

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6 799www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 3733–3741 |3733

Enhanced DOS Anomaly Detection Framework for Smart Contract

Using Blockchain Metadata Analysis

Monali Shetty 1, Dr. Sharvari Tamane 2

Submitted: 06/02/2024 Revised: 14/03/2024 Accepted: 22/03/2024

Abstract: Smart contracts (SCs) deployed on blockchain platforms like Ethereum blockchain provide a platform with the purpose of

managing commercial arrangements. Though, the visibility of SCs makes them vulnerable to exploitation and misuse, including Denial-

of-Service (DoS) attacks. This research introduces an advanced anomaly detection framework aimed at strengthening smart contract

security by leveraging blockchain metadata analysis. Unlike traditional methods relying solely on transaction data, this framework

incorporates comprehensive metadata like transaction sources, gas fees, and timestamps to provide contextual insights for detecting

suspicious activities within smart contracts. This expanded feature set gives useful context for detecting suspicious transactions or activities

in smart contracts. Transaction timestamp analysis allows for the identification of temporal patterns and trends, which in turn allows for

the detection of anomalous activity, such as sharp spikes or drops in transaction frequency. Transaction-related gas fees provide information

on network congestion and transaction complexity, which helps identify anomalies like unusually high or low fees that could be signs of

spam or exploit attempts. Also, over the past years, many ML models has been developed to perform anomaly detection from the smart

contract. The existing schemes are unable to achieve good performance due to lack in feature reduction and class balancing. In this research

article novel framework is proposed which will solve class imbalancing problem and also reduce features efficiently. The Synthetic

Minority Over-Sampling Technique (SMOTE) model is used for the class balancing and Principal Component Analysis (PCA) is used for

the reduction of attributes. The voting classification technique is put forward to classify anomalies. The voting classification method is the

combination of various classifiers like SVM, Random Forest, KNN and it use bagging approach for the final prediction.Diverse parameters,

like accuracy, precision, and recall are employed to simulate the projected framework. Such parameters lead to give visions to compute

this framework while classifying anomalies and regular transactions at higher accuracy. The results analysed that the projected framework

yielded 91% value for all the parameters which is approx. 30% higher than existing methods.

Keywords: Blockchain, Ethereum, Smart Contract, Anomaly Detection, Blockchain Metadata, DOS attack, Machine Learning, Voting

Classifier.

1. Introduction

The notable advantage of blockchain technology lies in its ability

to decentralize traditionally centralized services. With a market

capitalization of nearly $200B and an everyday transaction volume

of approximately $100B, Bitcoin [1] serves as a prominent

example. Apart from Bitcoin, numerous "alt-coins" have emerged,

each with its own platform and service offerings. One such

platform is Ethereum, which enables the direct control of digital

assets through smart contracts, which are coded instructions

governing the automatic movement of assets based on predefined

rules [2]. DAOs is a kind of SCs of longer period governed via

shareholders. It is considered as a crowdfunded undertaking wealth

fund implemented as a SC, experienced a theft of over $50 million

because of a vulnerability in the Solidity SC language. This

occurrence prompted hard fork of Ethereum and the creation of

"alt-coin" known as Ethereum Classic. Several SCs of higher level

are suffered similar attacks, resulting in the loss of their funds. The

rapid development of SCs utilization results in bugs whose

prevention is required in their implementation and in the Solidity

language.

1.1. Classification of Smart-Contract Vulnerabilities

Smart-Contract Vulnerabilities have diverse classes which are

defined as follow:

i. Re-entrancy Attack: Re-entrancy attacks are a prevalent

susceptibility in SCs, in which an attacker focuses on invoking

functions at rapid level when a contract is interacted and stealing

the assets or disturbing the contract logic [3]. The check-effects-

interactions principle, which guarantees the completion of state

updates before interacting with external contracts, served as an

obstacle to this type of attack. The locking systems are effective to

prevent re-entrancy. Thorough code review, analysis, and effective

programming practices are essential for protecting against re-

entrancy attacks and other security challenges.

ii. Integer Overflow and Underflow: The aforementioned

susceptibilities are commonly observed when an integer variable's

value begins to increase above or fall below the extreme or

minimum value necessary to show the type of data it represents.

The SCs are suffered from computing errors or random behaviour

due to these attacks [4]. Thus, their safety is infected at large

extent. The SafeMath library is introduced for tackling these

vulnerabilities. Its protective mathematical models assist in

prevent these attacks.

iii. Uninitialized Storage Pointer: These susceptibilities in SCs are

1 Research Scholar, Department of Computer Science and Engineering,

Jawaharlal Nehru Engineering College, MGM University, Aurangabad,

India. shettymonalin@gmail.com
2 Professor and HOD, UDICT, MGM University, Aurangabad, India.

hoditjnec@mgmu.ac.in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 3733–3741 |3734

occurred in the form of a class of disregarded but potentially

hazardous security attacks. The major issues of these attacks is the

utilization of storage pointers in SCs by coders for which they do

not initialize them and do not complete this process. The malicious

users focus on such pointers for accessing and modifying the data

in the storage region, due to which the contract data is read, written,

or altered imperfectly [5].

iv. Access Control Vulnerability: these attacks are occurred when

SCs become incapable of properly controlling the permission

actions. Consequently, the assailants attain potential for executing

unauthentic tasks. Proper access control implementation is crucial,

where contracts aims at validating the identity of a user prior to

permitting some operations. By bypassing authentication

measures, attackers can execute unauthorized operations,

potentially resulting in asset stealing, contract tampering, or

closure. Contracts should limit functions to the authority or

authenticated users and capable of deploying require () statement

for verifying permissions, following the principle of least privilege

[6].

v. Front-End Runtime Error Vulnerability: These susceptibilities

arise in some SCs portions having an interaction among user

interfaces. Errors such as logic, input validation errors, result in

causing downfalls in execution or random behavior, and effecting

the safety of SC. These vulnerabilities are typically found in the

front-end applications running smart contracts.

vi. Time Dependency: Time dependency attacks exploit time-

based tasks in SCs and the features of blockchain. Attackers’

potential is higher for manipulating the block timestamps for

affecting time-based SC logic, potentially leading to failures or

unexpected outcomes. These attacks can cause losses to contract

participants.

vii. Denial-of-Service (DoS) Attack: These attacks are launched in

order to disrupt access to a specific target's network or resources.

When such an attack is carried out from multiple locations

simultaneously, it is referred to as a DDoS attack [7]. In the context

of blockchain, a DDoS attack can potentially paralyze the entire

blockchain network. To mitigate DoS attacks, Ethereum

implements a transaction fee mechanism known as "gas" where a

specific volume of gas is essential in sending transactions. Such

technique provides some resistance against DoS attacks. However,

a successful DoS attack on Ethereum has been observed due to the

low gas consumption price of the EXTCODESIZE opcode. The

EXTCODESIZE opcode is responsible for retrieving the code size

of a smart contract [8]. By exploiting the low gas consumption of

this opcode, an attacker can perform a significant number of EXT-

CODESIZE operations within a single transaction [attack details].

Such attacks consume considerable computing and network

resources, result in network jamming or blocking. Another attack

method involves the use of the SUICIDE opcode [9]. Attackers

leverage the SUICIDE operation to create numerous empty

accounts, which results in wasted disk resources because their

storage is required in the state tree. This attack significantly slows

down the process of synchronizing the node and executing the

transaction within the blockchain. Additionally, denial-of-service

attacks can also occur through excessive authority granted to smart

contract token owners [10]. In case of objective of the token

contract holder to freeze the contract at rapid level, other users of

this SC become unable of executing transactions.

1.2. Machine Learning

In ML, a subset of AI, activities are carried out automatically

without the need for explicit programming. By virtue of existent

data properties, ML algorithms construct mathematical

representations. They then continually learn from new sample data

and modify their models as necessary [11]. These models learn

patterns, adjust actions, and make decisions in an automatic way,

without requiring manual intervention. In visualized era, having

generation of enormous volume of data, it is impractical for

humans to process and analyse all of it. ML enables automated

processing of large data sets and extraction of relevant features.

The ML is capable of continuously learning from novel training

data, allowing its enhancement over time in case of unexpected

results from the model. ML methods find extensive applications

for classifying the data, detecting and predicting anomaly, etc.

[12]. Examples of ML applications in everyday life include

recognizing face or emotion, detecting fraud in credit card,

analysing sentiments, etc.

ML techniques had diverse categories for example supervised,

unsupervised and reinforcement. The initial models require data

with labels for developing a mathematical approach. By feeding

input data and desired results, the algorithm becomes applicable

for extracting the association among the input data and labels,

enabling it to accurately predict outcomes for hidden input data. It

is an extensive approach for forecasting or classifying particular

outcomes [13].

In contrast, unsupervised learning algorithms use data of no labels

for training the model. This approach aims to discover hidden

insights and structures within the dataset, grouping similar data

points into categories or clusters. Unsupervised approach

frequently uses cluster analysis, which groups together comparable

data points so that outliers that don't fit into any clusters can be

identified as anomalies.

Reinforcement learning algorithms learn when an exterior

environment is related, and receive feedback on their actions.

Different ML techniques are suitable for different operations. For

instance, prior two approaches are exploited to analyse the data,

while this approach is employed to tackle the issues related to make

decision [14]. Intelligent agents can find the optimum course of

action to maximize the overall profit over the long term by

investigating and studying their surroundings. We refer to this

technique as reinforcement learning.

Deep learning has gained popularity in recent years for tackling

complex tasks [15]. It is planned on the basis of ANNs with

multiple layers for extracting high-level attributes from inputs.

Common models in DL include MLP, CNN, and RNN. Deep

learning's potential for attaining abstractions of higher quality to

model the data, has found applications in regions of recognizing

pictures and NLP.

1.3. Reinforcement learning for Anomaly detection in

Blockchain

In the field of detecting security of SC, reinforcement learning

(RL) has emerged as a prominent ML approach, demonstrating

notable achievements across various application domains [16].

Through interactions with the scenario, RL allows intelligent

agents for discovering and to learn effective strategies in an

autonomous way for maximizing long-term collective rewards.

• Q-Learning: The update of action-value function Q(s, a) can

be done using the model-free RL method known as Q-

Learning. This function estimates the expected total return

when a specific action is carried out in an available state [17],

which helps agent in selecting the precise actions on the basis

of Q-values. This approach is expressed as

 𝑛𝑒𝑤 𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎)+ ∝ [𝑟(𝑠, 𝑎) +

 𝛾 𝑀𝑎𝑥 𝑄′(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)] - (1)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 3733–3741 |3735

In equation (1), α denotes the learning rate and the discount

factor is represented with γ. It is an extensively applied

approach in diverse domains, such as automated control and

network forwarding, showcasing its classical significance.

• Deep Q-Network: It is other RL method in which Deep

Neural Network (DNNs) is integrated with Q-Learning

method. It leverages Neural Network for approximating Q(s,

a), allowing it to handle complicated input state spaces,

including high-dimensional raw pictures. The updated

formula for this approach as:

 𝑄(𝑠, 𝑎; 𝜃) ← 𝑄(𝑠, 𝑎; 𝜃) + 𝛼 [𝛾 𝑀𝑎𝑥 𝑄(𝑠′, 𝑎′; 𝜃) −

 𝑄(𝑠, 𝑎; 𝜃)] - (2)

In this equation 2, 𝜃 represents the metrics of the existing

NN, while 𝜃′ represents the metrics of the target NN.

• GAIL: Generative Adversarial Imitation Learning (GAIL) is

an approach that integrates GANs with RL [18]. It enables

agents to learn effective rules by imitating expert policies.

GAIL involves two key components: the generator loss,

which guides the policy learning, and the discriminator loss,

which distinguishes expert demonstrations from policy-

generated trajectories.

• MCTS: Monte Carlo Tree Search (MCTS) is an approach

that utilizes MC simulations to construct a Seek Tree and

iteratively find an approximate explanation when the

examination and utilization is balanced. No general formula

is included in this approach. However, it involves 4 main

phases such as to select the data, expand it, simulate, and BP.

MCTS has been successfully combined with deep learning

in notable examples like AlphaGo [19], showcasing the

effectiveness of integrating MCTS with deep learning

techniques in various domains.

Recent research has highlighted the susceptibility of Ethereum

Smart Contracts developed using Solidity to various attacks. One

notable vulnerability is the DoS Unexpected Revert flaw, which

can lead to Denial of Service (DoS) incidents [20]. In essence, this

vulnerability arises from mishandling incomplete transactions,

whether due to errors or intentional reversals, resulting in Smart

Contracts becoming non-functional. Current techniques of

detecting vulnerabilities primarily rely upon predefined rules set

via professionals, and not very effective and struggle with

accessibility. Though some studies employed ML for extracting

contract attributes in identifying vulnerabilities, these approaches

often overlook crucial aspects and fail to fully leverage the

information within SCs. A novel method is essential to detect

vulnerabilities in SCs for tackling drawbacks of traditional

methods [21].

2. Literature Review

N. F. Samreen, et.al (2021) projected a framework known as

SmartScan in which the static analysis was integrated with

dynamic one for detecting DoS fragility brought on by a sudden

relapse in Ethereum Smart Contracts [22]. This methodology was

helpful for scanning the smart contracts being tested so that

vulnerable patterns might be found. The latter analysis was

conducted for determining whether the DoS-Unexpected Revert

vulnerability was exploitable. It led to enhance the efficacy and

attain more optimal outcomes. A set containing 500 smart

contracts generated via the Etherscan was utilized in

experimentation. The findings depicted that the suggested model

was useful for enhancing the precision and recall in contrast to

existing methods. This model was not adaptable on all kinds of

applications.

Fadi, et.al (2024) proposed the utilization of adaptive

augmentation in conjunction with contrastive learning as a means

to detect reentrancy and endless loop attacks in smart contracts

[23]. This innovative approach had been shown to enhance

performance in downstream tasks, such as smart contract

categorization, by effectively learning task-agnostic representative

data features. Through the use of this technique, researchers were

able to address concerns about interpretability and the lack of

representative datasets, as well as dive into the complexities of

smart contract characteristics. The study demonstrated how well

contrastive learning, GNN networks, and adaptive augmentation

work together to detect re-entrancy and infinite loop assaults in

real-time smart contracts. Empirical data showed that this method

worked better than conventional baseline models. Contrastive

learning must be combined with neural network-based models

because the latter cannot identify timestamp attacks on its own.

Duan, et.al (2023) introduced an innovative method for identifying

susceptibilities in SCs after extracting data from different tiers of

smart contracts and utilizing these features for training ML

algorithms to detect vulnerability efficiently [24]. This approach

involved utilizing a pre-trained CodeBERT model which extracted

token attributes from the source code and 2-gram attributes from

the opcodes of SCs. Hence, the semantic content of SCs was

captured at multiple stages. To uncover vulnerabilities in contracts,

the aggregation of extricated attributes was done and they were

also fused, and inputted into machine learning models. To validate

this approach, over 10,266 smart contracts were analysed. The

experiments demonstrated detection accuracies of up to 98%, 98%,

and 94% for three different vulnerabilities, respectively. The

suggested method demonstrated efficacy in automatically

detecting smart contract vulnerabilities, with an average detection

time of 0.99 seconds for SC. It is crucial to remember that although

ContractGuard might be excellent at finding vulnerabilities, it

might not be as good at preventing logical mistakes in complicated

predicates.

A. Ghaleb, et.al (2022) analyzed those smart contracts (SCs) which

were deployed on Ethereum blockchain, made the utilization of gas

[25]. The users submitted the invocation requests of contracts for

this gas. However, Denial-of-Service (DoS) was occurred on these

patterns for activating abnormal behaviour in the targeted victim

contracts. These attacks were named as gas-related vulnerabilities.

Thus, a static analyser called eTainter was developed to detect such

susceptibilities on the basis of taint tracking in the bytecode of SCs.

A comparison of the new strategy with the standard approaches

was done. According to results on a dataset of annotated contracts,

the developed approach yielded a precision and recall up to 90%.

However, the analysis depicted the existence of gas-related

vulnerabilities in 2,763 of these contracts.

Wang, et.al (2020) introduced ContractGuard, the pioneering IDS

specifically engineered for defending against attacks on ESCs [26].

ContractGuard identifies intrusion attempts through the detection

of aberrant control flow, a method commonly employed by

traditional program IDSs. To achieve this, the model was

developed to profile context-tagged acyclic pathways, embedded

within the contracts, and optimized using the Ethereum gas-

oriented performance framework. The primary goal of this model

was to minimize costs, a critical consideration given the necessity

of upfront payment for digital concurrency. Through the

implementation of this methodology, only 36.14% of overhead in

implementation and 28.27% in running were increased.

Remarkably, the suggested model successfully thwarted attacks on

83 percent of seeded issues and all real-world vulnerabilities.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 3733–3741 |3736

Though, the practical application of this notion may be limited in

smart contract programs that heavily rely on features requiring

frequent external calls to unprotected contracts.

Yang, et.al (2024) introduced CrossFuzz, a fuzz testing-based

technique designed to detect cross-contract vulnerabilities [27].

This innovative approach addressed two key issues: the generation

of constructor parameters and the manipulation of transaction

sequences. To begin, CrossFuzz generated constructor parameters

for the contract under examination subsequent to trace the data

flow of address-kind metrics. It then identified function definitions

and state variable usages by analysing the interactions between

function calls across contracts. Additionally, CrossFuzz optimized

the mutation of transaction sequences using the Inter-Contract

Data Flow (ICDF) method, ultimately conducting comprehensive

cross-contract fuzz testing. The CrossFuzz test findings showed a

notable enhancement in security fault detection, with the suggested

approach finding 1.82 times more vulnerabilities than the state-of-

the-art methods. Moreover, CrossFuzz demonstrated its efficacy in

detecting cross-contract vulnerabilities by increasing bytecode

coverage to 0.1058 against the standard. It was significant to

highlight that the introduced model does not take into account

scenarios where branch requirements are already satisfied by

default constructor values for state variables, nor does it apply to

test cases where SC interacts with addresses.

Ndiaye, et.al (2023) discussed that smart contracts (SCs) were

effective and cost-effective targets for aggressors due to storage of

huge volume of money in them [28]. Thus, a novel anomaly

detection (AD) model called ADEFGuard was developed on the

basis of behaviour of SCs, as a novel feature. A learning and

monitoring module was executed for determining the deceitful

behaviours of SCs. This model was performed better in contrast to

other techniques concerning 3 facets. Initially, a unified solution

was generated for diverse kinds of scams so skills required to

analyse code were avoided. Secondly, its inference was

instructions of magnitude which worked quickly rather than

analysing code. Lastly, the developed model yielded accuracy up

to 85%, precision up to 75%, and recall up to 90% to detect

malicious contracts. Moreover, this model was robust to detect new

malevolent behaviours of SCs. But, this model was ineffective of

determining whether SS was authentic or not.

N. Ashizawa, et.al (2022) presented a ML-based method known as

Eth2Vec for detecting susceptibilities in SC [29]. This approach

remained robust against code rewrites that was useful to detect the

vulnerabilities even in rewritten codes. Unlike other methods, a

neural network (NN) model was adopted to process the language

with the objective of learning the attributes of vulnerable contracts

automatically. The aforementioned approach sought to identify the

weaknesses in SCs when the similarities of codes of a target

contract were contrasted against learning ones. In the light of

experiments on Etherscan, the presented technique had yielded

superior precision, recall, and F1-score. It efficacy was mitigated

under diverse areas/settings.

M. Eshghie, et.al (2021) established a monitoring system called

Dynamit to find Ethereum smart contracts' re-entrancy issues [30].

The blockchain system's transaction metadata along with balanced

data were used by the framework. Notably, Dynamit didn't need

unique execution environments, code instrumentation, or domain-

specific knowledge. Instead, it used an algorithm contingent on

machine learning (ML) to identify transactions as either legitimate

or fraudulent by extracting attributes from the information about

the transactions. This model was adaptable to detect the vulnerable

contracts to re-entrancy attacks and attain execution trace for re-

generating the assault. The results indicated that the devised model

offered 90% above accuracy with random forest (RF) algorithm on

105 transactions. Diversity of data features led to make this system

ineffective in some scenarios.

Hu, et.al (2020) suggested a method for Ethereum smart contracts

that uses transaction-based categorization and detection to solve

these problems [31]. Ethereum is considered to extract ten

thousand SCs, which concentrated on the data behaviour produced

via users and SCs. Through manual analysis, this work found four

patterns of behaviour from the transactions that can be utilized to

differentiate among diverse contract kinds. From this, fourteen

basic characteristics of SC were then built. This paper developed a

data slicing algorithm to partition the collected SCs in order to

build database. After that, our datasets were trained and tested

using an LSTM network in this work. The comprehensive testing

results demonstrated that this method can effectively identify

various contract types and be used for detecting anomalies and

malevolent SC concerning recall, f1-measure, and precision. In

datasets, the imbalance problem arises.

Shen, et.al (2021) suggested a novel detection methodology

utilizing bytecode to identify Ponzi schemes within smart contracts

[32]. Two primary strategies were used in the model to

demonstrate this novel approach: first, the bytecode was

effectively transformed into a high-dimensional matrix that

included all proposed attributes, with two bytes denoting a single

feature. Subsequently, the identification of Ponzi schemes was

ingeniously reframed as an anomaly detection challenge. In the

end, this anomaly detection method was successful in identifying

Ponzi schemes inside smart contracts. Experimental results show

that the proposed detection methodology significantly increased

the detection accuracy of Ponzi scheme contracts. Hence, the

suggested methodology achieved F1-measure up to 0.88,

surpassing the performance of traditional detection models. This

high F1-score of 0.88 significantly outperformed other

conventional detection models. Moving forward, a more

comprehensive analysis of the properties of bytecodes is essential

to further enhance the identification of Ponzi scheme contracts.

Huang, et.al (2022) created a MTL-relied technique to detect

anomaly in SC [33]. The major intend was to improve the

potentials of this technique for recognizing and detecting

susceptibilities when additional tasks were allocated for learning

more significant attributes. The hard-sharing model containing 2

elements were considered as the basis. Initially, the last layer was

employed to learn the semantic information of inputted SC.

Subsequently, task-specific layer was executed for finding the

operation of every task. The objectives of every task were

completed using existing CNN. This model assisted in developing

a classifier to learn and extract attributes from the common layer,

which trained the data. in experimentation, the created technique

was proved effective to detect vulnerabilities and proved suitable

for detecting various kinds of susceptibilities. In comparison to a

single-task model, this model was less costly in terms of

computing, storage, and time. This study used the HPS approach

that diminished the efficacy of model and limited its capacity for

generalization.

Zhang, et.al (2022) suggested an innovative hybrid DL algorithm

called CB-GRU, which cleverly mixed many Deep Learning

techniques with several word embeddings (Word2Vec, FastText)

[34]. In order to discover smart contract vulnerabilities, the model

merged features that it had gathered using various deep learning

models. Through a set of studies, this paper showed that the

suggested algorithm was more robust to detect vulnerabilities on

SC on the dataset SmartBugs Dataset-Wild, which is presently

available to the public. When comparing the suggested model's

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 3733–3741 |3737

performance to earlier research, it was found that the suggested

algorithm was performed better to detect anomalies in SCs. For

detecting susceptibilities in SCs with cryptic attributes, it is

necessary to find several SC susceptibilities within similar SC and

to increase the precision of this algorithm.

2.1. Research Gaps

Diverse research gaps are defined as:

1. Integration of Comprehensive Metadata: Many existing

frameworks focus on specific aspects of transaction data or

contract code analysis. For instance, methods like

SmartScan and ContractGuard primarily use static and

dynamic analyses of smart contracts but do not extensively

incorporate broader blockchain metadata such as

transaction sources, gas fees, and timestamps. This

comprehensive metadata can provide more contextual

insights and improve the detection of anomalies and

vulnerabilities.
2. The methods proposed in the earlier years are based on

quantitative analysis. By quantitative analysis, data can be

analyzed but future trends cannot be predicted. Therefore,

some new smart contract data classification methods must

come into existence in order to predict future trends

3. The smart contract dataset has the problem of class

imbalancing due to which class overfitting or under fitting

problems get raised. In the existing methodologies very

less work is done to solve problem of class imbalancing so

that performance can be improved for the smart contract

data classification.

3. Research Methodology

The principal target of this research is to detect anomalies in

blockchain networks. The classification process involves several

phases, such as to pre-process data, extract features, and classify

data. This is how the work is conducted:

1. Dataset input and pre-processing: The preliminary phase

involves using data collected from authentic sources as input. In

this analysis, the data from Ethereum block chain was fetched via

Etherscan API. By applying the Ethereum blockchain, Etherscan

API stores the transaction data from Ethereum. An in-depth look

at Ethereum blockchain structure has been provided by the study

of markets of smart contracts and transactions activity that resulted

in the provided extensive dataset. By sending requests to the API

we were capable to acquire the transaction details, namely (nonce

or block numbers), gas information and so. This dataset includes

information on over 12,000 entries of Ethereum Blockchain node

data. But the main challenge was to find malicious smart contract

from Ethereum network. All previous smart contracts were non-

malicious.

Detection of DOS attacks in live smart contract requires

monitoring on-chain activity and leveraging a combination of

techniques. We have used following approaches on smart contracts

to detect vulnerabilities:

a) Transaction monitoring

o Track transaction rate: Monitor the frequency of

transactions interacting with the smart contract.

Sudden spikes or drops in transaction volume can

indicate a DoS attempt.

o Analyze Gas Usage: Keep an eye on gas consumption

per transaction. Unusually high or low gas fees might

be a sign of malicious activity. Transactions with

minimal gas might be attempting to clog the network,

while exceptionally high gas fees could be an attempt

to exploit the contract.

b) Log Analysis

o Identify Repetitive Transactions: If the same

transaction or a slight variation keeps appearing, it

could be a DoS attempt.

o Unusual Function Calls: Monitor calls to specific

contract functions. If uncommon functions are being

called repeatedly, it could be a sign of exploration for

vulnerabilities.

c) Proactive measures

o Gas Limit Checks: Implement checks within the smart

contract to prevent transactions exceeding a set gas

limit.

Based on above approaches we have prepared dataset. Our dataset

is split between malicious nodes and non-malicious nodes. This

dataset is perfect for blockchain researchers interested in data

visualization and analysing node behaviour on the blockchain.

Purpose of Dataset

The purpose of this dataset is to facilitate the detection and analysis

of Denial-of-Service (DOS) attacks targeting smart contracts in

blockchain systems. By providing a comprehensive collection of

data, researchers and security professionals can utilize this dataset

to develop and validate algorithms, models, and techniques for

identifying and mitigating DOS attacks in smart contracts.

Dataset Structure

The dataset contains the following columns, which serve as crucial

parameters for analysing smart contract transactions:

1. Contract Address: The unique identifier of the smart

contract involved in the transaction.

2. Block Number: The block number in which the

transaction was included.

3. TimeStamp: The timestamp indicating the date and time

when the transaction occurred.

4. Hash: The transaction hash, serving as a unique identifier

for the transaction.

5. Sender Address: The address of the sender who initiated

the transaction.

6. Receiver Address: The address of the recipient or the

smart contract being interacted with.

7. Gas Limit: The maximum amount of gas allocated for

the transaction.

8. Gas Used: The actual amount of gas consumed by the

transaction.

9. Contract Name: The title commonly used to identify the

contract.

10. Status (Output Label): A label indicating the nature of

the transaction, where '0' denotes a non-malicious

transaction and '1' denotes a potentially malicious

transaction associated with a DOS attack.

By utilizing this dataset, researchers and practitioners can analyse

the characteristics, patterns, and behaviours of transactions to

identify potential DOS attacks on smart contracts. The dataset

serves as a valuable resource for developing machine learning

models, anomaly detection algorithms, and other techniques aimed

at enhancing the security and resilience of smart contracts in

blockchain systems.

It is important to note that this dataset primarily focuses on DOS

attacks in smart contracts and does not encompass other forms of

attacks or vulnerabilities.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 3733–3741 |3738

Samples from the Dataset

Figure 1. Dataset Samples: Live Smart Contract Extracted from Etherscan.io

To address the issue of class imbalance, the SMOTE technique will

be employed.

2. Feature extraction: This function intends to determine the

relationship between each attribute and the target set. FN is a case,

in which specimen is truly an invasion but is classed as regular,

and in FP, a specimen seems regular but is identified as an

invasion. Poor FN occurs when an intrusion goes undetected. A

layered approach utilizing multiple intrusion detection systems

(IDSs) is employed to enhance detection. Principal Component

Analysis method is assisted in alleviating the number of features.

3. Classification: The classification task involves dividing the

whole dataset into 2 sections. A voting mechanism is presented to

classify network traffic. Diverse methods, including random forest,

SVM, and KNN, are integrated to achieve the objective of

classifying anomalies. The RF algorithm creates a hybrid by

creating an array of distinct decision trees. Each tree predicts the

data based on majority votes. Random sampling with replacement

is employed to develop the trees, ensuring randomness and

reducing the sensitivity of Decision Trees when the data is trained.

This approach helps maintain feature randomness by allowing each

tree to make decisions based on a random subset of attributes.

SVM (Support Vector Machine) utilizes kernel representation and

optimized margin. It constructs a hyperactive plane to separate

different classes of information. The kernel interplanetary explores

the least hyper range, including all working out cases, and

determines the location of an examination case in the hyper sphere.

KNN (K-Nearest Neighbour) algorithm often yields optimal

results. It can enhance existing algorithms by integrating prior

knowledge. The majority label among the nearest neighbours,

determined based on a distance metric, is used to classify

unlabelled instances using the KNN rule. The effectiveness of such

classifiers is based on diverse components, like choice of distance

metric and the number of neighbours considered in KNN. The

voting classification used bagging method to form final prediction.

The weights are assigned to each classifier and best prediction of

each classifier get merged to form final prediction. The pseudo

code of voting classifier is presented below: -

Voting Classifier Pseudo Code

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 3733–3741 |3739

Figure 2. Flowchart of the Proposed Framework

4. Result and Discussion

This research focuses on the classification of network traffic,

specifically in the context of anomaly detection. The classification

framework involves several phases, such as to pre-process data,

extract features, and classify data. The dataset used for testing the

utilized model is based on blockchain technology. The dataset

contains the columns for ‘Contract address, Block Number,

TimeStamp, Hash, Sender Address, Receiver Address, Gas Limit,

Gas Used and Output Label’. The data extracted was all non-

malicious, so in order to get malicious transactions we had to add

some threshold value to simulate the DOS attack. In the dataset the

‘0’ status denotes a non-malicious transaction and ‘1’ denotes a

malicious transaction. The efficacy level of the introduced

technique is evaluated using three metrics (i.e., accuracy,

precision, recall).

The devised framework proposed, combines multiple models for

anomaly detection. It integrates the use of Synthetic Minority

Oversampling Technique, Principal Component Analysis, and a

Voting mechanism.

Table 1: Performance Analysis

Model Accuracy Precision Recall Dataset Used

GA based model [14] 77 % 76 % Own dataset -BCCC-VolSCs-2023-

CNN Model [24] 77 % 77.50 % 74.46 % Smart Contract Sanctuary [31]

Proposed Model 91.37 % 90 % 90 % Own Dataset extracted from Etherscan.io and

checked on simulated environment.

Figure 3. Result Analysis

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 3733–3741 |3740

Figure 3. illustrates the result evaluation of machine learning

algorithms, specifically comparing SVM, KNN, and the developed

architecture in view of three parameters. In investigation, the

suggested mechanism gets higher accuracy rate up to over 90%. It

is analysed from the results that existing models like SVM and

KNN models able to achieve accuracy of 68 and 66 percent

respectively which is approx. 30 percent low as compared to

proposed model. The accuracy of proposed model is increased

because it solves class imbalancing problem using SMOTE model

and feature of the dataset reduced efficiently using PCA model. In

the last voting classifier is applied which use bagging method to

form final prediction.

5. Conclusion

Smart contract technologies allow users to create decentralized

digital agreements without relying on intermediaries. These

technologies have gained popularity in diverse domains like

medical, business management, shareholder agreements, and

insurance. Though, with developing usage of SCs, the interest of

potential attackers is increased, leading to the discovery of

numerous vulnerabilities and exploitations. This study highlights

the presence of vulnerabilities and the occurrence of attacks in

smart contract technology, emphasizing that it is not immune to

security risks. This research work introduces a novel model that

combines three key components: SMOTE, PCA, and Voting

Classification. The Voting method is a blend of SVM, RF and K-

Nearest Neighbor. The proposed model is compared with the

existing classification models like SVM and KNN which achieves

accuracy of 68 percent and 66 percent respectively. The accuracy

of suggested mechanism is counted 91% that is 30% higher than

existing models. The proposed model achieve accuracy because it

solves class imbalancing problem and also reduce feature

efficiently. In future proposed model can be further extended using

optimization algorithms for the feature reduction and it is expected

that with the use of optimization algorithms above 95 percent

accuracy can achieved.

6. Conflict of Interest

All authors certify that they have no affiliations with or

involvement in any organization or entity with any financial

interest or non-financial interest in the subject matter or materials

discussed in this manuscript.

7. Ethical Approval

All authors declare that they adhere to the ethical principles of the

journal.

References

[1] Xu Y, Hu G, You L, Cao C. A Novel Machine Learning-

Based Analysis Model for Smart Contract Vulnerability.

Security and Communication Networks. 2021; 7(10): 63-71.

doi: 10.1155/2021/

5798033.

[2] Mandloi J, Bansal P. A Machine Learning-Based Dynamic

Method for Detecting Vulnerabilities in Smart Contracts.

International Journal of Applied Engineering & Technology.

2022; 4(2): 110-118. doi: ijaet%20v4-2-2022-17.pdf

[3] Chen D et al. Privacy-Preserving Anomaly Detection of

Encrypted Smart Contract for Blockchain-Based Data

Trading. IEEE Transactions on Dependable and Secure

Computing. 2024; 78: 13-20. doi:

10.1109/TDSC.2024.3353827.

[4] Haritha P, Kavitha V and Manimala G. Protection & Privacy

Embedding Blockchain Established Fraud Detection. In:

International Conference on Applied Artificial Intelligence

and Computing (ICAAIC). Salem. India; 2022. p. 1437-

1444. doi: 10.1109/ICAAIC53929.2022.9792962.

[5] Chu H, Zhang P and Li W. A survey on smart contract

vulnerabilities: Data sources, detection and repair.

Information and Software Technology. 2023; 159: 906-914,

10.1016/j.infsof.2023.

107221

[6] Shah H, Shah D, Jadav N K, Gupta R, Tanwar S, Alfarraj O,

Tolba A, Raboaca M S, Marina V. Deep Learning-Based

Malicious Smart Contract and Intrusion Detection System

for IoT Environment. Mathematics. 2023; 11(2): 418-425.

doi: 10.3390/math11020418.

[7] Gogineni A K, Swayamjyoti S, Sahoo D, Sahu K K, Kishore

R. Multi-Class classification of vulnerabilities in smart

contracts using AWD-LSTM, with pre-trained encoder

inspired from natural language processing. IOP Science,

2020; 8: 16-24. doi: 10.1088/

2633-1357/abcd29.

[8] Krichen M. Strengthening the Security of Smart Contracts

through the Power of Artificial Intelligence. Computers.

2023; 12: 107-116. doi:10.3390/computers12050107.

[9] Sosu R N I, Chen J, Brown-Acquaye W, Owusu E, Boahen

E. A Vulnerability Detection Approach for Automated Smart

Contract Using Enhanced Machine Learning Techniques.

Research Square. 2022; 2: 96-104. doi: 10.21203/rs.3.rs-

1961251/v1.

[10] Moubarak J, Chamoun M and Filiol E. Developing a Κ-ary

malware using blockchain. In: IEEE/IFIP Network

Operations and Management Symposium. Taipei. Taiwan;

2018. p. 1-4. doi: 10.1109/NOMS.2018.8406331.

[11] Liu L, Tsai W-T, Liu M. Blockchain-enabled fraud

discovery through abnormal smart contract detection on

Ethereum. Future Generation Computer Systems. 2021; 128:

158-166. doi: 10.1016/j.

future.2021.08.023.

[12] Demertzis K, Iliadis L, Tziritas N and Kikiras P. Anomaly

detection via blockchained deep learning smart contracts in

industry 4.0. Neural Computing and Applications. 2020; 32:

36-42. doi: 10.1007/s00521-020-05189-8.

[13] Liu H, Fan Y and Wei Z. Vulnerable smart contract function

locating based on Multi-Relational Nested Graph

Convolutional Network. Journal of Systems and Software.

2023; 204: 11-22. doi: 10.1016/j.

jss.2023.111775

[14] Haji S H, Lashkari A H and Oskui A M. Unveiling

vulnerable smart contracts: Toward profiling vulnerable

smart contracts using genetic algorithm and generating

benchmark dataset. Blockchain: Research and Applications.

2023; 5(1): 1007-1015, doi: 10.1016/j.bcra.2023.

100171.

[15] Wang L, Cheng H and Zhu X. Ponzi scheme detection via

oversampling-based Long Short-Term Memory for smart

contracts. Knowledge-Based Systems. 2021; 228: 132-139.

doi: 10.1016/j.

knosys.2021.107312.

[16] Su S et al. Detecting Smart Contract Project Anomalies in

Metaverse. In: IEEE International Conference on Metaverse

Computing, Networking and Applications (MetaCom).

Kyoto. Japan; 2023. p. 524-532. doi:

10.1109/MetaCom57706.2023.00095.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 3733–3741 |3741

[17] Liu X, Jiang F and Zhang R. A New Social User Anomaly

Behavior Detection System Based on Blockchain and Smart

Contract. In: IEEE International Conference on Networking,

Sensing and Control (ICNSC). Nanjing. China; 2020. p. 1-5.

doi: 10.1109/ICNSC48988.

2020.9238118.

[18] Ndiaye M, Konate K and Ndoye E H M. Anomaly Detection

Algorithm Based on Smart Contracts Behaviours in

Ethereum Ecosystem. In: 3rd International Conference on

Electrical, Computer, Communications and Mechatronics

Engineering (ICECCME). Tenerife. Canary Islands. Spain;

2023. p. 1-7. doi:

10.1109/ICECCME57830.2023.10252520.

[19] Zkik K, Sebbar A, Fadi O, Mustapha O and Belhadi A. A

Graph Neural Network Approach for Detecting Smart

Contract Anomalies in Collaborative Economy Platforms

Based on Blockchain Technology. In: 9th International

Conference on Control, Decision and Information

Technologies (CoDIT), Rome. Italy; 2023. p. 1285-1290.

doi: 10.1109/CoDIT58514.2023.10284080.

[20] Jiang Z, Chen K and Zheng Z. Applying blockchain-based

method to smart contract classification for CPS applications.

Digital Communications and Networks. 2022; 8(6): 964-

975. doi: 10.1016/j.dcan.2022.08.011.

[21] Reddy C M K, Chandrashekar R and Bajaj R. Smart

Contracts and Anomaly Detection in SDN environment

using Cloud-Edge Integration Model. In: International

Conference on Emerging Research in Computational

Science (ICERCS). Coimbatore. India; 2023. p. 1-6. doi:

10.1109/ICERCS57948.2023.10434076.

[22] Samreen N F and Alalfi M H. SmartScan: An approach to

detect Denial of Service Vulnerability in Ethereum Smart

Contracts. In: IEEE/ACM 4th International Workshop on

Emerging Trends in Software Engineering for Blockchain

(WETSEB). Madrid. Spain; 2021. p. 17-26. doi:

10.1109/WETSEB52558.2021.00010.

[23] Fadi O, Bahaj A, Zkik K, Ghazi A, Ghogho M and Boulmalf

M. Smart Contract Anomaly Detection: The Contrastive

Learning Paradigm. Journal of LATEX. 2024; 4(2): 631-

639. doi: 10.2139/ssrn.4720935

[24] Duan L, Yang L, Liu C, Ni W and Wang W. A New Smart

Contract Anomaly Detection Method by Fusing Opcode and

Source Code Features for Blockchain Services. IEEE

Transactions on Network and Service Management. 2023;

20(4): 4354-4368. doi: 10.1109/TNSM.2023.3278311.

[25] Ghaleb A, Rubin J and Pattabiraman K. eTainter: Detecting

Gas-Related Vulnerabilities in Smart Contracts.

International Symposium on Software Testing and Analysis

(ISSTA). 2022; 5(7): 728-739. doi:

10.1145/3533767.3534378.

[26] Wang X, He J, Xie Z, Zhao G and Cheung S C,

ContractGuard: Defend Ethereum Smart Contracts with

Embedded Intrusion Detection. IEEE Transactions on

Services Computing. 2020; 13(2): 314-328. doi:

10.1109/TSC.2019.2949561.

[27] Yang H, Gu X and Cui Z. CrossFuzz: Cross-contract fuzzing

for smart contract vulnerability detection. Science of

Computer Programming. 2024; 234:139-145. doi:

10.1016/j.scico.2023.

103076.

[28] Ndiaye M, Diallo T A and Konate K. ADEFGuard: Anomaly

detection framework based on Ethereum smart contracts

behaviours. Blockchain: Research and Applications. 2023;

4(3): 162-170. doi: 10.1016/j.bcra.2023.100148.

[29] Ashizawa N, Yanai N and Okamura S. Eth2Vec: Learning

contract-wide code representations for vulnerability

detection on Ethereum smart contracts. Blockchain:

Research and Applications. 2022; 24(1): 139-148. doi:

10.1016/j.bcra.2022.100101.

[30] Eshghie M, Artho C and Gurov D. Dynamic Vulnerability

Detection on Smart Contracts Using Machine Learning.

Evaluation and Assessment in Software Engineering (EASE

2021). 2021; 43(12): 17-25. doi: 10.1145/3463274.3463348.

[31] Hu T, Liu X and Liu Y. Transaction-based classification and

detection approach for Ethereum smart contract. Information

Processing & Management. 2020; 58(4): 106-113. doi:

10.1016/j.ipm.2020.102462.

[32] Shen X, Jiang S and Zhang L. Mining Bytecode Features of

Smart Contracts to Detect Ponzi Scheme on Blockchain.

Computer Modeling in Engineering & Sciences. 2021;

45(1): 96-105. doi: 10.32604/cmes.2021.015736.

[33] Huang J, Zhou K, Xiong A and Li D. Smart Contract

Vulnerability Detection Model Based on Multi-Task

Learning. Sensors (Basel). 2022; 22(5): 1829-1836, doi:

10.3390/s22051829

[34] Zhang L, Chen W and Chen H. CBGRU: A Detection

Method of Smart Contract Vulnerability Based on a Hybrid

Model. Sensors. 2022; 22(9): 3577-3583.doi:

10.3390/s22093577

