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Abstract: The growing number of satellites has improved our understanding of exoplanets, but it has also increased false positive 

detections. These errors can mislead research and allocation of resources. To address this, we introduce ArtAe, an AI model that employs 

Artificial Neural Networks and AutoEncoders to validate exoplanet data. ArtAe processes Kepler and TESS datasets, achieving 93.67% 

and 92.10% accuracy respectively in distinguishing genuine exoplanets from false positives. Moreover, this model has unique algorithm 

that reduces overfitting of the model. It also lowers dataset dimensionality, saving time and resources. This accuracy aids in informed 

resource allocation for future studies and enables automated, accurate data validation and analysis. 
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1. Introduction

Proliferation of satellites has revolutionized our understanding of 

exoplanets, marking a pivotal moment in astronomical exploration. 

However, this surge in satellite data acquisition has led to an 

alarming rise in the incidence of false positive exoplanet 

detections. These erroneous readings have the potential to distort 

our conclusions regarding exoplanet existence and characteristics, 

with consequences for the allocation of vital resources, including 

time and funding, for further study and exploration. In response to 

this pressing challenge, we introduce ArtAe, an advanced Artificial 

Intelligence Model. By harnessing the capabilities of Artificial 

Neural Networks and AutoEncoders, ArtAe offers a robust 

solution for meticulously validating expansive exoplanet datasets. 

With a remarkable accuracy rate of 93.67% and 92.10% accuracy 

for Kepler and TESS datasets respectively, it effectively 

distinguishes authentic exoplanet candidates from false positive 

detections. Moreover, ArtAe optimizes data processing and 

analysis by reducing dataset dimensionality, resulting in resource 

savings in terms of time, computational power, and storage space. 

This heightened precision in exoplanet data promises to inform 

future research endeavours and resource allocation based on 

dependable information, thereby enhancing the prioritization of 

scientific pursuits. Additionally, ArtAe's versatile algorithms can 

be autonomously trained to validate and analyse vast datasets, 

markedly diminishing the need for manual intervention while 

elevating result accuracy. 

A. Satellite Data Handling

• About satellite data handling for exoplanets

Satellite data handling for exoplanets involves the collection, 

processing, and analysis of data from various space-based 

observatories and telescopes. The data includes information on the 

light spectra, atmospheric compositions, and other features of 

exoplanets. [6] This information is used to study the physical and

atmospheric conditions of these distant worlds, with the goal of 

understanding their potential for habitability and characterizing 

their environments. The data handling process involves the use of 

advanced algorithms, data reduction techniques, and machine 

learning models to extract meaningful insights from the vast 

amounts of data collected by satellites [2]. The ultimate goal is to

improve our understanding of the formation and evolution of 

exoplanets and provide insights into the possibilities of life beyond 

our solar system.  

• About False Positive Result in Exoplanet

False positive results in exoplanet detection refer to situations 

where a signal is interpreted as evidence of a planet, but it is later 

discovered that the signal is not actually due to a planet [3]. This

can occur due to various reasons such as contamination from other 

sources, instrumental effects, or errors in data analysis. 

The manual work involved in removing false positive results in 

exoplanet detection involves a thorough examination of the data 

obtained from the observations to eliminate any signals that do not 

correspond to actual exoplanets [4]. Scientists use data, such as

radial velocity or transit parameters, to confirm the presence of an 

exoplanet [5]. This process requires a lot of time, effort, and

expertise, and is essential for obtaining accurate results in 

exoplanet detection.  
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B. Application of Deep Learning in Space

Technologies

• AI in satellite Data handling

Artificial Intelligence (AI) is increasingly being used to improve 

the accuracy and efficiency [19] of satellite data handling in the

detection of exoplanets. AI algorithms, such as machine learning 

and deep learning, can be trained to identify patterns and anomalies 

in large amounts of data, reducing the time and manual effort 

required for exoplanet detection [1]. AI can also help in reducing

false positive results by providing more accurate and reliable data. 

By automating various tasks in satellite data handling, such as 

image processing and feature extraction, AI can help scientists 

make better and faster decisions in exoplanet research.  

• AI to reduce manual work

Artificial Intelligence (AI) can be used to automate the calculation 

of transit parameters in satellite data handling for exoplanet 

detection [18]. Traditional methods often require a lot of manual

work, including the visual inspection of light curves and the use of 

complex mathematical models to determine the transit parameters 

[7]. AI techniques, such as machine learning algorithms, can be

trained on large datasets to accurately and efficiently calculate the 

transit parameters. The use of AI can significantly reduce the 

manual workload and improve the speed and accuracy of transit 

parameter calculation, leading to more efficient exoplanet 

detection and characterization [6].

C. Deep Learning Models:

• Artificial Neural Networks (ANN)

Artificial Neural Networks (ANNs) are a type of machine learning 

model inspired by the structure and function of the human brain 

[12]. They consist of interconnected nodes, also known as artificial

neurons, which process information and make decisions based on 

that information [9]. ANNs can be trained to recognize patterns in

data, classify information, and perform various other tasks [11].

Their ability to learn from examples and make decisions based on 

that learning makes them widely applicable across a variety of 

industries, including finance, healthcare, and other marketing [8].

Despite their popularity, ANNs can be computationally expensive 

and complex to design, requiring a trade-off between the accuracy 

and efficiency [10].

• Auto Encoders:

Auto Encoders are a type of neural network architecture designed 

to learn a compact representation, or encoding, of input data 

through a process of encoding and decoding. They consist of two 

main components: an encoder that maps the input data to a lower-

dimensional representation, and a decoder that maps the encoding 

back to the original input space [13]. Auto Encoders are commonly

used for various tasks that includes dimensionality reduction, 

anomaly detection, and generative modelling [14]. They can also

be combined with other neural network models to improve their 

performance in various applications [15]. Despite their

effectiveness, Auto Encoders can suffer from overfitting and 

convergence issues, particularly in large and complex datasets 

[15].

• About ArtAe

ArtAe stands for Artificial Neural Networks powered by Auto 

Encoders. The Auto Encoders part reduces the dimensions of the 

high dimensional dataset and the results are predicted by Artificial 

Neural Networks. 

In the paper [16] Exoplanet detection using machine learning,

Abhishek Malik, et al., implemented a classical Machine Learning 

Models from TSFRESH and they used the extracted features from 

their model to train a gradient boosting classifier using the machine 

learning tool LIGHTBGM. ArtAe is a deep learning model which 

uses TensorFlow and Keras.  

Also in the paper [16], the authors have implemented a Deep

Convolutional Neural Network to predict whether a given signal is 

a transiting exoplanet or a false positive caused by astrophysical or 

instrumental phenomena. But, The ArtAe Model integrates Auto 

Encoders with Artificial Neural Networks and can eliminate false 

positives using only transit properties.  

In comparison to classical machine learning models, ArtAe offers 

improved accuracy and hyper-parameters using TensorFlow and 

Keras which gives optimised results than the former.  

2. Literature Review

We have analyzed and reviewed the following papers that use 

Machine Learning and Deep Learning models to classify the false 

positivity of the exoplanets.  

Ref.* Year 

Publis

hed 

Catalog ML/DL 

Method 

Performan

ce 

[18] 2015 Kepler 

TCEs 

Random 

Forest 

Classifier 

PC 

(0.971/2.9%

), AFP 

(0.976/2.4%

), NTP 

(0.968/3.2%

) 

[15] 2018 Autovette

r 

Convolution

al Neural 

Network 

(CNN) 

Recall: 

95%, 

Accuracy: 

90%, 

Precision: 

96% 

[20] 2018 Autovette

r 

CNN Accuracy: 

97.5%, 

Precision: 

95.5% 

[21] 2019 TESS 

Candidat

es 

Modified 

Astronet 

Triage: 

Precision 

97.0%, 

Accuracy 
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97.4%; 

Vetting: 

Precision 

69.3%, 

Accuracy 

97.8% 

[22] 2019 Kepler 

KOI 

Random 

Forest 

Classifier 

Accuracy: 

98.96%, 

Precision: 

99.55%, 

Recall: 

97.21% 

[23] 2019 Synthetic 

Data 

CNN (2D 

Phase 

Folding) 

Models 

with 

folding: 

Accuracy > 

98%, 

Models 

without 

folding: 

Accuracy ≈ 

85% 

[16] 2020 Kepler & 

TESS 

Data 

LightGBM 

with feature 

extraction 

Kepler 

AUC: 

94.8% 

accuracy, 

96% recall; 

TESS 

Accuracy: 

98%, 

Recall: 82% 

[24] 2023 TESS 

Data 

CNN Model 

with 

Transfer 

Learning 

(TL) 

Accuracy: 

87% 

[26] 2022 Kepler 

KOI 

TSFRESH & 

LIGHTGBM 

(Gradient 

Boosting) 

Accuracy: 

96% 

[27] 2022 Kepler & 

TESS 

Data 

ExoMiner 

(Proposed 

Deep 

Learning 

Classifier) 

Accuracy: 

93.6% 

[28] 2023 TESS 

Data 

Astronet-

Triage-v2 

Recall: 

99.6%, 

Precision: 

75.7% 

Ref.*- References cited  

While these models have demonstrated commendable accuracy 

and precision, they may be susceptible to overfitting since they 

lack the incorporation of algorithms designed to mitigate this issue. 

Overfitting is a phenomenon in which the machine excessively 

learns from the data to achieve a high accuracy rate, but the 

outcomes may not be entirely accurate. In contrast, our integrated 

deep learning model addresses this concern by incorporating a 

unique algorithm. Although it may yield slightly lower accuracy 

compared to certain models, it consistently produces precise and 

correct results, making it a more dependable choice. 

3. Methodology 

In this section, we delineate the methodologies employed in our 

study to enhance predictive accuracy. We begin with data pre-

processing, focusing on the allocation of training and testing sets 

to facilitate model learning. Subsequently, we delve into 

dimensionality reduction utilizing Autoencoders, a pivotal step in 

managing high-dimensional datasets. This is followed by an 

exploration of the architecture and activation functions of Artificial 

Neural Networks, which constitute the core of our predictive 

model. Additionally, we discuss the optimizer, loss function, and 

metrics employed in training the Artificial Neural Network. 

Finally, we touch upon the key mathematical calculations 

underpinning our deep learning model.  

Abbreviations and Acronyms: 

ADAM   Adaptive Moment Estimation 

AI   Artificial Intelligence 

ANN   Artificial Neural Networks 

CPU   Central Processing Unit 

DL   Deep Learning 

GPU   Graphical Processing Unit 

KOI   Kepler Object of Interest 

ML   Machine Learning 

PCA   Principal Component analysis 

ReLU   Rectified linear activation function 

TPU   Tensor Processing Unit 

  

A. Theory and Calculations: 

3.1: Mathematics of Artificial Neural Network 

These equations provide a high-level overview of the mathematics 

behind designing the architecture of the ANN. 

Matrix multiplications: 

In ANNs, weights are represented as matrices and input data as 

vectors. The dot product of these matrices and vectors represents 

the weighted sum of inputs that are used to compute the 

activations. The equation for matrix multiplication is given by: 

 

where A and B are matrices, and C is the result of the matrix 

multiplication. 
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 Vector operations: 

ANNs use vector operations such as dot product, element-wise 

multiplication, and addition to compute activations and gradients 

during the forward and backward propagation steps. The dot 

product of two vectors is given by: 

 

where C is the dot product of vectors A and B. 

 Matrix-vector multiplication: 

In ANNs, the dot product of a weight matrix and an input vector is 

used to compute the activations. The equation for matrix-vector 

multiplication is given by: 

 

where c is the result vector, A is the weight matrix, and v is the 

input vector. 

 Gradient Descent Equation: 

This equation is used to update the model's parameters and 

minimize the loss function. The equation is as follows: 

 

where, 

θ represents the model parameters 

η represents the learning rate 

J(θ) represents the loss function. 

∇θ J(θ) represents the gradient of the loss function with respect to 

the model parameters. 

 Neural Networks specifically use Stochastic Gradient Descent, 

which is an extension of Gradient Descent that uses only a random 

subset of the training data at each iteration. The update equation 

for SGD is given by: 

 

where  is a random sample from the training data. 

 Chain Rule of Calculus: 

This rule is used to calculate the gradient of the loss function with 

respect to the model parameters. The chain rule is as follows: 

 

 where   and   represent any two functions, and  

and  represent the derivatives of    and  

respectively. 

 The Backpropagation Algorithm: 

 The differentiation part of the backpropagation algorithm 

calculates the gradient of the loss function with respect to the 

model parameters using the chain rule. The gradient of the loss 

function with respect to the weights W1 and W2 can be calculated 

as follows: 

 

 

where dL/dy is the derivative of the loss function with respect to y, 

and dy/dW1 and dy/dW2 are the derivatives of y with respect to 

W1 and W2, respectively. 

 The integration part of the backpropagation algorithm uses the 

gradient to update the model parameters in the direction of the 

negative gradient, in order to minimize the loss function. The 

updated model parameters can be calculated as follows: 

 

 

where learning_rate is a hyperparameter that controls the size of 

the update. 

 The Optimization Algorithm: 

The optimization algorithm is used to update the network's weights 

to minimize the loss. Common optimization algorithms include 

gradient descent, stochastic gradient descent (SGD), and ADAM. 

 

where wo and wn are the old and new weights, respectively, and 

∇Loss is the gradient of the loss with respect to the weights. 

 The Loss Function: Sparse Categorical Cross Entropy 

The mathematical formula for the sparse categorical cross-entropy 

loss function is given by: 

 

where yt is the true label for a particular data sample, yp is the 

predicted probability for that label produced by the model, and the 

summation is performed over all possible labels. 

The logarithm term ensures that the loss increases as the predicted 

probability diverges from the true label. 

The Activation Function: SoftMax 

The mathematical formula for the SoftMax function is given by: 

 

where z is a vector of arbitrary real-valued inputs and exp is the 

exponential function. The SoftMax function computes a 

probability distribution over K possible classes, where each class 

is represented by a node in the output layer of a neural network. 

The numerator of the formula computes the exponential of each 

input, and the denominator computes the sum of these 

exponentials. The resulting probabilities are then normalized such 

that they sum to 1. 

 3.2: Mathematics of the Autoencoder 

 These equations provide a high-level overview of the 

mathematics behind designing the architecture of the Auto 

Encoders for dimensionality reduction. 

Reconstruction Loss Function: 

The mathematical foundations of autoencoders are based on a 

reconstruction loss function that measures the difference between 
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the original input data and its reconstructed output. The most 

common form of reconstruction loss is the mean squared error 

(MSE) loss:  

 

where x_i is the i-th element of the original input data and x'_i is 

the corresponding reconstructed output. 

 This equation calculates the average squared difference between 

the original input and its reconstructed output, which represents the 

degree of dissimilarity between the two. Minimizing this loss 

function results in an autoencoder that can effectively reconstruct 

the input data with minimal loss. 

 Encoding: 

The input data is transformed into a lower-dimensional 

representation through a series of matrix operations and non-linear 

transformations. This representation is known as the encoding and 

is computed using the following equation: 

 

where h is the encoding, x is the input data, W is the weight matrix, 

b is the bias vector, and f is the non-linear activation function. 

 Decoding: 

The encoding is then transformed back into the original dimension 

to obtain the reconstructed output, using the following equation: 

 

 where x' is the reconstructed output, W' is the transposed weight 

matrix, b' is the bias vector, and g is the non-linear activation 

function. 

B. Datasets and Materials 

Dataset: 

The data we are using in this project is downloaded from the 

NASA Exo-Planet Archive[a]. The dataset consists of results from 

the Kepler Object of Interest (KOI) and TESS Data (Transiting 

Exoplanet Survey Satellite), collected by the Kepler mission and 

TESS mission that revealed thousands of planets out of our Solar 

System. This dataset has already been evaluated whether the 

detected exoplanet is a candidate (a true exoplanet) or false 

positive (not an exoplanet but had been detected as by the satellite). 

Thereby the previously evaluated results and the major features for 

evaluation will serve as our dataset in this project to detect the false 

positive candidate for the future data.  

System Requirements:  

Processor Configuration: x86 based or ARM based CPU, 

minimum Dual Core CPU of 2.5GHz and more 

RAM Configuration: Minimum 4 GB and more Additional 

Requirement: A GPU of Minimum 4GB can be used for faster 

training and processing of data  

Open Source Python Libraries:  

Pandas [b]: It is a python library which is used for analysing, 

cleaning and manipulation of data. It uses proper and effective data 

structures to deal with the files easy.  

NumPy [c]: It is a python library which is used to perform various 

operations on arrays and matrices according to the purpose  

Seaborn [d]: It is a data visualization library in python which is 

built over Matplotlib to provide great visuals. It is used to plot the 

data and gives amplified results  

Scikit Learn [e]: It is a robust python library which is used to create 

statistical modelling which includes  

C. Algorithms: 

• Data Pre-processing  

 To get better accuracy, the training set should be greater than the 

testing set so that the model can work on more number of rows. 

Using Sci-Kit Learn [e], we can easily convert the dataset into 

training and testing set according to our interest of separation. 

Test_size is the parameter for determining the test set size in scikit 

learn. Random_state is another parameter which allows us to 

produce the same training and testing set each time we run the 

code.  

• Dimensionality Reduction Using Autoencoders: 

High dimensional dataset requires more computation and training 

time. It also requires more space to store the data as it also reduces 

the performance of the model if the dimensionality of the dataset 
[20] isn’t treated. 

 

Fig 1: The architecture of the Auto Encoder 

To avoid these bottle necks, dimensionality reduction is performed 

before training of the dataset. Here, we prefer Auto Encoders for 

dimensionality reduction over PCA (Principal Component 

analysis) because PCA stores large amount of data in the main 

memory and it fails if the storage exceeds [19] . This problem is 

resolved with Autoencoders because it can able to work on smaller 

batches, so we can avoid the memory limitations. Since the dataset 

we have used has 42 columns, it is considered as high dimensional 

dataset [13]. Thereby we will be implementing Autoencoders on this 

dataset for dimensionality reduction. We use the training and 

testing set to build the Autoencoder model. We use fit_transform() 

to convert the data into certain datapoints for the model. Encoder 

object is built, which is also the bottleneck. It has hidden units, that 

reduces the number of features to the specified units. Then we 

define the decoder object to reconstruct the compressed input 

encoder contains. After training the Autoencoder model, we get the 

data in less number of features or in other words, the number of 

features that we have  
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specified as hidden units in the bottleneck. Hence, we got the 

features scaled down, making Artificial Neural Network to give 

better and accurate prediction. 

• Artificial Neural Networks for predicting false positivity 

 Artificial Neural Networks architecture consists of Input Layer, 

Hidden Layer and Output as shown in Fig 2.  

Here we are using Artificial Neural Networks because we have 

more than one hidden layer. Giving the optimal number of neurons 

and activation functions in each hidden layer yields better results. 

The output layer must contain the number of classes for classifying 

it whether it is a false positive or a candidate [9].  

 

Fig 2: The architecture of the Artificial Neural Network 

Activation Layer for hidden layers: ReLU[9]  

ReLU[9] stands for the rectified linear unit activation function. We 

have preferred ReLU[9] for our hidden layers over other activation 

functions because it does not activate all the neurons at the same 

time. Only certain neurons get activated at a particular input value 

range, which makes our ANN model computationally efficient.  

Activation function for Output Layer: Softmax[10] 

Softmax[9] is ideal for multiclass classification to calculate the 

probability distribution for a datapoint belonging to each 

individual class. We have used softmax[10] to show both the 

probabilities separately even though the result type is binary.  

Optimizer used: ADAM[11]  

As per the Keras open-source library, Adam[11] Optimizer is 

defined as a stochastic gradient descent method that is based on 

adaptive estimation of first-order and second-order moments. We 

have preferred this optimizer because Adam[9] is computationally 

efficient, has less memory requirement and is well suited for large 

datasets.  

Loss Function[29] 

SparseCategoricalCrossEntropy computes the loss between 

the label and predictions. We use this function when we have 

two or more label classes, as in our dataset. 

Metrics Function[29] 

Metrics function is used to evaluate the performance of our 

Artificial Neural Network. 

Algorithm for the ArtAe: 

import_library tensorflow 

import_library sklearn 

 # Define the architecture of the autoencoder 

Inputs<--Input(shape=(40,)) 

... 

decoded <-- defining the dense layer 

autoencoder <--Model(inputs,decoded)  

 #A model grouping layers into an object with training/inference 

features. 

 # Train the autoencoder 

Train(autoencoder(X_train,X_train)) 

 # Compress input data using the autoencoder 

X_compressed<--Predict(autoencoder(X_train)) 

 # ANN 

ann = Sequential() 

... 

Add(ann(Dense(units=6,activation=Softmax()))) 

 # Train the neural network on the compressed data 

Train(ann(X_compressed,y_train)) 

 # Make predictions using the trained neural network 

preds<--Predict(ann(predict(autoencoder(X_test)))) 

 # Accuracy 

accuracy = accuracy_score(r,y_test)  

print(accuracy,"%") 

4. Graphical Interpretation 

The graphical interpretations of the data offer insight into the 

model's internal processes, facilitating debugging, optimization, 

and a deeper understanding of the rationale behind the model's 

specific predictions. 

A. Study of the Orbital Period and Transit Epoch (Kepler 

Dataset) 

 

Fig. 3: (a) This plot denotes the average of the values of the 

orbital period and transit epoch 
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Fig. 3: (b) This denotes variances of the values of the orbital 

period and transit epoch. 

 

Fig 3: (c) The lower leftmost side denotes the standard deviation 

of the values of the orbital period and transit epoch 

 

Fig 3: (d) rightmost side denotes medians of the values of the 

orbital period and transit epoch 

The study of averages and variances for orbital periods indicates 

that confirmed planets tend to have lower average orbital periods 

compared to false positives. Additionally, the variance in orbital 

periods is significantly higher for confirmed planets. This suggests 

that there might be more variation in the orbital periods of 

confirmed planets, while false positives show a more clustered 

range of values (as shown in Fig 3.(a) and (b)) 

The analysis of standard deviation and medians reveals that 

confirmed planets have lower standard deviation in comparison to 

false positives. Moreover, false positives exhibit lower median 

values for certain parameters when compared to candidates and 

confirmed planets. This suggests that confirmed planets have more 

consistent and less variable data for these parameters, while false 

positives exhibit greater variation. (as shown in Fig 3.(c) and (d)) 

 

 

 

B. Study of the Transit Duration and Impact parameter 

(Kepler Dataset) 

 

 

Fig 4: The upperfigure denotes the average of the values of the 

transit duration and impact parameter and the lower figure 

denotes variances of the values of the transit duration and impact 

parameter 

In the study of averages for transit duration and impact parameter, 

confirmed planets show lower average values than false positives. 

The trend continues in the study of variances, indicating that the 

data for confirmed planets is more consistent in terms of these 

parameters. This consistency implies that confirmed planets have 

more stable and predictable transit durations and impact 

parameters compared to false positives (as shown in Fig 3). 

C. Study of the Insolation and Transit Depth (Kepler Dataset) 

D. 
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Fig 5: Uppermost figure denotes the average of the values of the 

Insolation and Transit Depth and middle figure denotes variances 

of the values of the Insolation and Transit Depth. Lowermost  

Graph is the standard deviation of the values of the Insolation and 

Planetary Depth 

The analysis of averages for planetary depth and insolation values 

shows that both confirmed and candidate planets have lower mean 

values than false positives. Notably, confirmed planets exhibit 

even lower means than candidates. The investigation of variances 

reveals that false positives have a significantly larger variance, 

suggesting that their data is less consistent compared to confirmed 

and candidate planets (as shown in Fig 5.). 

The comparison of standard deviations implies that candidates 

have higher standard deviations than confirmed planets in terms of 

planetary depth and insolation. This could indicate that confirmed 

planets have more consistent data for these parameters (as shown 

in Fig 5). 

E. Study of the Planetary Radius and Equilibrium 

Temperature (Kepler Dataset) 

 

 

 

 

Fig 6: a) The uppermost figure denotes the average of the values 

of the planetary radius and equilibrium temperature and the 

second figure denotes variances of the values of the planetary 

radius and equilibrium temperature. 

b) The third figure denotes the standard deviation of the values of 

the planetary radius and equilibrium temperature and the fourth 

figure denotes medians of the values of the planetary radius and 

equilibrium temperature. 

The study of averages and variances for planetary radius and 

equilibrium temperature demonstrates that confirmed planets 

generally have smaller mean values than false positives and 

candidates. Furthermore, the variance of confirmed planets is 

notably lower, indicating that their data is more tightly clustered 

around the mean. This consistent data suggests that confirmed 

planets have a more well-defined range of planetary radii and 

equilibrium temperatures (as shown in Fig 6.a). 

The analysis of standard deviations for planetary radius and 

equilibrium temperature confirms that confirmed planets have 

lower standard deviations compared to false positives and 

candidates. This suggests that the data for confirmed planets is less 

spread out, signifying greater consistency. Additionally, in the 

absence of information about the median plot, it's challenging to 

make conclusions regarding medians (as shown in Fig 6.b). 

F. Study of the Isolation Flux, Planetary Radius and Transit 

Depth of Exoplanets (TESS Dataset) 

G. 
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Fig 7: a) The first figure denotes the average of the values of the 

Isolation Flux, Planetary Radius and Transit Depth of Exoplanets 

and the second one denotes variances of the values of the 

Isolation Flux, Planetary Radius and Transit Depth of Exoplanets. 

b) The third figure denotes the standard deviation of the values of 

Isolation Flux, Planetary Radius and Transit Depth of Exoplanets 

and the last figure denotes medians of the values of the Isolation 

Flux, Planetary Radius and Transit Depth of Exoplanets. 

 The analysis of average values for Insolation Flux, Planetary 

Radius, and Transit Depth reveals distinct characteristics of 

confirmed planets. Confirmed planets exhibit the lowest mean 

values in these parameters compared to false positives and 

planetary candidates. This suggests that confirmed planets tend to 

have smaller radii, lower insolation levels, and less substantial 

transit depths, potentially indicating properties conducive to 

confirmation.  

In terms of standard deviation, confirmed planets consistently 

display the least variation in Insolation Flux and Planetary Radius. 

However, Transit Depth values show higher standard deviations 

for both confirmed and false positive planets, indicating a degree 

of inconsistency in this feature among these groups (as shown in 

Fig 7.a). 

The examination of variances in Insolation Flux, Planetary Radius, 

and Transit Depth reaffirms the consistency of confirmed planets, 

as they consistently exhibit the lowest variance in these 

parameters. Transit Depth variances, on the other hand, remain 

relatively high for both confirmed and false positive planets, 

suggesting variability in this feature. 

Median values for these parameters reveal that confirmed planets 

tend to have the lowest median values for Insolation Flux and 

Planetary Radius. However, Transit Depth median values are 

notably higher for planetary candidates. False positives and 

confirmed planets show similar Transit Depth medians compared 

to planetary candidates (as shown in Fig 7.b). 

H. Study of the Planetary Orbital Period and Transit Duration 

of Exoplanets (TESS Dataset) 

 

 

Fig 8: a) The first figure denotes the average of the values of the 

Planetary Orbital Period and Transit Duration of Exoplanets and 

second one denotes variances of the values of the Planetary 

Orbital Period and Transit Duration of Exoplanets. 

b) The third figure denotes the standard deviation of the values of 

Planetary Orbital Period and Transit Duration of Exoplanets and 
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the last figure denotes medians of the values of Planetary Orbital 

Period and Transit Duration of Exoplanets. 

The analysis of average values for Orbital Period and Transit 

Duration highlights differences between confirmed planets, false 

positives, and planetary candidates. False positives consistently 

display the lowest mean values for both Orbital Period and Transit 

Duration, while planetary candidates exhibit the highest means. 

This indicates that confirmed planets tend to have longer orbital 

periods and transit durations compared to false positives. Variance 

measurements for Orbital Period and Transit Duration align with 

the trend observed in averages, with false positives consistently 

having the lowest variances, suggesting more consistent data for 

these features among false positives (as shown in Fig 8.a). 

Standard deviation values for Orbital Period and Transit Duration 

continue to support the consistency of false positive data, as they 

consistently exhibit the lowest standard deviations. In contrast, 

confirmed planets have the highest standard deviations for Transit 

Duration, indicating greater variability in this property among 

confirmed planets.Median values for Orbital Period and Transit 

Duration mirror the trend observed in averages, with false positives 

consistently showing the lowest median values, while confirmed 

planets have the highest Transit Duration medians (as shown in Fig 

8.b). 

I. Study of the Transit Midpoint and Equilibrium Temperature 

of Exoplanets (TESS Dataset) 

 

 

 

Fig 9: a) The first denotes the average of the values of the Transit 

Midpoint and Equilibrium Temperature of Exoplanets and side 

denotes variances of the values of the Transit Midpoint and the 

second one depicts Equilibrium Temperature of Exoplanets. 

b) The third figure denotes the standard deviation of the values of 

Transit Midpoint and Equilibrium Temperature of Exoplanets and 

the last figure denotes medians of the values of Transit Midpoint 

and Equilibrium Temperature of Exoplanets. 

The analysis of average values for Transit Midpoint and 

Equilibrium Temperature (EQT) reveals distinctions between the 

three classes. False positives have the lowest mean values for 

Transit Midpoint but the highest mean values for EQT. In contrast, 

confirmed planets exhibit the least mean EQT values compared to 

candidates and false positives. These observations suggest 

differences in the orbital and thermal properties of these groups. 

Variance measurements indicate that both confirmed, and 

candidate planets have lower variances for EQT, implying more 

consistent temperature data in these groups. However, false 

positives exhibit higher variances for EQT, indicating greater 

variability in equilibrium temperatures among false positives (as 

shown in Fig 9.a). 

Standard deviation analysis reiterates the consistency of confirmed 

and candidate planets in terms of EQT, with both groups displaying 

lower standard deviations compared to false positives. Confirmed 

planets have the highest standard deviation for Transit Midpoint, 

suggesting greater variation in this parameter among confirmed 

planets.Median values further emphasize the differences in EQT 

between the groups, with false positives displaying the highest 

median EQT values. However, confirmed planets exhibit the 

highest median Transit Midpoint values. Candidates and false 

positives have similar median EQT values (as shown in Fig 9.b). 

5. Results 

A. Model Results 

When applied to the Kepler dataset, it achieved a good accuracy 

of 93.67% in correctly identifying exoplanets within this dataset. 

This high accuracy demonstrates that the model has successfully 

eliminated the false positive result, thereby precisely classifying 

only the true exoplanet candidates. 

B. Performance on TESS Dataset 

In the evaluation using the TESS dataset, ArtAe showed 

remarkable accuracy of 92.10%. This level of accuracy illustrates 

the model's adaptability across distinct datasets and its capacity to 

provide accurate exoplanet assessments. 
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C. Dimensionality Reduction using AutoEncoders 

The study also revealed that the time required to train the Artificial 

Neural Network (ANN) model with dimensionality reduction 

through Auto Encoders was 74.86 seconds, while the time to train 

the ANN model without dimensionality reduction was 73.98 

seconds, resulting in a difference of 0.88 seconds for a dataset of 

7803 records. The use of dimensionality reduction helps reduce 

overfitting while saving time. 

Additionally, the loss during the training of the data was reduced 

from 83.5277 to 0.7753 after 100 epochs, which shows the 

efficiency of the integration of the two models. This marked 

improvement in training performance indicates the effectiveness of 

combining the ANN and Auto Encoder models for data processing. 

The Auto Encoder was successful in reducing the dimensionality 

of the data from 7803 rows and 42 features (41 features and 1 target 

column) to 7803 rows and 31 features (30 features and 1 target 

column).  

This was noted as a part of the study only for Kepler dataset. 

This reduction in the number of features helps the model focus on 

the most important characteristics of the data, eliminates noise, and 

results in improved performance and reduced overfitting.  

The use of dimensionality reduction techniques helps ensure that 

the ANN model effectively learns the underlying patterns and 

relationships in the data, leading to improved predictions and better 

overall results. 

6. Discussions and Applications: 

Discussions: 

While the use of dimensionality reduction proves to be beneficial 

in reducing overfitting and time consumption, there is a trade-off 

between accuracy and feature reduction. Proper optimization of the 

model can lead to a reduction in both time and loss, ultimately 

resulting in higher accuracy. This can be achieved through 

hardware configurations such as using a GPU or TPU (if 

TensorFlow package is used) and having an adequate amount of 

RAM. 

It is important to note that this model can also be trained with other 

exoplanet datasets such as K2 (Kepler Second Light), COROT 

(Convection, Rotation and Planetary Transits), etc.  

Artificial Neural Networks (ANNs) and Autoencoders have a 

number of advantages that make them attractive for various 

applications. 

One of the main advantages of ANNs is their ability to learn from 

data and make predictions based on that learning [12]. This ability 

makes them suitable for a wide range of applications, from image 

recognition and natural language processing to stock market 

predictions and disease diagnosis. 

Another advantage of ANNs is their ability to handle non-linear 

relationships between inputs and outputs, which makes them more 

versatile than traditional machine learning models that are based 

on linear relationships [9]. 

Autoencoders, on the other hand, have the advantage of being able 

to reduce the dimensionality of data while preserving important 

features [13]. This reduction in dimensionality can lead to improved 

performance in many applications, including anomaly detection, 

recommendation systems, and data compression. 

However, there are limitations to this approach as reducing 

features can result in overfitting, while retaining a high number of 

features can increase processing time. Thus, finding the optimal 

balance between feature reduction and accuracy is crucial in order 

to effectively train the model. 

Applications: 

The ArtAe model has potential applications in handling satellite 

data by space organizations. Specifically, its ability to effectively 

differentiate genuine exoplanet candidates from false positives 

using only transit properties could be useful for identifying and 

characterizing exoplanets discovered by space-based telescopes. 

In addition, the ArtAe model's ability to process large datasets 

efficiently could be valuable in handling the vast amounts of data 

generated by space-based instruments[21]. This could include data 

from Earth observation satellites or other scientific instruments, 

where the efficient handling and analysis of large datasets is 

critical[22]. 

The ArtAe model could also have potential applications in 

spacecraft operations. For example, during the operation of 

spacecraft, various sensors and instruments generate large amounts 

of data [22][27] that must be monitored and analysed to ensure the 

proper functioning of the spacecraft [25]. 

This model can process data in real-time could be particularly 

valuable for spacecraft operations, where quick decisions and 

responses may be necessary in critical situations.  

7. Acknowledgement 

We, Nidhi Shakhapur and Ravin D, the authors of this paper, 

would like to express our heartfelt gratitude to Dr. Sathya K for her 

invaluable mentorship and unwavering support throughout the 

research process. Her guidance and expertise have been 

instrumental in shaping this work. We also extend our sincere 

thanks to VIT University for providing us with the necessary 

resources and environment to conduct our research. Their support 

has been instrumental in our academic journey. Furthermore, we 

would like to acknowledge the contributions of SEDS VIT student 

chapter at VIT and its dedicated chair, Chetan Shiraguppi. Their 

collaboration and assistance have enriched our research experience 

and added depth to our work. Our acknowledgement goes out to 

all those who have contributed to this endeavour in various ways. 

Your support has been pivotal in the successful completion of this 

research paper. 

References 

[1] MacDonald, R. J. (2023, January 13). POSEIDON: A 

Multidimensional Atmospheric Retrieval Code for Exoplanet 

Spectra. Journal of Open-Source Software, 8(81), 4873. 

https://doi.org/10.21105/joss.04873 

[2] Dimitrov, N., & Natarajan, A. (2019, May 1). From SCADA to 

lifetime assessment and performance optimization: how to use 

models and machine learning to extract useful insights from 

limited data. Journal of Physics: Conference Series, 1222(1), 

012032. https://doi.org/10.1088/1742-6596/1222/1/012032 

 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 3750–3761  |3761 

[3] Martin, S. R., Szwaykowski, P., & Loya, F. M. (2005, October). 

TPF-I Planet Detection Testbed: Progress in Testing Exo-planet 

Signal Detection. Proceedings of the International Astronomical 

Union, 1(C200), 279–284. 

https://doi.org/10.1017/s1743921306009458 

[4] Lin, Wu, Fu, Wang, Zhang, & Kong. (2019, October 28). Dual-

NMS: A Method for Autonomously Removing False Detection 

Boxes from Aerial Image Object Detection Results. Sensors, 

19(21), 4691. https://doi.org/10.3390/s19214691 

[5] Baluev, R. (2018, October). PlanetPack3: A radial-velocity and 

transit analysis tool for exoplanets. Astronomy and Computing, 25, 

221–229. https://doi.org/10.1016/j.ascom.2018.10.005 

[7] Espinoza, N. (2018, November 12). Efficient Joint Sampling of 

Impact Parameters and Transit Depths in Transiting Exoplanet 

Light Curves. Research Notes of the AAS, 2(4), 209. 

https://doi.org/10.3847/2515-5172/aaef38 

[8] Alpaydin, E. (2010). Introduction to machine learning (2nd 

ed.). Cambridge, MA: MIT Press. 

[9] Bengio, Y., Goodfellow, I. J., & Courville, A. (2015). Deep 

learning. Cambridge, MA: MIT Press. 

[10] Brownlee, J. (2020). Neural networks for computer vision: A 

gentle introduction. Machine Learning Mastery. 

https://machinelearningmastery.com/neural-networks-for-

computer-vision/ 

[11] Haykin, S. (2009). Neural networks and learning machines 

(3rd ed.). Upper Saddle River, NJ: Pearson Education. 

[12] Hsu, S., Zhang, H., & Xing, E. P. (2019). Neural network 

models for joint dimensionality reduction and clustering. 

Proceedings of the AAAI Conference on Artificial Intelligence, 33, 

517-524. 

[13] Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., & Frey, 

B. (2015). Adversarial autoencoders. arXiv preprint 

arXiv:1511.05644. 

[14] Zhou, Y., Wen, D., & Fan, Y. (2017). Auto-encoder based 

anomaly detection for temporal data. IEEE Transactions on 

Cybernetics, 47(12), 4109-4121. 

[15] Shallue, C. J., & Vanderburg, A. (2018). Identifying 

Exoplanets with Deep Learning: A Five-planet Resonant Chain 

around Kepler-80 and an Eighth Planet around Kepler-90. The 

Astronomical Journal, 155(2), 94. 

[16] Malik, A., Moster, B. P., Obermeier, C., Exoplanet detection 

using machine learning, Monthly Notices of the Royal 

Astronomical Society, 513(4), 5505-5516. 

https://doi.org/10.1093/mnras/stab3692. 

[17] Liu, L., & Deng, J. (2018, April 29). Dynamic Deep Neural 

Networks: Optimizing Accuracy-Efficiency Trade-Offs by 

Selective Execution. Proceedings of the AAAI Conference on 

Artificial Intelligence, 32(1). 

https://doi.org/10.1609/aaai.v32i1.11630. 

[18] Sturrock, G. C., Manry, B., & Rafiqi, S. (2019). Machine 

Learning Pipeline for Exoplanet Classification. SMU Data Science 

Review, 2(1), 9. 

[19] Catanzarite, J. H. (2015). Autovetter Planet Candidate Catalog 

for Q1-Q17 Data Release 24, (K 

SCI-19090-001). NASA Ames Research Center. 

[20] Ansdell, M., Ioannou, Y., Osborn, H. P., Sasdelli, M., Smith, 

JC., Caldwell, D., et al. (2018). Scientific Domain Knowledge 

Improves Exoplanet Transit Classification with Deep Learning. 

The Astrophysical Journal, 869(1), L7. 

[21] Yu, L., Vanderburg, A., Huang, C., Shallue, CJ., Crossfield, 

IJM., Gaudi, BS., et al. (2019). Identifying Exoplanets with Deep 

Learning. III. Automated Triage and Vetting of TESS Candidates. 

The Astronomical Journal, 158(1), 25. 

[22] Chintarungruangchai, P., & Jiang, IG. (2019). Detecting 

Exoplanet Transits through Machine-learning Techniques with 

Convolutional Neural Networks. Publications of the Astronomical 

Society of the Pacific, 131(1000), 064502. 

[23] Fiscale, S., et al. (2023). Identifying Exoplanets in TESS Data 

by Deep Learning. In: Esposito, A., Faundez-Zanuy, M., Morabito, 

F.C., Pasero, E. (eds) Applications of Artificial Intelligence and 

Neural Systems to Data Science. Smart Innovation, Systems and 

Technologies, vol 360. Springer, Singapore. 

[24] Valizadegan, H., et al. (2022). ExoMiner: A Highly Accurate 

and Explainable Deep Learning Classifier That Validates 301 New 

Exoplanets. The Astrophysical Journal, 926(2), 120. 

[25] Gupta, T. K., & Kumar, C. (2015, June 25). Deep 

Autoencoders for Non-Linear Dimensionality Reduction. Journal 

of Bioinformatics and Intelligent Control. 

[26] Liang Yu, Andrew Vanderburg, Chelsea Huang, Christopher 

J. Shallue, Ian J. M. Crossfield, B. Scott Gaudi, Tansu Daylan, 

Anne Dattilo, David J. Armstrong, George R. Ricker 2019, 

"Identifying Exoplanets with Deep Learning. III. Automated 

Triage and Vetting of TESS Candidates," The Astronomical 

Journal, Volume 158, Number 1.  

[27] Anne Dattilo, Andrew Vanderburg, Christopher J. Shallue, 

Andrew W. Mayo, Perry Berlind, Allyson Bieryla, Michael L. 

Calkins, Gilbert A. Esquerdo, Mark E. Everett, Steve B. Howell 

2019, "Identifying Exoplanets with Deep Learning. II. Two New 

Super-Earths Uncovered by a Neural Network in K2 Data," The 

Astronomical Journal, Volume 157, Number 5. 

[28]  Tey, E., Moldovan, D., Kunimoto, M., Huang, C. X., Shporer, 

A., Daylan, T., Muthukrishna, D., Vanderburg, A., Dattilo, A., 

Ricker, G. R., & Seager, S. 2023, “Identifying Exoplanets with 

Deep Learning. V. Improved Light Curve Classification for TESS 

Full Frame Image Observations.” Retrieved from 

https://doi.org/10.48550/arXiv.2301.01371 

[29] Chatterjee, Supratik & Keprate, Arvind. (2021). Predicting 

Remaining Fatigue Life of Topside Piping Using Deep Learning. 

10.1109/ICAPAI49758.2021.9462055. 

[a] NASA Exoplanet Archive: 

https://exoplanetarchive.ipac.caltech.edu/ 

[b] Pandas: https://pandas.pydata.org/docs/ 

[c] NumPy: https://numpy.org/doc/ 

[d] Seaborn: https://seaborn.pydata.org/ 

[e] Scikit-Learn: https://scikit-learn.org/stable/index.html 

https://doi.org/10.48550/arXiv.2301.01371
https://exoplanetarchive.ipac.caltech.edu/
https://pandas.pydata.org/docs/
https://numpy.org/doc/
https://seaborn.pydata.org/
https://scikit-learn.org/stable/index.html

