish the need for extensive storage 

space, further cutting down on data storage expenses [21]. 

However, managing large datasets can increase memory usage, 

raise costs, and extend CPU processing times for clients [22]. Data 

deduplication emerges as a solution to these challenges by 

efficiently identifying and retaining only essential data, thereby 

eliminating redundant data and maintaining high levels of security 

and privacy [23]. A critical limitation of this method is the ease 

with which both internal and external adversaries could potentially 

deduce the nature of the stored data [24] [25]. To overcome these 

challenges, an advanced and secure online data replication model 

for cloud storage has been developed. 

The goals of the recommended model are detailed below: 

• To design a deep learning-based data depuplication model 

in cloud environment that aims to efficiently identify and 

remove duplicate data within a storage system to optimize 

storage usage and reduce redundancy. 

• To design ERTH for optimally selecting the parameters, 

this algorithm is inspired by the hunting behavior of RTH. 

This model is designed to find the most efficient keys that 

enhance security and minimize computational overhead. 

• To create an OSCDN for data deduplication. This 

innovative model combines DBN with DConv-LSTM 

allows for efficient identification and removal of duplicate 

data. The parameters of OSCDN are optimally tuned using 

ERTH algorithm. 

• To design an HECC-OK model for security privacy, this is 

known for providing high levels of security with optimal 

keys, making it efficient for cloud environments and 

reduces the time and memory. The selection of the optimal 

keys is done with the help of ERTH algorithm. 

• To compare the performance data of the developed 

framework against the benchmarked traditional 

mechanisms. Use statistical methods to determine the 

significance of the observed differences. 

The subsequent sections delve deeply into every facet of the 

proposed deep learning framework aimed at data deduplication and 

and encryption in cloud environment enhancement. Section II 

presents a review of existing literature in the realms of information 

deduplication and encryption techniques. Section III discusses the 

essential prerequisites for data deduplication within a cloud 

environment, including the specifics of input features for the 

proposed approach. Section IV offers a comprehensive 

examination of addressing data duplication in the cloud through an 

innovative adaptive serial cascaded deep network. Section V shifts 

the focus to bolstering data security through an advanced heuristic 

algorithm-enhanced HECC strategy. Sections VI and VII further 

explore the manipulation of numerical data and outline the deep 

learning-based strategy implemented for efficient data 

deduplication. 

2. Literature survey 

2.1. Related Works 

In 2015, Luo et al. [1] have developed a state-of-the-art online 

storage solution was ingeniously crafted with distributed 

compression technology at its core. This platform stood out for its 

exceptional efficiency and scalability, achieved through a novel 

parallel data deduplication strategy designed to preserve 

duplication ratios effectively. At the heart of Boafft's operation was 

a refined data transmission system, which smartly exploited data 

similarities to enhance network efficiency and swiftly pinpointed 

the optimal storage destinations. Moreover, Boafft significantly 

boosted its performance by deploying in-memory similarity 

indexes on each server, thereby eliminating extensive random disk 

access and significantly speeding up the deduplication effort.  

In 2016, Yan et al. [2] have developed system leveraging 

“Attribute-Based Encryption (ABE)” to address the challenge of 

managing encrypted data duplication in cloud storage while 

ensuring secure data handling. The performance and effectiveness 

of this model were rigorously evaluated through both analytical 

and practical means. Findings indicated that this approach was not 

only viable but also efficient and scalable, making it suitable for 

real-world applications. Employing deduplication techniques for 

encrypted data emerged as a critical strategy in delivering a secure, 

reliable, and efficient cloud storage service, especially vital for 

handling large-scale data operations. 

In 2016, Mao et al. [3] have proposed “Performance-Oriented I/O 

Deduplication (POD)” replaced Space-Oriented I/O Deduplication 

(iDedup) as the preferred method for enhancing the I/O efficiency 

of primary storage devices within the Cloud, albeit at the expense 

of reduced capacity savings. To boost the storage system's 

efficiency and reduce the costs associated with deduplication, POD 

implemented a dual-strategy approach. This approach 

encompassed a flexible memory management scheme known as 

iCache, designed to alleviate recall contention amid bursty read 

and write traffic, and a request-based selective deduplication 

technique called Select-Dedupe, which aimed to lessen data 

fragmentation. 

In 2020, Sharma et al. [4] have developed task allocation and 

secure data compression were efficiently executed across four 

distinct layers within a Fog-assisted Cluster-based Industrial IoT 

(IIoT) framework. The initial layer, known as the IoT device layer, 

was dedicated to data collection and bolstering security measures. 

In this layer, devices were securely connected to cloud services 

through the use of Elliptic Curve Cryptography-based Hybrid 

Amplifiers. For task clustering, a multi-objective Whale 

Optimization Algorithm (WOA) was deployed. To ensure data 

security during compression, the SHA-3 encryption standard was 

implemented within the fog layer. Prior to transmission, data was 

encrypted using an ECC-based Hybrid Model (HM) secret key. For 

efficient data retrieval and integrity verification within the cloud, 

a Merkle Hash Tree (MHT) was utilized. 

In 2023, Muthunagai and Anitha [5] have presents the CTS-IIoT 

framework, a MHT plays a crucial role in managing time-series 

data through index-based deduplication of IIoT data stored in the 
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cloud. Ultimately, the proposed system leverages the Modified 

Distribution (MODI) method to pinpoint the most cost-effective 

location for accessing all storage resources within the cloud 

domain. 

In 2021, Olufemi et al. [6] have proposed a faster server-aided 

approach for eliminating data duplication, incorporating an 

efficient verified key agreement. This technique ensured data 

singularity, privacy and consistency in IIoT environments and 

enabled secure data searches over encrypted content on a semi-

trusted cloud platform.  

In 2022, Muthunagai and Anitha [7] have proposed the “Adaptive 

Multi-Pattern Boyer Moore Horspool (AM-BMH) algorithm” and 

MT to extract insights from time series data. A significant 

challenge encountered was the high data transfer costs within the 

globally decentralized cloud system, which complicated data 

placement strategies. To overcome this, an innovative data 

insertion approach featuring optimized distribution was 

introduced.  

In 2022, Vignesh and Preethi [8] have developed a novel method 

for eliminating duplicate data on the internet, aiding in the 

conservation of both bandwidth and storage space. Trial results 

demonstrated that the proposed method enhanced data security 

stored in the cloud while simultaneously addressing the primary 

deficiencies of existing systems. A solution was developed for both 

single-server memory and distributed storage systems, ensuring 

the privacy of information while also conserving space. The chunk 

information consistently generated encryption keys, leading to 

identical chunks being encrypted with the same ciphertext. 

2.2. Problem statement 

The cloud storage system provides the more storage space to 

preserve the private information of the user. It is easy to access the 

file based on the storage location.  But, it is vulnerable to brute-

force assault, which determines the plain text in the storage space 

corresponded to an attained cipher-text. Various researches were 

performed for data deduplication and the features and challenges 

of the data deduplication in discussed in Table. I. The research gap 

of the traditional data deduplication approaches is given below.  

 Existing techniques employs single deep learning 

approaches, which causes integrity issues on the network. 

It can be resolved by utilizing an advanced deep learning 

network to enhance the generalization of the network in 

deduplication. 

 In several traditional approaches it does not uses 

encryption approaches that leads to information misuse an 

affects the security of the network. This can be resolved by 

performing encryption approaches.   

 Traditional models haven employed single technique for 

data deduplication it minimize the performance of the 

network and also it is hard to maintain the generated data. 

It can be resolved by utilizing cascaded deep learning 

technique. 

 Several conventional models utilize encryption to generate 

the private key, but in certain cases it is difficult to 

maintain the network privacy. This issue can be resolved 

by utilizing a tuning approach to tune the generated key. 

 

Table I: Features And Challenges Of The Existing Data Deduplication In Cloud Environment Approaches 

Author [citation] Methodology Features Challenges 

Luo et al. [1] Boafft • This approach minimizes the overhead of 

system bandwidth. 

• This technique rapidly evaluates the 

storage location of the information. 

• This technique is composite to 

organize and preserve. 

Yan et al. [2] ABE • This model is highly secure for preserving 

the information. 

• This approach offers fine-grained access 

control for the framework. 

• This technique lack straight 

forward attribute and in effective 

in the real world 

Mao et al. [3] POD • This technique achieves improved 

efficiency is information preservation. 

• This approach considerably built the 

appearance and helps to preserving 

ability of the principal preservation 

framework in the cloud storage. 

• This technique consumes high 

memory space for processing the 

information. 

• The effectiveness of the network 

does not relies on the energy 

competence and capacity. 

 

Sharma et al. [4] WOA • This strategy helps to resolve various 

constrained or unconstrained tuning 

issues. 

• This approach gets stucked on the 

local optimum. 

• It posses low convergence speed 

and reduced precision rate. 

Muthunagai and 

Anitha[5] 

MHT • It assists to evaluate the integrity of 

information or communication. 

• This technique offers an advanced and 

easy way to organize the information. 

• This technique faces difficulties in 

data addition and deletion. 

• It requires more memory space and 

processing time. 

Olufemi et al. [6] Data de-

duplication 

scheme 

• It allows sheltered searching of 

information next to the cipher-text on 

the cloud storage. 

• This approach requires high 

computational cost 

• They are capable to identify only 

the deduplicate information 

stored on the cloud. 
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Muthunagai and 

Anitha [7] 

BMH algorithm, 

and Merkle tree 

• This approach offers improved 

performance as the length of pattern 

rises. 

• This technique utilizes less cloud storage 

space. 

• The elimination of good-suffix 

sometime affects the network 

performance. 

• This requires more resources for 

processing. 

Vignesh, R, and J. 

Preethi [8] 

AES and RSA 

algorithms 

• This technique utilize  longer key size for 

data encryption 

• It is safe and dependable in transmitting 

the private data. 

• This approach is susceptible to 

side-channel attacks. 

• It has low convergence speed. 

 

3. Basic Requirement of Data Deduplication in 

Cloud Environment and Input Attribute 

Details for Proposed Work 

3.1. Need for Data Deduplication in Cloud 

Data deduplication is a powerful strategy for enhancing storage 

efficiency and reducing the overall volume of stored data. By 

identifying and eliminating redundant copies of data and replacing 

them with a single original and logical links for any subsequent 

references, deduplication significantly decreases the need for 

storage [8]. This process benefits from the use of hash values, 

unique identifiers that help identify redundant data chunks. The 

benefits of optimization extend beyond mere reduction in storage 

needs; include decreased network bandwidth requirements, lower 

costs and reduced energy consumption for storage systems. The 

flexibility of data deduplication makes it suitable for various stages 

of data storage and transmission, especially in cloud storage 

solutions. Cloud services leverage deduplication to streamline 

disaster recovery efforts, ensuring that only unique data is 

replicated post-deduplication. This approach not only accelerates 

replication times but also conserves network bandwidth. 

Additionally, deduplication proves crucial in backup and archival 

systems within cloud storage, reducing the physical storage 

footprint and minimizing network traffic. However, when 

considering the implementation of deduplication for primary 

storage, especially for dynamic data like computer images, it is 

vital to weigh the space-saving benefits against potential impacts 

on performance.  

The ever-increasing volume of data generated and stored online 

necessitates efficient management strategies to optimize storage, 

reduce costs and ensure rapid data access and transfer. In this 

context, data deduplication emerges as a critical technology, 

particularly for cloud environments. Cloud-based services and 

storage systems face the dual challenge of scaling to meet growing 

demand while maintaining high levels of efficiency and 

performance [5]. This introductory exploration highlights the 

crucial need for data deduplication in cloud environments, 

underscoring its role in enhancing storage optimization, 

minimizing resource consumption and improving overall system 

performance and reliability. 

3.2. Proposed System and its Description 

Data deduplication, a compression technique, removes redundant 

copies of data, retaining only a single unique instance. By storing 

only one copy of the data, this method drastically decreases storage 

needs while still allowing access to the information when required. 

It is applicable across various storage environments, including 

networked storage, cloud storage and backup systems. The key 

advantage of data deduplication is the dramatic reduction in 

storage space required, potentially leading to cost savings and 

prolonging the lifespan of existing storage infrastructure. 

However, the process of identifying and removing duplicate data 

can incur computational costs, potentially impacting system 

performance, especially if deduplication occurs in real-time. As 

data volumes expand, the deduplication system must scale 

accordingly, maintaining efficiency and effectiveness in the face 

of growing storage needs. To address these issues, implementing 

the suggested model can improve the system's overall efficiency. 

Fig. 1 illustrates the proposed data deduplication approach in a 

cloud environment. 

 

Fig. 1.Structural view of recommended data deduplication in cloud 

environment 

The burgeoning data generated in cloud environments necessitates 

advanced strategies for storage optimization and redundancy 

reduction. To addressing this challenge, a sophisticated deep 

learning-based data deduplication model tailored for cloud settings 

is proposed. Data duplication, also known as data augmentation, is 

a technique used in deep learning and machine learning to 

artificially increase the size of a dataset by creating additional 

variations of the existing data. This process is particularly useful 

when the available dataset is small, as it helps improve the 

generalization and robustness of the machine learning model. This 

model aims to enhance storage efficiency by accurately identifying 

and eliminating duplicate data, thereby optimizing storage 

utilization and minimizing redundancy. Additionally, the ERTH 

algorithm is designed to optimally select parameters that bolster 

security while simultaneously reducing computational overhead. 

To advance data deduplication efforts, the OSCDN model is 

proposed. This cutting-edge model integrates DBN with DConv-

LSTM networks, facilitating the effective identification and 

removal of duplicate data. The OSCDN model's parameters are 
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finely tuned using the ERTH algorithm to ensure optimal 

performance. In the realm of security privacy, the HECC-OK  

model is designed to offer robust security solutions. Known for its 

high-security levels with optimally selected keys, HECC-OK is 

particularly efficient for environments constrained by resources, 

significantly reducing time and memory requirements. The 

selection of these optimal keys is tuned through the ERTH 

algorithm, ensuring the security privacy model's effectiveness and 

efficiency.Finally validate the efficacy and efficiency of the 

developed framework, a comprehensive comparison against 

traditional data deduplication and encryption mechanisms is 

planned. This evaluation will employ statistical methods to analyze 

performance data, aiming to establish the statistical significance of 

the observed improvements. 

4. Data Deduplication in Cloud done by Adaptive 

Serial Cascaded Deep Network 

4.1. Deep Belief Network 

This method [33] is characterized by a generative visual technique, 

utilizing multi-tiered neural network architecture to master the 

representations derived from the training dataset. Typically, this 

involves multiple hidden layers, an input layer, and an output layer 

positioned at the pinnacle, which delivers the ultimate data. The 

primary aim of this configuration is to enable the network model 

to reconstruct the input data using the features it has generated, by 

adjusting the weights of the nodes across different layers. 

Eq. (1) delineates the combined distribution of the hidden and input 

layers within the DBN approach. 
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between adjacent 1+m and m layers, where 
ma represents the 

data vector of the m  layer, l  denotes the total number of hidden 

layers and 
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zDF
signifies the input information vector. 

In the process, each subsequent layer pair
)( 1/ +mm aaD
 in the 

DBN model is trained using a RBM. This configuration treats the 

initial layer as a visible layer and the following layer as a hidden 

layer. Moreover, the RBM is structured as a bipartite, undirected 

graph, comprising two distinct layers. The determination of this 

structure is further elaborated in Eq. (2) and Eq.(3). 
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Moreover, the model developed by the DBN is capable of 

autonomously learning the 
mJK  and 

m

kRT
matrices throughout 

the iterative process. This learning has been facilitated through the 

use of gradient descent, as detailed in Eq. (4) and (5). 
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Additionally, in the initial phase of the network model, all matrix 

values were initialized between the two stages of RBM for training. 

A bias value was also established to fine-tune the parameters 

according to the specified criteria. Consequently, the DBN 

architecture exhibits the capability to establish more intricate 

networking relationships. Fig. 2 shows the architecture view of 

DBN. 

Fig. 2. Architecture view of DBN 

4.2. Dilated ConvLSTM 

The DConvLSTM [34] in cloud data deduplication represents a 

pioneering approach aimed at enhancing the efficiency and 

accuracy of identifying and removing duplicate data within cloud 

storage environments. This advanced method leverages the 

strengths of both CNNs and LSTM units, incorporating dilated 

convolutions to extend the model's receptive field without losing 

resolution or coverage.  

A dilated convolution operation is defined by a dilation rate that 

dictates the spacing between the kernel elements. For example, a 

dilation rate of 1 means no dilation (standard convolution), a rate 

of 2 means that there is a space of one pixel between kernel 

elements, and so on. This allows the network to aggregate 

information over a larger spatial area, improving its ability to 

recognize patterns that span larger portions of the input data. 

CNN excel at generating precise representations for individual 

data. However, capturing the progression of time requires the 

capabilities of a Recurrent Neural Network (RNN). ConvLSTM 

serves as a powerful substitute for monitoring changes across both 

time and space dimensions. Unlike traditional LSTM, ConvLSTM 

is adept at encoding variations in both time and spatial dimensions 

through its sophisticated gating mechanisms, offering a more 

detailed depiction of the data being analyzed. The ConvLSTM 

model is mathematically detailed through Eq. (6) to Eq. (11). 

)( 1 Psdsds MVkVkP ++= −
                                           (6) 

)( 1 Dsdsds MVkVkD ++= −
                                         (7) 

)( 1 Lsdsds MVkVkL ++= −
                                          (8) 

)( 1 Hsdksdks MVkVkTankH ++= −                                   (9) 

sssss HPHLC += −1                                               (10) 

)(tan 1−= sss CkCW
                                                      (11) 
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In the LSTM architecture, each memory block comprises three 

distinct gates: an input gate sP
, a forget gate sD

 and an output 

gate sL
. These gates employ the sigmoid activation function 

denoted by . The biases and weights associated with these gates 

are represented as sV
 and sM

, respectively. 

The feature in the input vector at the current step is denoted by s . 

Element-wise duplication is depicted as . The memory cell state 

and hidden layer output at any given time are denoted as sH
 and

sW
, respectively. 

The output from fully connected layers offers a global overview of 

the entire dataset but often misses out on detecting nuanced spatial 

variations. This shortfall leads to the use of additional data types, 

like optical flow data, which complicates the computational 

process. DConvLSTM stands out as an efficient solution by 

encoding the convolution features derived from CNNs. 

Additionally, its convolution learning gates are specifically trained 

to notice changes over time in certain areas, thus enabling the 

network to effectively capture both the detailed spatial information 

and the temporal dynamics. Fig. 3 shows the architecture view of 

DConv-LSTM. 

 

Fig. 3. Architecture view of DConv-LSTM 

4.3. Proposed OSCDN for Deduplication 

OSCDN is a framework designed specifically for data 

deduplication tasks. It employs a cascaded architecture of deep 

neural networks to enhance the efficiency and accuracy of the 

deduplication process. By optimizing the serial connections within 

the network, OSCDN aims to achieve superior performance in 

identifying and eliminating duplicate data instances, thereby 

reducing storage space and improving data management 

workflows.  

In the proposed OSCDN framework, the data attributes such as 

filename, size, block name, size, file-type hash tag, file location, 

file updated date and data pattern to facilitate the deduplication 

process is initially inputted into a DBN model. The DBN processes 

the data to identify and highlight its underlying patterns and 

features. Following this, the features extracted by the DBN are 

passed in a subsequent model DConvLSTM. This model enhanced 

with dilated convolutions, is adept at capturing both spatial and 

temporal dependencies within the data and eliminating duplicates. 

The end result of this sequential processing through DBN and 

DConvLSTM is the production of deduplicated data, effectively 

removing redundant information. 

DBNs, characterized by multiple layers of stochastic, latent 

variables, are generative models. The capacity of these models to 

learn complex data representations is influenced by the number of 

hidden neurons in each layer. Conv-LSTM, on the other hand, 

integrates convolution layers into the LSTM architecture, making 

it particularly suitable for processing spatial-temporal data. The 

hidden neuron count in Conv-LSTM impacts its capability to 

capture spatial hierarchies and temporal dependencies. To mitigate 

errors of this nature, optimization is performed using parameters 

such as “hidden neuron count and epoch count in both DBN and 

DConv-LSTM models”. This optimization aims to enhance 

precision through the implementation of a proposed ERTH 

algorithm. The goal factor of the model is represented as following 

the Eq. (12). 

 
( )

CLDCLD EEHH

UY
,,

1 maxarg=

                                                            (12) 

From the provided information, the variables DH
and CLH

represent the number of hidden neurons of DBN and DConv-

LSTM”, while DE
 and CLE

denote the number of epochs of DBN 

and DConv-LSTM, which both range from 5 to 255 and 5 to 50, 

respectively. Additionally,   specifies the precision, with its 

mathematical formulation estimated in Eq. (13). 

ddyy +
=

pp


                                                                     (13) 

Here, word 
pp

 and
yy

, dd  and tt  denotes “true, false positives 

and false, true negatives”. Fig. 4 shows the view of proposed 

OSCDN for data deduplication. 

 

Fig. 4. View of proposed OSCDN model for data deduplication 

5. Enhancement of Data Security using Improved 
Heuristic Algorithm based Hyper ECC 
Technique 

5.1. Enhanced RHA 

Purpose: The optimization approach ERTH leverages the 

principles of the RTH [26] to refine the parameters involved in data 

deduplication and encryption in cloud environment. This strategy 
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is inspired by the predatory tactics of the RTH, adept at efficiently 

managing the balance between exploration (broad area search) and 

exploitation (focused search on promising zones). This balance 

enables the algorithm to perform effectively in optimizing complex 

problems. The inherent decentralized characteristics of such 

natural-inspired behaviors make these algorithms well-suited for 

parallel computing frameworks, enhancing convergence speeds on 

appropriate hardware platforms. However, there's a potential 

downside in that the algorithm could become overly adapted to 

specific problem nuances or become ensnared in local optimums if 

the exploration-exploitation equilibrium is not properly 

maintained. While this method shows efficacy across various 

problem types, the computational demands might escalate with 

problem scale, rendering it less viable for very large optimization 

challenges.  

Novelty: To counteract above mentioned challenges, the proposed 

methodology incorporates adjustments to diminish these 

drawbacks. This enhanced methodology is mathematically 

represented in Eq. (14). 

WfBf

Cf

+
=

                                                                        (14) 

The variables
Cf

, 
Bf

 and 
Wf

 mentioned in the formula 

represents the revised random variable, which reflects the present

Cf
, minimum

Wf
 and maximum

Bf
 fitness values. The 

alteration of this random variable is detailed in Eq. (20). 

The red-tailed hawk is a predator with a varied diet, considering 

nearly any small animal it encounters as potential prey. While their 

diet primarily consists of small mammals like mice, they also feed 

on birds, fish, other vertebrates, amphibians, and invertebrates. 

The availability of prey differs significantly across locations and 

seasons, yet mice make up about 85% of a hawk's diet.  

High rising: Red-tailed hawks ascend to great heights to locate the 

best food sources. At this juncture, Eq. (15) represents the 

mathematical model. 

)((dim),)).1(()( yLPlevyyTTTyT meanbest −−++
           (15) 

In this model, 
)(yT

 symbolizes the location of the red-tailed 

hawk at the thy
 iteration, bestT

 represents the optimal position 

achieved, and meanT
 denotes the mean of all positions. The Levy 

coefficient, indicative of the levy flight distribution, is calculated 

using Eq. (16), while
)(yLP

, the dynamic factor, can be 

determined according to Eq. (17). 
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In this context, x  is set at 0.01 and represents a variable, dim  

refers to the dimensions of the problem, and 


is another variable 

fixed at 1.5. Meanwhile,  are the random values that range 

between 0 and 1.The transition factor is modelled in Eq. (18) 
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The variable maxL
 is the highest number of iteration.  

Low rising: The hawk descends closer to the ground, circling its 

prey in a spiral pattern, which can be described as following Eq. 

(19): 
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In this case, t  and v  represent directional coordinates, which can 

be calculated using the subsequent Eq.(20). 
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Typically, the value of a random number   is generated through 

conventional methods and falls within the 0 to 1 range. Yet, this 

range's variability can complicate the process of achieving 

convergence and attaining the appropriate level of precision. To 

mitigate these challenges, we introduce our proposed formula, 

encapsulated in Eq.(14). 

Kneeling and Descending (Stooping): During the phase, the 

hawk prepares to strike its target from an advantageous low-

hovering position. The model for this stage is as follows in Eq. 

(21). 

)(1).()(1).().()( ystepsizeyTystepsizeyTsyT += 
        (21) 

The calculation for each dimension of a step can be carried out as 

following Eq. (22). 


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Like many bio-inspired algorithms, an RTH algorithm would 

likely excel in adaptability, capable of navigating complex 

landscapes to find optimal solutions, akin to how a red-tailed hawk 

can adapt to various environments for hunting. Fig 5 shows the 

proposed approach’s flowchart. 

Algorithm 1: Developed ERTH 

Begin 

Define the constraints and variables 

Set up execution parameters 

Initiate the population matrix and define the objective 

function. 

Find the better position 

While maxLL 
 

 Upgrade the random value  using Eq.(14) 

  High Raising 

   The flight distribution is calculated using 

Eq.(16) 

   Transition factor LP is estimated using 

Eq.(18) 

   The position is updated using  Eq.(17) 

  Low Raising 

   The direction co-ordinates are estimated using 

Eq.(19) 

   The position is updated using  Eq.(20) 
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  Kneeling and Descending (Stooping) phase: 

   The step size is estimated using Eq.(21) 

   The position is updated using  Eq.(22) 

  End 

End while 

The better position is obtained 

The best position is stored 

 

Fig. 5. Proposed system’s flowchart 

5.2. Hyper ECC  

Hyperelliptic curves [32], akin to elliptic curves, serve as robust 

options for encryption purposes. To enhance the deduplication 

process, encryption is employed to prevent unauthorized user 

access. The equation representing a hyperelliptic curve, which 

delineates the curve's genus s across F  the specified field M , is 

as following Eq. (23): 

)()(2 suEsFsM =+=
                                                      (23) 

The methods developed leverage these properties to facilitate file 

encryption on the user's end using HECC. 

Key agreement: HECC is a form of asymmetric cryptography that 

utilizes a pair of keys: a public key and a private key unique to each 

user. The public key, which is openly shared, is used for encrypting 

data and verifying signatures.  

In the client application, the HECC technique is employed to create 

a pair of keys
},{ spr

: a private key s and a public key
pr

 

comprising what is known as a key pair. The concept of key pairing 

integrates both these keys. While the additive group of integers is 

originally tailored for the Diffie-Hellman key exchange protocol, 

this concept is versatile and can be adapted for use with more 

general group structures. Imagine a scenario e is group whose 

elements are straightforward to define and evaluate. Such a group 

is formed from the Jacobian of hyperelliptic curves. 

These public variables are taken into consideration: 

•  The group s . 

• An element s of the group with a large prime 

order sB . 

Encryption/Decryption: Before uploading files to the cloud, the 

owner of the information secures them through encryption using a 

public key
hpr −−

. For additional verification later on, the hash 

of the information is calculated and kept. The encrypted data is 

then uploaded to the cloud.  

When a data user wishes to access a file, k  send a request to 

download the file from the cloud L  to N . The file is then 

decrypted using a decryption key. Upon accessing the content, the 

hash value is recalculated. Through comparison, the integrity of 

the file is verified. By comparing the recalculated hash value with 

the one stored in the cloud, it becomes possible to confirm if the 

file has remained unaltered during its storage in the cloud. 

Signature Schemes: The electronic signature technique enables 

the creation and verification of signatures for any group k . To sign 

a message L , the sender must undertake the following steps: 

• Compute EBZ =  using a randomly chosen number

]1,1[ − sm
. 

• The resultant signature is given by
),,( LZs

. 

• Compute 1X
 and 2X

 based on 
)(LD

and Z . 

• Calculate the verification parameter
pXBXX 21 +=

. 

• If ZX = , the signature is deemed valid and thus 

accepted. Otherwise, it is rejected. Finally, the encrypted 

data is obtained.  

Fig. 6 shows the architecture view of HECC. 

 

Fig. 6. Architecture view of HECC 
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Suggested HECC-OK for Security Purpose 

In today's data-driven world, ensuring the security and privacy of 

sensitive information is paramount. One significant challenge in 

this regard is managing large volumes of data efficiently while 

maintaining robust security measures. To address this challenge, a 

cutting-edge approach known as HECC-OK is being employed. 

HECC-OK combines the power of HECC with the concept of 

optimal key management. This innovative technique is designed to 

encrypt de-duplicated data effectively, providing enhanced 

security without compromising on performance. Without proper 

optimization, ECC systems might encounter enhanced 

computational demands. Although binary keys can offer 

computational simplicity because of their representation, 

meticulous management is essential to dodge inefficiencies during 

encryption and decryption activities. To alleviate these challenges, 

ensuring minimal consumption of time and memory, variables like 

key in binary format for ECC undergo optimal tuning with the help 

of proposed ERTH algorithm. Eq. (24) outlines the mathematical 

expression for the objective function of the proposed system. 

 
( )MTUY

keyO

+= minarg2

                                                       (24) 

From the provided information, the variables keyO
represent the 

optimal key and the range is 0 or 1, while T  and M  denote the 

time and memory respectively. Fig. 7 shows the proposed view of 

Suggested HECC-OK for encryption. 

 

Fig. 7. Proposed view of suggested HECC-OK for encryption 

6. Results and Discussions 

6.1. Experimental setup 

The creation of the data deduplication framework, significantly 

enhanced by Python programming, yielded impressive outcomes. 

Utilizing the ERTH method, which operated over 50 iterations for 

a population of ten individuals and incorporated 4 chromosomes, 

this framework demonstrated its efficacy. In conjunction with this, 

the model employed cutting-edge optimization algorithms 

including the “Golden Eagle Optimizer (GEO)-OSCDN [27], Red 

Fox Optimization (RFO)-OSCDN [28], Chef-based Optimization 

Algorithm (CBOA)-OSCDN [29] and the RTH-OSCDN [26] to 

optimize the performance. To comprehensively assess its 

effectiveness, the model was benchmarked against established 

cryptographic standards such as Data Encryption Standard (DES) 

[30], Attribute-Based Encryption (ABE) [2], Advanced Encryption 

Standard (AES) [31] and Hyper-ECC [32], providing a thorough 

comparison of its capabilities. 

6.2. Evaluation measures 

The implemented data deduplication framework uses a number of 

efficacy metrics and it is given below. 

 (a) Accuracy: 

( )
( )ttddyypp

yypp
acy

+++

+
=

 

(b) FNR: ttdd
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fnr

+
=

                                   

(c) FPR: 
yypp
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 (d) Specificity:  ttdd
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+
=

                                              

                            

 (e) Sensitivity:  
ttpp
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=

      

                                          

 (f) NPV: ddtt

pp
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+
=

     

Here, word 
pp

 and
yy

, dd  and tt  denotes true, false positives 

and false, true negatives. 

6.3. Convergence experiment of the suggested ERTH 

algorithm 

Fig. 7 illustrates the comparative analysis of the convergence 

efficiency of the newly introduced ERTH method against 

conventional methods by examining iteration values. Specifically, 

at the 20th iteration, the ERTH method exhibited superior 

convergence rates, surpassing other methods significantly: it 

outperformed the GEO by 65.9%, the RFO by 34.5%, CBOA by 

89% and the RTH algorithm by 29%. These results underscore the 

effectiveness of the modified ERTH approach in optimization 

tasks compared to existing strategies. 

 

Fig. 8. The designed ERTH algorithm’s convergence evaluation over 

multiple traditional optimization algorithms  

6.4. Block size analysis of the proposed cryptograpy techniques 
compared over  existing model  

The proposed HECC-OK based encryption model underwent 

comparative evaluation with several cryptographic techniques, as 

depicted in Fig. 9. This evaluation considered various block sizes 

to assess the performance comprehensively. Particularly, in Fig. 

9(b), where the block size memory was fixed at 20, the 

cryptography algorithm demonstrated remarkable superiority, 
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outshining DES, ABE, AES an HECC by margins of 33.9%, 

77.5%, 34% and 22%, respectively. Such outcomes highlight the 

exceptional efficacy of the proposed model, showcasing its 

advanced capabilities beyond traditional classification 

methodologies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Block size analysis of the designed HECC-OK based encryption model contrast with traditional cryptograpy algorithms regarding “(a) Decryption 

time, (b) Memory size  and (c) Encryption time ” 

6.5. Block size analysis of the proposed ERTH- HECC-OK 
model compared over  existing model  

The proposed HECC-OK based encryption model subjected to a 

comparative analysis alongside several traditional algorithms, 

illustrated in Fig.10. This analysis took into account different block 

sizes to thoroughly evaluate performance. Notably, in Fig. 10(c), 

with the encryption time set at 25, the proposed algorithm 

significantly outperformed GEO-HECC-OK, RFO-HECC-OK, 

CBOA-HECC-OK, and RTH-HECC-OK, surpassing them by 

margins of 22.9%, 56.5%, 78%, and 55% respectively. These 

results underscore the outstanding effectiveness of the proposed 

model, highlighting its superior capabilities over conventional data 

deduplication methodologies. 

 

 

Fig. 10. Block size analysis of the designed HECC-OK based encryption model contrast with traditional algorithms regarding “(a) Decryption time, (b) 

Memory size  and  (c)Encryption time ” 
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6.6. Case based analysis of the proposed HECC-OK based 
encryption model compared over  conventional model  

The analysis of the HECC-OK based encryption model involved a 

comparative review against various established algorithms, as 

depicted in Fig.11. This review considered a spectrum of case-

specific variables. Specifically, in Fig. 11 (a), with the CPA ratio 

is set as 2, the proposed model demonstrated superior performance, 

surpassing GEO-HECC-OK, RFO-HECC-OK, CBOA-HECC-

OK, and RTH-HECC-OK by margins of 44.9%, 66.5%, 89%, and 

11%, respectively. These findings emphasize the enhanced 

effectiveness of the proposed model compared to other traditional 

algorithm models. 

 

 

Fig. 11. Case  based analysis of the designed HECC-OK based encryption model contrast with traditional algorithms regarding “(a) CPA, (b)Key 

sensitivity  and  (c)KPA” 

6.7. Case analysis of the proposed cryptography technique 
model compared over  conventional model  

The evaluation of the HECC-OK based encryption model involved 

a detailed comparison with several recognized cryptography 

techniques, as shown in Fig. 12. This examination took into 

account a range of factors specific to each case. Notably, in Fig. 12 

(b), when the key sensitivity is set as 4, the performance of the 

proposed model notably outperformed that of DES, ABE, AES, 

and HECC, with improvement margins of 78.9%, 56.5%, 77%, and 

12%, respectively. These results underscore the superior efficacy 

of the proposed model in comparison to traditional cryptographic 

algorithms. 

 

Fig. 12. Case  based analysis of the designed HECC-OK based encryption model contrast with traditional cryptography algorithms regarding “(a) CPA, 

(b)Key sensitivity  and  (c)KPA” 
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6.8. Performance analysis of the data deduplication model 
compared over  conventional approaches  

The proposed data deduplication method underwent comparison 

with a variety of conventional approaches, as illustrated in Fig. 13. 

This evaluation specifically considered the impact of different 

activation function variables. Notably, in Fig. 13(a), when the 

activation function's accuracy was set to use the tanh function, the 

proposed model demonstrated superior performance, exceeding 

that of GEO-OSCDN, RFO-OSCDN, CBOA-OSCDN, and RTH-

OSCDN by margins of 33.9%, 6.5%, 64%, and 22%, respectively. 

These results underline the remarkable effectiveness of the 

proposed model, showcasing its advantage over conventional 

classification techniques. 

 

 

Fig. 13. Performance  analysis of the designed data deduplication in cloud network contrast with traditional algorithms regarding 

(a)accuracy,(b)FNR,(c)FPR,(d)NPV,(e)Precision,(f)sensitivity and (g) specificity” 
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6.9. Overall Performance Analysis of the data deduplication 
model 

Tables II and III provide a comprehensive comparison of the 

efficiency of the proposed model with other traditional algorithms. 

Notably, the suggested data deduplication model for the cloud 

exhibited precision rates surpassing 22.9% for GEO-OSCDN, 

78.5% for RFO-OSCDN, 67% for CBOA-OSCDN, and 49% for 

ERTH-OSCDN. These findings underscore the remarkable 

accuracy and overall effectiveness of the recommended approach. 

 

Table II: The Implemented Data Deduplication in Cloud Network Compared Over Multiple Conventional Algorithms 

TERMS GEO-OSCDN [27] RFO-OSCDN [28] CBOA-OSCDN [29] RTH--OSCDN [26] ERTH-OSCDN 

“Accuracy” 95.55 95 95.2 95.5 96.7 

“Sensitivity” 95.635 95.635 94.94 95.04 96.528 

“Specificity” 95.464 94.355 95.464 95.968 96.875 

“Precision” 95.54 94.51 95.509 95.992 96.912 

“FPR” 4.5363 5.6452 4.5363 4.0323 3.125 

“FNR” 4.3651 4.3651 5.0595 4.9603 3.4722 

“NPV” 95.464 94.355 95.464 95.968 96.875 

“FDR” 4.4599 5.4902 4.491 4.008 3.0876 

“F1-score” 95.588 95.069 95.224 95.513 96.72 

“MCC” 91.099 90.005 90.401 91.005 93.401 

Table III: The Implemented Hecc-ok Based Encryption Model Compared Over Multiple Conventional Cryptgraphy Techniques 

TERMS DES [30] ABE [2] AES [31] HECC [32] ERTH-OSCDN 

“Accuracy” 95.55 95.35 95.25 96.55 97.3 

“Sensitivity” 95.984 95.299 95.69 96.18 97.258 

“Specificity” 95.097 95.403 94.791 96.936 97.344 

“Precision” 95.331 95.58 95.039 97.036 97.448 

“FPR” 4.903 4.5965 5.2094 3.0644 2.6558 

“FNR” 4.0157 4.7013 4.3095 3.8198 2.7424 

“NPV” 95.097 95.403 94.791 96.936 97.344 

“FDR” 4.6693 4.4204 4.9611 2.9644 2.5515 

“F1-score” 95.656 95.439 95.364 96.606 97.353 

“MCC” 91.097 90.697 90.497 93.102 94.598 

 

7. Conclusion 

The proposed framework addressed the challenge of managing 

rapidly growing data volumes in cloud environments by 

introducing a sophisticated deep learning-based data deduplication 

model, specifically designed to optimize storage efficiency and 

minimize data redundancy. This model enhanced by the ERTH 

algorithm, aimed to improve security and reduce computational 

overhead. At the heart of this framework was the OSCDN, which 

integrated the DBN with DConvLSTM networks. This integration 

was crucial for effectively identifying and eliminating duplicate 

data, with the ERTH algorithm fine-tuning the OSCDN model's 

parameters to ensure peak performance. Additionally, the 

framework incorporated the HECC-OK model for encryption, 

delivering robust security solutions optimized for efficiency in 

resource-limited settings. The ERTH algorithm also played a role 

in selecting optimal keys for this encryption model, further 

enhancing its effectiveness. To ascertain the effectiveness and 

efficiency of the developed framework, it was rigorously 

compared against traditional data deduplication and encryption 

methods. This comparison utilized statistical analysis to 

demonstrate the proposed framework's improvements over 

existing techniques. When the activation function's precision was 

set to use the linear function, the proposed model demonstrated 

superior performance, exceeding that of GEO-OSCDN, RFO-

OSCDN, CBOA-OSCDN, and RTH-OSCDN by margins of 

55.9%, 22.5%, 83.4%, and 56.9%, respectively. These results 

underlined the remarkable effectiveness of the proposed model, 

showcasing its advantage over conventional classification 

techniques. The deduplication process can add complexity to data 

management, making it difficult to ensure consistency and 

integrity across the system. While data deduplication in the cloud 

offers significant benefits in terms of efficiency and cost savings, 

addressing its limitations requires ongoing technological 

advancements.  
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