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Abstract: Smart contracts (SCs) deployed on blockchain platforms like Ethereum blockchain provide a platform with the purpose of 

managing commercial arrangements. Though, the visibility of SCs makes them vulnerable to exploitation and misuse, including Denial-

of-Service (DoS) attacks. This research introduces an advanced anomaly detection framework aimed at strengthening smart contract 

security by leveraging blockchain metadata analysis. Unlike traditional methods relying solely on transaction data, this framework 

incorporates comprehensive metadata like transaction sources, gas fees, and timestamps to provide contextual insights for detecting 

suspicious activities within smart contracts. This expanded feature set gives useful context for detecting suspicious transactions or activities 

in smart contracts. Transaction timestamp analysis allows for the identification of temporal patterns and trends, which in turn allows for 

the detection of anomalous activity, such as sharp spikes or drops in transaction frequency. Transaction-related gas fees provide information 

on network congestion and transaction complexity, which helps identify anomalies like unusually high or low fees that could be signs of 

spam or exploit attempts. Also, over the past years, many ML models has been developed to perform anomaly detection from the smart 

contract. The existing schemes are unable to achieve good performance due to lack in feature reduction and class balancing. In this research 

article novel framework is proposed which will solve class imbalancing problem and also reduce features efficiently. The Synthetic 

Minority Over-Sampling Technique (SMOTE) model is used for the class balancing and Principal Component Analysis (PCA) is used for 

the reduction of attributes. The voting classification technique is put forward to classify anomalies. The voting classification method is the 

combination of various classifiers like SVM, Random Forest, KNN and it use bagging approach for the final prediction.Diverse parameters, 

like accuracy, precision, and recall are employed to simulate the projected framework. Such parameters lead to give visions to compute 

this framework while classifying anomalies and regular transactions at higher accuracy. The results analysed that the projected framework 

yielded 91% value for all the parameters which is approx. 30% higher than existing methods. 

Keywords: Blockchain, Ethereum, Smart Contract, Anomaly Detection, Blockchain Metadata, DOS attack, Machine Learning, Voting 

Classifier. 

 

1. Introduction 

The notable advantage of blockchain technology lies in its ability 

to decentralize traditionally centralized services. With a market 

capitalization of nearly $200B and an everyday transaction volume 

of approximately $100B, Bitcoin [1] serves as a prominent 

example. Apart from Bitcoin, numerous "alt-coins" have emerged, 

each with its own platform and service offerings. One such 

platform is Ethereum, which enables the direct control of digital 

assets through smart contracts, which are coded instructions 

governing the automatic movement of assets based on predefined 

rules [2]. DAOs is a kind of SCs of longer period governed via 

shareholders. It is considered as a crowdfunded undertaking wealth 

fund implemented as a SC, experienced a theft of over $50 million 

because of a vulnerability in the Solidity SC language. This 

occurrence prompted hard fork of Ethereum and the creation of 

"alt-coin" known as Ethereum Classic. Several SCs of higher level 

are suffered similar attacks, resulting in the loss of their funds. The 

rapid development of SCs utilization results in bugs whose 

prevention is required in their implementation and in the Solidity 

language. 

1.1. Classification of Smart-Contract Vulnerabilities   

Smart-Contract Vulnerabilities have diverse classes which are 

defined as follow: 

i. Re-entrancy Attack: Re-entrancy attacks are a prevalent 

susceptibility in SCs, in which an attacker focuses on invoking 

functions at rapid level when a contract is interacted and stealing 

the assets or disturbing the contract logic [3]. The check-effects-

interactions principle, which guarantees the completion of state 

updates before interacting with external contracts, served as an 

obstacle to this type of attack. The locking systems are effective to 

prevent re-entrancy. Thorough code review, analysis, and effective 

programming practices are essential for protecting against re-

entrancy attacks and other security challenges.  

ii. Integer Overflow and Underflow: The aforementioned 

susceptibilities are commonly observed when an integer variable's 

value begins to increase above or fall below the extreme or 

minimum value necessary to show the type of data it represents. 

The SCs are suffered from computing errors or random behaviour 

due to these attacks [4]. Thus, their safety is infected at large 

extent. The SafeMath library is introduced for tackling these 

vulnerabilities. Its protective mathematical models assist in 

prevent these attacks.   

iii. Uninitialized Storage Pointer: These susceptibilities in SCs are 
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occurred in the form of a class of disregarded but potentially 

hazardous security attacks. The major issues of these attacks is the 

utilization of storage pointers in SCs by coders for which they do 

not initialize them and do not complete this process. The malicious 

users focus on such pointers for accessing and modifying the data 

in the storage region, due to which the contract data is read, written, 

or altered imperfectly [5]. 

iv. Access Control Vulnerability: these attacks are occurred when 

SCs become incapable of properly controlling the permission 

actions. Consequently, the assailants attain potential for executing 

unauthentic tasks. Proper access control implementation is crucial, 

where contracts aims at validating the identity of a user prior to 

permitting some operations. By bypassing authentication 

measures, attackers can execute unauthorized operations, 

potentially resulting in asset stealing, contract tampering, or 

closure. Contracts should limit functions to the authority or 

authenticated users and capable of deploying require () statement 

for verifying permissions, following the principle of least privilege 

[6]. 

v. Front-End Runtime Error Vulnerability: These susceptibilities 

arise in some SCs portions having an interaction among user 

interfaces. Errors such as logic, input validation errors, result in 

causing downfalls in execution or random behavior, and effecting 

the safety of SC. These vulnerabilities are typically found in the 

front-end applications running smart contracts. 

vi. Time Dependency: Time dependency attacks exploit time-

based tasks in SCs and the features of blockchain. Attackers’ 

potential is higher for manipulating the block timestamps for 

affecting time-based SC logic, potentially leading to failures or 

unexpected outcomes. These attacks can cause losses to contract 

participants.  

vii. Denial-of-Service (DoS) Attack: These attacks are launched in 

order to disrupt access to a specific target's network or resources. 

When such an attack is carried out from multiple locations 

simultaneously, it is referred to as a DDoS attack [7]. In the context 

of blockchain, a DDoS attack can potentially paralyze the entire 

blockchain network. To mitigate DoS attacks, Ethereum 

implements a transaction fee mechanism known as "gas" where a 

specific volume of gas is essential in sending transactions. Such 

technique provides some resistance against DoS attacks. However, 

a successful DoS attack on Ethereum has been observed due to the 

low gas consumption price of the EXTCODESIZE opcode. The 

EXTCODESIZE opcode is responsible for retrieving the code size 

of a smart contract [8]. By exploiting the low gas consumption of 

this opcode, an attacker can perform a significant number of EXT-

CODESIZE operations within a single transaction [attack details]. 

Such attacks consume considerable computing and network 

resources, result in network jamming or blocking. Another attack 

method involves the use of the SUICIDE opcode [9]. Attackers 

leverage the SUICIDE operation to create numerous empty 

accounts, which results in wasted disk resources because their 

storage is required in the state tree. This attack significantly slows 

down the process of synchronizing the node and executing the 

transaction within the blockchain. Additionally, denial-of-service 

attacks can also occur through excessive authority granted to smart 

contract token owners [10]. In case of objective of the token 

contract holder to freeze the contract at rapid level, other users of 

this SC become unable of executing transactions. 

1.2. Machine Learning  

In ML, a subset of AI, activities are carried out automatically 

without the need for explicit programming. By virtue of existent 

data properties, ML algorithms construct mathematical 

representations. They then continually learn from new sample data 

and modify their models as necessary [11]. These models learn 

patterns, adjust actions, and make decisions in an automatic way, 

without requiring manual intervention. In visualized era, having 

generation of enormous volume of data, it is impractical for 

humans to process and analyse all of it. ML enables automated 

processing of large data sets and extraction of relevant features. 

The ML is capable of continuously learning from novel training 

data, allowing its enhancement over time in case of unexpected 

results from the model. ML methods find extensive applications 

for classifying the data, detecting and predicting anomaly, etc. 

[12]. Examples of ML applications in everyday life include 

recognizing face or emotion, detecting fraud in credit card, 

analysing sentiments, etc.  

ML techniques had diverse categories for example supervised, 

unsupervised and reinforcement. The initial models require data 

with labels for developing a mathematical approach. By feeding 

input data and desired results, the algorithm becomes applicable 

for extracting the association among the input data and labels, 

enabling it to accurately predict outcomes for hidden input data. It 

is an extensive approach for forecasting or classifying particular 

outcomes [13].  

In contrast, unsupervised learning algorithms use data of no labels 

for training the model. This approach aims to discover hidden 

insights and structures within the dataset, grouping similar data 

points into categories or clusters. Unsupervised approach 

frequently uses cluster analysis, which groups together comparable 

data points so that outliers that don't fit into any clusters can be 

identified as anomalies. 

Reinforcement learning algorithms learn when an exterior 

environment is related, and receive feedback on their actions. 

Different ML techniques are suitable for different operations. For 

instance, prior two approaches are exploited to analyse the data, 

while this approach is employed to tackle the issues related to make 

decision [14]. Intelligent agents can find the optimum course of 

action to maximize the overall profit over the long term by 

investigating and studying their surroundings. We refer to this 

technique as reinforcement learning. 

Deep learning has gained popularity in recent years for tackling 

complex tasks [15]. It is planned on the basis of ANNs with 

multiple layers for extracting high-level attributes from inputs. 

Common models in DL include MLP, CNN, and RNN. Deep 

learning's potential for attaining abstractions of higher quality to 

model the data, has found applications in regions of recognizing 

pictures and NLP. 

1.3. Reinforcement learning for Anomaly detection in 

Blockchain 

In the field of detecting security of SC, reinforcement learning 

(RL) has emerged as a prominent ML approach, demonstrating 

notable achievements across various application domains [16]. 

Through interactions with the scenario, RL allows intelligent 

agents for discovering and to learn effective strategies in an 

autonomous way for maximizing long-term collective rewards. 

• Q-Learning: The update of action-value function Q(s, a) can 

be done using the model-free RL method known as Q-

Learning. This function estimates the expected total return 

when a specific action is carried out in an available state [17], 

which helps agent in selecting the precise actions on the basis 

of Q-values. This approach is expressed as 

      𝑛𝑒𝑤 𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎)+ ∝ [ 𝑟(𝑠, 𝑎) +

                                    𝛾 𝑀𝑎𝑥 𝑄′(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)]   -         (1) 
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In equation (1), α denotes the learning rate and the discount 

factor is represented with γ. It is an extensively applied 

approach in diverse domains, such as automated control and 

network forwarding, showcasing its classical significance.  

• Deep Q-Network: It is other RL method in which Deep 

Neural Network (DNNs) is integrated with Q-Learning 

method. It leverages Neural Network for approximating Q(s, 

a), allowing it to handle complicated input state spaces, 

including high-dimensional raw pictures. The updated 

formula for this approach as: 

         𝑄(𝑠, 𝑎; 𝜃) ← 𝑄(𝑠, 𝑎; 𝜃) +  𝛼 [ 𝛾 𝑀𝑎𝑥 𝑄(𝑠′, 𝑎′; 𝜃) −

                                  𝑄(𝑠, 𝑎; 𝜃)]     -                                     (2)  

In this equation 2, 𝜃 represents the metrics of the existing 

NN, while 𝜃′ represents the metrics of the target NN. 

• GAIL: Generative Adversarial Imitation Learning (GAIL) is 

an approach that integrates GANs with RL [18]. It enables 

agents to learn effective rules by imitating expert policies. 

GAIL involves two key components: the generator loss, 

which guides the policy learning, and the discriminator loss, 

which distinguishes expert demonstrations from policy-

generated trajectories. 

• MCTS: Monte Carlo Tree Search (MCTS) is an approach 

that utilizes MC simulations to construct a Seek Tree and 

iteratively find an approximate explanation when the 

examination and utilization is balanced. No general formula 

is included in this approach. However, it involves 4 main 

phases such as to select the data, expand it, simulate, and BP. 

MCTS has been successfully combined with deep learning 

in notable examples like AlphaGo [19], showcasing the 

effectiveness of integrating MCTS with deep learning 

techniques in various domains. 

Recent research has highlighted the susceptibility of Ethereum 

Smart Contracts developed using Solidity to various attacks. One 

notable vulnerability is the DoS Unexpected Revert flaw, which 

can lead to Denial of Service (DoS) incidents [20]. In essence, this 

vulnerability arises from mishandling incomplete transactions, 

whether due to errors or intentional reversals, resulting in Smart 

Contracts becoming non-functional. Current techniques of 

detecting vulnerabilities primarily rely upon predefined rules set 

via professionals, and not very effective and struggle with 

accessibility. Though some studies employed ML for extracting 

contract attributes in identifying vulnerabilities, these approaches 

often overlook crucial aspects and fail to fully leverage the 

information within SCs. A novel method is essential to detect 

vulnerabilities in SCs for tackling drawbacks of traditional 

methods [21]. 

2. Literature Review 

N. F. Samreen, et.al (2021) projected a framework known as 

SmartScan in which the static analysis was integrated with 

dynamic one for detecting DoS fragility brought on by a sudden 

relapse in Ethereum Smart Contracts [22]. This methodology was 

helpful for scanning the smart contracts being tested so that 

vulnerable patterns might be found. The latter analysis was 

conducted for determining whether the DoS-Unexpected Revert 

vulnerability was exploitable. It led to enhance the efficacy and 

attain more optimal outcomes. A set containing 500 smart 

contracts generated via the Etherscan was utilized in 

experimentation. The findings depicted that the suggested model 

was useful for enhancing the precision and recall in contrast to 

existing methods. This model was not adaptable on all kinds of 

applications.  

Fadi, et.al (2024) proposed the utilization of adaptive 

augmentation in conjunction with contrastive learning as a means 

to detect reentrancy and endless loop attacks in smart contracts 

[23]. This innovative approach had been shown to enhance 

performance in downstream tasks, such as smart contract 

categorization, by effectively learning task-agnostic representative 

data features. Through the use of this technique, researchers were 

able to address concerns about interpretability and the lack of 

representative datasets, as well as dive into the complexities of 

smart contract characteristics. The study demonstrated how well 

contrastive learning, GNN networks, and adaptive augmentation 

work together to detect re-entrancy and infinite loop assaults in 

real-time smart contracts. Empirical data showed that this method 

worked better than conventional baseline models. Contrastive 

learning must be combined with neural network-based models 

because the latter cannot identify timestamp attacks on its own.  

Duan, et.al (2023) introduced an innovative method for identifying 

susceptibilities in SCs after extracting data from different tiers of 

smart contracts and utilizing these features for training ML 

algorithms to detect vulnerability efficiently [24]. This approach 

involved utilizing a pre-trained CodeBERT model which extracted 

token attributes from the source code and 2-gram attributes from 

the opcodes of SCs. Hence, the semantic content of SCs was 

captured at multiple stages. To uncover vulnerabilities in contracts, 

the aggregation of extricated attributes was done and they were 

also fused, and inputted into machine learning models. To validate 

this approach, over 10,266 smart contracts were analysed. The 

experiments demonstrated detection accuracies of up to 98%, 98%, 

and 94% for three different vulnerabilities, respectively. The 

suggested method demonstrated efficacy in automatically 

detecting smart contract vulnerabilities, with an average detection 

time of 0.99 seconds for SC. It is crucial to remember that although 

ContractGuard might be excellent at finding vulnerabilities, it 

might not be as good at preventing logical mistakes in complicated 

predicates.  

A. Ghaleb, et.al (2022) analyzed those smart contracts (SCs) which 

were deployed on Ethereum blockchain, made the utilization of gas 

[25]. The users submitted the invocation requests of contracts for 

this gas. However, Denial-of-Service (DoS) was occurred on these 

patterns for activating abnormal behaviour in the targeted victim 

contracts. These attacks were named as gas-related vulnerabilities. 

Thus, a static analyser called eTainter was developed to detect such 

susceptibilities on the basis of taint tracking in the bytecode of SCs. 

A comparison of the new strategy with the standard approaches 

was done. According to results on a dataset of annotated contracts, 

the developed approach yielded a precision and recall up to 90%. 

However, the analysis depicted the existence of gas-related 

vulnerabilities in 2,763 of these contracts.  

Wang, et.al (2020) introduced ContractGuard, the pioneering IDS 

specifically engineered for defending against attacks on ESCs [26]. 

ContractGuard identifies intrusion attempts through the detection 

of aberrant control flow, a method commonly employed by 

traditional program IDSs. To achieve this, the model was 

developed to profile context-tagged acyclic pathways, embedded 

within the contracts, and optimized using the Ethereum gas-

oriented performance framework. The primary goal of this model 

was to minimize costs, a critical consideration given the necessity 

of upfront payment for digital concurrency. Through the 

implementation of this methodology, only 36.14% of overhead in 

implementation and 28.27% in running were increased. 

Remarkably, the suggested model successfully thwarted attacks on 

83 percent of seeded issues and all real-world vulnerabilities. 
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Though, the practical application of this notion may be limited in 

smart contract programs that heavily rely on features requiring 

frequent external calls to unprotected contracts. 

Yang, et.al (2024) introduced CrossFuzz, a fuzz testing-based 

technique designed to detect cross-contract vulnerabilities [27]. 

This innovative approach addressed two key issues: the generation 

of constructor parameters and the manipulation of transaction 

sequences. To begin, CrossFuzz generated constructor parameters 

for the contract under examination subsequent to trace the data 

flow of address-kind metrics. It then identified function definitions 

and state variable usages by analysing the interactions between 

function calls across contracts. Additionally, CrossFuzz optimized 

the mutation of transaction sequences using the Inter-Contract 

Data Flow (ICDF) method, ultimately conducting comprehensive 

cross-contract fuzz testing. The CrossFuzz test findings showed a 

notable enhancement in security fault detection, with the suggested 

approach finding 1.82 times more vulnerabilities than the state-of-

the-art methods. Moreover, CrossFuzz demonstrated its efficacy in 

detecting cross-contract vulnerabilities by increasing bytecode 

coverage to 0.1058 against the standard. It was significant to 

highlight that the introduced model does not take into account 

scenarios where branch requirements are already satisfied by 

default constructor values for state variables, nor does it apply to 

test cases where SC interacts with addresses.  

Ndiaye, et.al (2023) discussed that smart contracts (SCs) were 

effective and cost-effective targets for aggressors due to storage of 

huge volume of money in them [28]. Thus, a novel anomaly 

detection (AD) model called ADEFGuard was developed on the 

basis of behaviour of SCs, as a novel feature. A learning and 

monitoring module was executed for determining the deceitful 

behaviours of SCs. This model was performed better in contrast to 

other techniques concerning 3 facets. Initially, a unified solution 

was generated for diverse kinds of scams so skills required to 

analyse code were avoided. Secondly, its inference was 

instructions of magnitude which worked quickly rather than 

analysing code. Lastly, the developed model yielded accuracy up 

to 85%, precision up to 75%, and recall up to 90% to detect 

malicious contracts. Moreover, this model was robust to detect new 

malevolent behaviours of SCs. But, this model was ineffective of 

determining whether SS was authentic or not.  

N. Ashizawa, et.al (2022) presented a ML-based method known as 

Eth2Vec for detecting susceptibilities in SC [29]. This approach 

remained robust against code rewrites that was useful to detect the 

vulnerabilities even in rewritten codes. Unlike other methods, a 

neural network (NN) model was adopted to process the language 

with the objective of learning the attributes of vulnerable contracts 

automatically. The aforementioned approach sought to identify the 

weaknesses in SCs when the similarities of codes of a target 

contract were contrasted against learning ones. In the light of 

experiments on Etherscan, the presented technique had yielded 

superior precision, recall, and F1-score. It efficacy was mitigated 

under diverse areas/settings.  

M. Eshghie, et.al (2021) established a monitoring system called 

Dynamit to find Ethereum smart contracts' re-entrancy issues [30]. 

The blockchain system's transaction metadata along with balanced 

data were used by the framework. Notably, Dynamit didn't need 

unique execution environments, code instrumentation, or domain-

specific knowledge. Instead, it used an algorithm contingent on 

machine learning (ML) to identify transactions as either legitimate 

or fraudulent by extracting attributes from the information about 

the transactions. This model was adaptable to detect the vulnerable 

contracts to re-entrancy attacks and attain execution trace for re-

generating the assault. The results indicated that the devised model 

offered 90% above accuracy with random forest (RF) algorithm on 

105 transactions. Diversity of data features led to make this system 

ineffective in some scenarios.  

Hu, et.al (2020) suggested a method for Ethereum smart contracts 

that uses transaction-based categorization and detection to solve 

these problems [31]. Ethereum is considered to extract ten 

thousand SCs, which concentrated on the data behaviour produced 

via users and SCs. Through manual analysis, this work found four 

patterns of behaviour from the transactions that can be utilized to 

differentiate among diverse contract kinds. From this, fourteen 

basic characteristics of SC were then built. This paper developed a 

data slicing algorithm to partition the collected SCs in order to 

build database. After that, our datasets were trained and tested 

using an LSTM network in this work. The comprehensive testing 

results demonstrated that this method can effectively identify 

various contract types and be used for detecting anomalies and 

malevolent SC concerning recall, f1-measure, and precision. In 

datasets, the imbalance problem arises. 

Shen, et.al (2021) suggested a novel detection methodology 

utilizing bytecode to identify Ponzi schemes within smart contracts 

[32]. Two primary strategies were used in the model to 

demonstrate this novel approach: first, the bytecode was 

effectively transformed into a high-dimensional matrix that 

included all proposed attributes, with two bytes denoting a single 

feature. Subsequently, the identification of Ponzi schemes was 

ingeniously reframed as an anomaly detection challenge. In the 

end, this anomaly detection method was successful in identifying 

Ponzi schemes inside smart contracts. Experimental results show 

that the proposed detection methodology significantly increased 

the detection accuracy of Ponzi scheme contracts. Hence, the 

suggested methodology achieved F1-measure up to 0.88, 

surpassing the performance of traditional detection models. This 

high F1-score of 0.88 significantly outperformed other 

conventional detection models. Moving forward, a more 

comprehensive analysis of the properties of bytecodes is essential 

to further enhance the identification of Ponzi scheme contracts. 

Huang, et.al (2022) created a MTL-relied technique to detect 

anomaly in SC [33]. The major intend was to improve the 

potentials of this technique for recognizing and detecting 

susceptibilities when additional tasks were allocated for learning 

more significant attributes. The hard-sharing model containing 2 

elements were considered as the basis. Initially, the last layer was 

employed to learn the semantic information of inputted SC. 

Subsequently, task-specific layer was executed for finding the 

operation of every task. The objectives of every task were 

completed using existing CNN. This model assisted in developing 

a classifier to learn and extract attributes from the common layer, 

which trained the data. in experimentation, the created technique 

was proved effective to detect vulnerabilities and proved suitable 

for detecting various kinds of susceptibilities. In comparison to a 

single-task model, this model was less costly in terms of 

computing, storage, and time. This study used the HPS approach 

that diminished the efficacy of model and limited its capacity for 

generalization. 

Zhang, et.al (2022) suggested an innovative hybrid DL algorithm 

called CB-GRU, which cleverly mixed many Deep Learning 

techniques with several word embeddings (Word2Vec, FastText) 

[34]. In order to discover smart contract vulnerabilities, the model 

merged features that it had gathered using various deep learning 

models. Through a set of studies, this paper showed that the 

suggested algorithm was more robust to detect vulnerabilities on 

SC on the dataset SmartBugs Dataset-Wild, which is presently 

available to the public. When comparing the suggested model's 
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performance to earlier research, it was found that the suggested 

algorithm was performed better to detect anomalies in SCs. For 

detecting susceptibilities in SCs with cryptic attributes, it is 

necessary to find several SC susceptibilities within similar SC and 

to increase the precision of this algorithm. 

2.1. Research Gaps 

Diverse research gaps are defined as:   

1. Integration of Comprehensive Metadata: Many existing 

frameworks focus on specific aspects of transaction data or 

contract code analysis. For instance, methods like 

SmartScan and ContractGuard primarily use static and 

dynamic analyses of smart contracts but do not extensively 

incorporate broader blockchain metadata such as 

transaction sources, gas fees, and timestamps. This 

comprehensive metadata can provide more contextual 

insights and improve the detection of anomalies and 

vulnerabilities. 
2. The methods proposed in the earlier years are based on 

quantitative analysis. By quantitative analysis, data can be 

analyzed but future trends cannot be predicted. Therefore, 

some new smart contract data classification methods must 

come into existence in order to predict future trends  

3. The smart contract dataset has the problem of class 

imbalancing due to which class overfitting or under fitting 

problems get raised. In the existing methodologies very 

less work is done to solve problem of class imbalancing so 

that performance can be improved for the smart contract 

data classification. 

3. Research Methodology 

The principal target of this research is to detect anomalies in 

blockchain networks. The classification process involves several 

phases, such as to pre-process data, extract features, and classify 

data. This is how the work is conducted: 

1. Dataset input and pre-processing: The preliminary phase 

involves using data collected from authentic sources as input. In 

this analysis, the data from Ethereum block chain was fetched via 

Etherscan API. By applying the Ethereum blockchain, Etherscan 

API stores the transaction data from Ethereum. An in-depth look 

at Ethereum blockchain structure has been provided by the study 

of markets of smart contracts and transactions activity that resulted 

in the provided extensive dataset. By sending requests to the API 

we were capable to acquire the transaction details, namely (nonce 

or block numbers), gas information and so. This dataset includes 

information on over 12,000 entries of Ethereum Blockchain node 

data. But the main challenge was to find malicious smart contract 

from Ethereum network. All previous smart contracts were non-

malicious. 

Detection of DOS attacks in live smart contract requires 

monitoring on-chain activity and leveraging a combination of 

techniques. We have used following approaches on smart contracts 

to detect vulnerabilities: 

a) Transaction monitoring 

o Track transaction rate: Monitor the frequency of 

transactions interacting with the smart contract. 

Sudden spikes or drops in transaction volume can 

indicate a DoS attempt. 

o Analyze Gas Usage: Keep an eye on gas consumption 

per transaction. Unusually high or low gas fees might 

be a sign of malicious activity. Transactions with 

minimal gas might be attempting to clog the network, 

while exceptionally high gas fees could be an attempt 

to exploit the contract. 

b) Log Analysis 

o Identify Repetitive Transactions: If the same 

transaction or a slight variation keeps appearing, it 

could be a DoS attempt. 

o Unusual Function Calls: Monitor calls to specific 

contract functions. If uncommon functions are being 

called repeatedly, it could be a sign of exploration for 

vulnerabilities. 

c) Proactive measures 

o Gas Limit Checks: Implement checks within the smart 

contract to prevent transactions exceeding a set gas 

limit. 

Based on above approaches we have prepared dataset. Our dataset 

is split between malicious nodes and non-malicious nodes. This 

dataset is perfect for blockchain researchers interested in data 

visualization and analysing node behaviour on the blockchain. 

Purpose of Dataset 

The purpose of this dataset is to facilitate the detection and analysis 

of Denial-of-Service (DOS) attacks targeting smart contracts in 

blockchain systems. By providing a comprehensive collection of 

data, researchers and security professionals can utilize this dataset 

to develop and validate algorithms, models, and techniques for 

identifying and mitigating DOS attacks in smart contracts. 

Dataset Structure 

The dataset contains the following columns, which serve as crucial 

parameters for analysing smart contract transactions: 

1. Contract Address: The unique identifier of the smart 

contract involved in the transaction. 

2. Block Number: The block number in which the 

transaction was included. 

3. TimeStamp: The timestamp indicating the date and time 

when the transaction occurred. 

4. Hash: The transaction hash, serving as a unique identifier 

for the transaction. 

5. Sender Address: The address of the sender who initiated 

the transaction. 

6. Receiver Address: The address of the recipient or the 

smart contract being interacted with. 

7. Gas Limit: The maximum amount of gas allocated for 

the transaction. 

8. Gas Used: The actual amount of gas consumed by the 

transaction. 

9. Contract Name: The title commonly used to identify the 

contract. 

10. Status (Output Label): A label indicating the nature of 

the transaction, where '0' denotes a non-malicious 

transaction and '1' denotes a potentially malicious 

transaction associated with a DOS attack. 

By utilizing this dataset, researchers and practitioners can analyse 

the characteristics, patterns, and behaviours of transactions to 

identify potential DOS attacks on smart contracts. The dataset 

serves as a valuable resource for developing machine learning 

models, anomaly detection algorithms, and other techniques aimed 

at enhancing the security and resilience of smart contracts in 

blockchain systems. 

It is important to note that this dataset primarily focuses on DOS 

attacks in smart contracts and does not encompass other forms of 

attacks or vulnerabilities. 
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Samples from the Dataset 

 

Figure 1. Dataset Samples: Live Smart Contract Extracted from Etherscan.io 

To address the issue of class imbalance, the SMOTE technique will 

be employed. 

2. Feature extraction: This function intends to determine the 

relationship between each attribute and the target set. FN is a case, 

in which specimen is truly an invasion but is classed as regular, 

and in FP, a specimen seems regular but is identified as an 

invasion. Poor FN occurs when an intrusion goes undetected. A 

layered approach utilizing multiple intrusion detection systems 

(IDSs) is employed to enhance detection. Principal Component 

Analysis method is assisted in alleviating the number of features. 

3. Classification:  The classification task involves dividing the 

whole dataset into 2 sections. A voting mechanism is presented to 

classify network traffic. Diverse methods, including random forest, 

SVM, and KNN, are integrated to achieve the objective of 

classifying anomalies. The RF algorithm creates a hybrid by 

creating an array of distinct decision trees. Each tree predicts the 

data based on majority votes. Random sampling with replacement 

is employed to develop the trees, ensuring randomness and 

reducing the sensitivity of Decision Trees when the data is trained. 

This approach helps maintain feature randomness by allowing each 

tree to make decisions based on a random subset of attributes. 

SVM (Support Vector Machine) utilizes kernel representation and 

optimized margin. It constructs a hyperactive plane to separate 

different classes of information. The kernel interplanetary explores 

the least hyper range, including all working out cases, and 

determines the location of an examination case in the hyper sphere. 

KNN (K-Nearest Neighbour) algorithm often yields optimal 

results. It can enhance existing algorithms by integrating prior 

knowledge. The majority label among the nearest neighbours, 

determined based on a distance metric, is used to classify 

unlabelled instances using the KNN rule. The effectiveness of such 

classifiers is based on diverse components, like choice of distance 

metric and the number of neighbours considered in KNN. The 

voting classification used bagging method to form final prediction. 

The weights are assigned to each classifier and best prediction of 

each classifier get merged to form final prediction. The pseudo 

code of voting classifier is presented below: - 

 

 

 

Voting Classifier Pseudo Code  
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Figure 2. Flowchart of the Proposed Framework 

4. Result and Discussion 

This research focuses on the classification of network traffic, 

specifically in the context of anomaly detection. The classification 

framework involves several phases, such as to pre-process data, 

extract features, and classify data. The dataset used for testing the 

utilized model is based on blockchain technology. The dataset 

contains the columns for ‘Contract address, Block Number, 

TimeStamp, Hash, Sender Address, Receiver Address, Gas Limit, 

Gas Used and Output Label’. The data extracted was all non-

malicious, so in order to get malicious transactions we had to add 

some threshold value to simulate the DOS attack. In the dataset the 

‘0’ status denotes a non-malicious transaction and ‘1’ denotes a 

malicious transaction.  The efficacy level of the introduced 

technique is evaluated using three metrics (i.e., accuracy, 

precision, recall).  

The devised framework proposed, combines multiple models for 

anomaly detection. It integrates the use of Synthetic Minority 

Oversampling Technique, Principal Component Analysis, and a 

Voting mechanism. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: Performance Analysis 

Model Accuracy Precision Recall Dataset Used 

GA based model [14]  77 % 76 % Own dataset -BCCC-VolSCs-2023- 

CNN Model [24] 77 % 77.50 % 74.46 % Smart Contract Sanctuary [31] 

Proposed Model 91.37 % 90 % 90 % Own Dataset extracted from Etherscan.io and 

checked on simulated environment. 

 

Figure 3. Result Analysis 
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Figure 3. illustrates the result evaluation of machine learning 

algorithms, specifically comparing SVM, KNN, and the developed 

architecture in view of three parameters. In investigation, the 

suggested mechanism gets higher accuracy rate up to over 90%.  It 

is analysed from the results that existing models like SVM and 

KNN models able to achieve accuracy of 68 and 66 percent 

respectively which is approx. 30 percent low as compared to 

proposed model. The accuracy of proposed model is increased 

because it solves class imbalancing problem using SMOTE model 

and feature of the dataset reduced efficiently using PCA model. In 

the last voting classifier is applied which use bagging method to 

form final prediction.    

5. Conclusion 

Smart contract technologies allow users to create decentralized 

digital agreements without relying on intermediaries. These 

technologies have gained popularity in diverse domains like 

medical, business management, shareholder agreements, and 

insurance. Though, with developing usage of SCs, the interest of 

potential attackers is increased, leading to the discovery of 

numerous vulnerabilities and exploitations. This study highlights 

the presence of vulnerabilities and the occurrence of attacks in 

smart contract technology, emphasizing that it is not immune to 

security risks. This research work introduces a novel model that 

combines three key components: SMOTE, PCA, and Voting 

Classification. The Voting method is a blend of SVM, RF and K-

Nearest Neighbor. The proposed model is compared with the 

existing classification models like SVM and KNN which achieves 

accuracy of 68 percent and 66 percent respectively. The accuracy 

of suggested mechanism is counted 91% that is 30% higher than 

existing models. The proposed model achieve accuracy because it 

solves class imbalancing problem and also reduce feature 

efficiently. In future proposed model can be further extended using 

optimization algorithms for the feature reduction and it is expected 

that with the use of optimization algorithms above 95 percent 

accuracy can achieved. 
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