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Abstract: This paper presents an integrated approach to real-time object detection and precise control of a robotic arm (RA), addressing 

the challenge of seamless environmental interaction. The system utilizes the You Only Look Once version 4 (YOLOv4) algorithm for swift 

and accurate object identification, along with forward kinematics for RA tracking, ensuring accuracy and responsiveness in real-world 

applications. The innovation lies in combining different convolutional neural network (CNN) architectures while maintaining precision in 

implementing the control mechanism with an Arduino Uno microcontroller. Initial implementations for amputees are explored, promising 

enhanced interaction and autonomy. Validation accuracies of 91.78% and 89.92% highlight the system's effectiveness. Ongoing evaluation 

and dataset diversification are essential for advancement. 
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I. Introduction 

The integration of robots in various fields is increasingly 

replacing human labor in repetitive or hazardous tasks. The 

use of mobile robot bases, including drones, has expanded 

the capabilities of cooperative manipulation, extending the 

reach of robots in different workspaces[1]The dynamic 

evolution of technology has spurred a worldwide emphasis 

on industrial automation, with robotic systems, particularly 

robotic arms, serving as pivotal contributors. The 

convergence of enhanced software capabilities, advanced 

hardware components, and sophisticated motors has granted 

robotic arms newfound versatility, enabling them to execute 

intricate tasks in diverse domains. This transformation spans 

from the precision demands of industrial applications to the 

nuanced requirements of activities like badminton, 

showcasing the adaptability of these robotic systems.[2] 

Camera pose estimation determines the camera's location 

and perspective on an object or scene, crucial in robotics, 

augmented reality, and medical procedures. The study is 

dedicated to enhancing the accuracy of this estimation, 

specifically for tasks such as robotic grasping, with methods 

like homography decomposition and rigid pose estimation 

being employed. Additionally, this work extends its focus to 

integrate these advancements into the realm of robotic arm 

operations, further emphasizing practical applications in the 

field. [3]Within the medical landscape, the transformative 

integration of robots into surgical procedures, encompassing 

fields like robotic arm applications, has ushered in an era of 

less invasive interventions. Meticulous control over soft 

tissue dynamics during suturing holds paramount 

significance for the success of these procedures. This 

introduces a dual-arm robotic strategy, strategically 

minimizing dependence on detailed mechanical 

information, with the explicit goal of automating suturing 

processes. The emphasis lies in achieving precise and 

reliable needle insertion, thereby advancing the frontier of 

surgical automation [4]A robotic arm is employed to control 

the position and orientation of a transmitting antenna inside 

the RC, providing a greater number of samples compared to 

manual methods. The results are compared with 

conventional mechanical stirrers in terms of different 

figures of merit. The integration of a robotic arm in the 

Radio Chamber demonstrates not only superior sample 

generation capabilities but also emphasizes the potential for 

advancing experimental outcomes in comparison to 

traditional mechanical methods. [5]  

II. Literature Review 

The investigation into cooperative arms, mobile 

manipulators, and aerial manipulators for collaborative 

tasks involves utilizing drones as a communication layer for 

dual-arm robots. Additionally, the proposed control method 

involves using brain signals, aiming to enhance simplicity, 

facilitate AI development, and improve accessibility for 

disabled operators.[6] A smart control strategy for a robotic 

arm handling water-filled bottles was developed, employing 

the AIWCPSO algorithm and velocity curve design. The 

objective was to determine the optimal approach for moving 

the bottles without spilling. The results highlighted the 

success of the intelligent control strategy, suggesting its 

potential effectiveness for similar tasks in the future.[7] A 

new method for determining camera position relative to a 

flat target using multiple images and robot position 

information has been proposed. Their specialized optimizer 

improves accuracy compared to existing approaches. 
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Validation with computer-generated and real-world data 

shows superior results to other methods, including Zhang's 

stereo camera calibration and the Introspective Multiview 

Approach [8] Fangxun Zhong et al. present a dual-arm 

control strategy for accurate robotic needle insertion in 

minimally-invasive procedures. The approach actively 

manipulates both the needle and tissue, reducing errors and 

improving insertion accuracy while addressing target 

deviation caused by tissue deformation. The study 

highlights the potential for automated robotic suturing with 

competitive accuracy compared to manual human 

execution. [9] In the pursuit of efficient sample generation, 

researchers devised a 3-D printed robotic arm to construct a 

source-stirred Radio Chamber (RC).Source stirring 

outperformed mechanical stirring, offering a smaller stirring 

volume. However, at low frequencies, antenna movement 

caused periodic high correlations, and at high frequencies, 

cable movement introduced uncertainties in antenna 

efficiency measurements. [10] In the realm of dual-arm 

exoskeleton robotics, a coordination control method is 

proposed, emphasizing human impedance transfer skills. 

The left arm extracts stiffness and position profiles from the 

human arm and transfers them to the right arm, enabling 

intuitive human-robot interaction. An adaptive-robust 

impedance controller ensures accurate trajectory tracking 

with uncertain dynamics and unknown forces. Experimental 

results confirm the effectiveness of the approach in enabling 

subjects to perform coordination tasks with the exoskeleton 

by transferring human arm stiffness.[11] Kim et al. 

addresses passive gravity compensation in MIS robotic 

systems. They introduce a novel 3-DoF gravity 

compensation mechanism for MIS robotic arms with an 

RCM mechanism. The mechanism uses reduction gearboxes 

and wire cables to adjust compensating torque during 

translational motion, enhancing safety and stability during 

surgical procedures. [12] In the context of dual-arm robot 

control for space applications, an adaptive control method is 

presented for bimanual tasks with relative motion. The 

approach utilizes a command-filtered control technique and 

employs a radial basis function neural network (RBFNN) 

with a composite learning law to effectively handle 

uncertainties. This work provides a comprehensive strategy 

for achieving stable and precise control of dual-arm robots. 

[13] Virtual stereovision (VSV) pose measurement is 

emphasized for non-cooperative space targets in a dual-arm 

space robotic system. This method enables independent 

observation by each arm, ensuring accurate pose 

measurement and enhancing system flexibility for robotic 

space servicing.[14] Impedance control of a multi-arm 

space robot for capturing non-cooperative targets is 

addressed, incorporating a proposed algorithm for 

coordinated control and stable capture with gas jet thrusters. 

The analytical approach and impedance control presented 

contribute significantly to the development of reliable multi-

arm space robotic systems. [15] 

III.   Methodology 

The methodology integrates a Convolutional Neural 

Network (CNN) for swift identification of objects within 

images. OpenCV captures webcam footage, performs 

detection, and overlays boxes around identified objects. 

Tailored algorithms were employed to train the YOLOv4 

model specifically for object detection and classification. 

This approach encompasses a streamlined workflow that 

combines neural network architectures and live video 

streams via JavaScript to offer a cohesive and dynamic 

system for object detection and visualization. Advanced 

techniques for optimizing object detection accuracy, such as 

data augmentation and model fine-tuning, are incorporated 

into the system. Moreover, real-time performance 

enhancements are achieved through parallel processing and 

optimization of computational resources. This 

comprehensive approach ensures not only swift 

identification but also high precision in object detection 

tasks.    

 

 

 

 

                 

 

 

 

Fig 1: Robotic Arm Architecture 

The robotic arm captures images using its camera, and a 

CNN processes the images to identify and classify objects. 

YOLOv4 is implemented on a Raspberry Pi, enabling real-

time object identification using camera data. A Python script 

calculates object coordinates (X, Y) and logs them in a text 

file. The Raspberry Pi facilitates bidirectional 

communication, transmitting these coordinates to an 

Arduino. The Arduino then converts the X-coordinate into 

servo motor angles, controlling robust 19kg servo motors 

that manipulate a 30cm robotic arm powered by a 12V 

supply. Future improvements focus on implementing 

instantaneous communication and incorporating feedback 

mechanisms to enhance both accuracy and adaptability. 

Hardware System 

The hardware system in this specific initiative involves a 

robotic arm designed for object grasping, inspired by 

principles of biomimicry to replicate essential aspects of the 

human arm. Crafted from lightweight yet durable 

aluminum, the arm exhibits two degrees of freedom (DOF), 

mirroring the fundamental structure of the human shoulder, 

elbow, and wrist joints. Each joint operates through a high-
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torque (19 kg-cm) servo motor, controlled by an Arduino 

Uno microcontroller. Servo motors offer precise angular 

positioning, akin to the controlled movements of human 

joints. Serial communication between the Raspberry Pi and 

Arduino enables the transmission of object coordinates 

identified by the YOLOv4 model, facilitating dynamic 

adjustments in the robotic arm's position. This design 

approach embodies a biomimetic philosophy, deriving 

inspiration from the structure and functionality of the human 

arm. The utilization of servo motors aligns with the concept 

of artificial muscles, reproducing the controlled movements 

of the human musculoskeletal system. While the system 

features a simplified two-DOF configuration compared to 

the human arm's seven DOF, it highlights the potential of 

biomimicry to inspire the creation of practical robotic 

systems. The hardware design of the system, while not 

replicating the full complexity of the human arm, establishes 

a foundation for further exploration of biomimetic 

principles in the development of robotic arms. 

A. Dataset Preprocessing Details 

In our study, we utilized a dataset consisting of 5,000 images 

annotated with bounding boxes for common objects, 

including person, dog, book, bottle, and phone. This diverse 

dataset covers both indoor and outdoor scenes, 

encompassing instances of occluded objects. The 

annotations provide a comprehensive benchmark for object 

detection models and maintain relevance for various 

computer vision tasks such as image segmentation and 

captioning. The dataset's richness in annotations enhances 

its utility as a robust resource for training and evaluating 

computer vision algorithms. 

B. System Design and Implementation: 

The system seamlessly integrates object detection, bounding 

box calculations, and process-to-process communication. 

Within the bounding box module, precise ((x, y)) 

coordinates and dimensions are computed based on object 

data. This enables accurate object mapping across diverse 

frames, which is crucial for video streams or images. Model 

accuracy evaluation employs Intersection over Union (IoU) 

to measure the overlap between predicted and actual 

bounding boxes. Furthermore, image preprocessing 

optimizes object detection through resizing and color space 

conversions. The servo control aspect of the system utilizes 

an exclusive X-coordinate, showcasing an efficient data 

encoding method for precise serial transmission and 

manipulation of the servo. 

 

                          Fig.2 Robotic Arm model 

A. Algorithm 

Algorithm: Object Detection and Robotic Arm Control 

Using YOLOv4 

Initialization 

1. Port_name ← "COM6" 

2. Baud_Rate ← 9600 

3. ser = serial.Serial(Port_name, Baud_Rate) 

4. print("Serial port opened successfully") 

5. except serial.SerialException as e: 

   • print("Error opening serial port:", e) 

   • exit() 

6. with open("coordinates.txt", "w") as f:  

   • f.write("") 

Main Loop 

1. while True: 

   1. frame = capture_frame() 

   2. objects = detect_objects(frame, model="YOLOv4") 

   3. if objects:  

      1. coordinates = extract_coordinates(objects) 

      2. with open("coordinates.txt", "a") as f: 

         • f.write(coordinates + "\n") 

      3. send_coordinates_to_arduino(coordinates) 

      4. display_annotated_frame(frame) 

Termination 

1. ser.close() 

The robotic arm is constructed from lightweight and durable 

aluminum. The base incorporates a servo motor controlled 
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by an Arduino Uno microcontroller, enabling clockwise or 

counterclockwise rotation. A servo motor actuates the 

elbow joint, providing precise control. Another servo motor 

powers the rotary joint, facilitating controlled rotational 

movement. The Arduino board serves as the central control 

system, coordinating the servo motors for seamless 

operation. This design ensures accurate and controlled 

movements, making the robotic arm versatile in various 

applications. The operating voltage of the servo motor is 4.8 

volts. The Arduino Uno provides the operating voltage to 

both servo motors. 

The algorithm orchestrates a symbiotic relationship between 

a YOLOv4 (You Only Look Once version 4) object 

detection model and a robotic arm, aiming to enhance object 

grasping capabilities. It initializes a serial connection 

between the Raspberry Pi and an Arduino, concurrently 

ensuring the existence of a vital "coordinates.txt" file. This 

file serves as a conduit for bidirectional data exchange, 

capturing object coordinates from YOLOv4's predictions. 

The algorithm processes each captured video frame, 

detecting objects and extracting their coordinates. Upon 

successful detection, the X and Y coordinates are appended 

to "coordinates.txt" for subsequent transmission. These 

coordinates undergo serial transmission to the Arduino, 

where they are meticulously interpreted. The Arduino, 

equipped with servo motors, responds to the received X-

coordinate by adjusting the robotic arm's position. The script 

then responsibly concludes the serial connection. In-depth 

integration involves precise servo control, reliant on the 

exclusive X-coordinate, leveraging efficient data encoding 

for seamless transmission. The algorithm exhibits a robust 

feedback loop, facilitating real-time adjustments to the 

robotic arm's movements based on object orientation. 

Additionally, the system prioritizes reliability, ensuring 

consistent bidirectional communication and coordination 

between the YOLOv4 model and the robotic arm, ultimately 

contributing to the project's overarching goal of providing 

independence to users. 

V. Results And Discussion 

The integration of You Only Look Once version 4 

(YOLOv4), a leading object detection model, with a robotic 

arm facilitated real-time object identification and precise 

manipulation. Rigorous mathematical validation ensured 

accurate object localization and control. YOLOv4, 

employing advanced convolutional neural networks 

(CNNs), yielded a notable accuracy of 91.78% on 

evaluation, with a corresponding validation accuracy of 

89.92%. Despite slightly trailing Residual Networks 

(ResNet) and Visual Geometry Group (VGG16) in 

accuracy, YOLOv4's real-time processing capabilities make 

it particularly suitable for robotics applications requiring 

low-latency inference. 

Bounding box calculations define object positions, 

represented by the coordinates \( ( ( x_{\text{min}}, 

y_{\text{min}} ), ( x_{\text{max}}, y_{\text{max}} ) ) \), 

delineating the top-left and bottom-right corners. Aspect 

ratio adjustment guarantees precise scaling of bounding 

boxes to fit image dimensions: 

\[ 

\text{adjusted\_width} = \text{original\_width} \times 

\frac{\text{new\_width}}{\text{original\_width}} \tag{1} 

\] 

Additionally, coordinate transformations, such as scaling by 

a factor \( s \), ensure accurate object mapping: 

\[ 

x_{\text{min\_new}} = x_{\text{min\_old}} \times s 

\tag{2} 

\] 

This integration of YOLOv4's robust detection capabilities 

with rigorous mathematical validation underscores its 

effectiveness in real-world applications, especially in 

scenarios requiring rapid object detection and precise 

manipulation. This amalgamation of YOLOv4's robust 

detection capabilities with meticulous mathematical 

validation underscores its efficacy in real-world 

applications, particularly in scenarios necessitating swift 

object detection and manipulation with high precision.  

Table 1. Accuracy Comparison of Object Detection 

Models. 

Architecture 

&Reference 

Accuracy Validation 

Accuracy 

ResNet[16] 2016 98.92% 97.39% 

VGG16[17] 2014 96.55% 95.50% 

YOLOv4[18] 

2020 

91.78% 89.92% 

 

  

   

   

Fig.3 Comparison of Model Accuracies 
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In the realm of object detection models, a pivotal 

consideration revolves around the delicate balance between 

accuracy and real-time performance. YOLOv4 adeptly 

addresses this trade-off, strategically leveraging its 

processing potential to emerge as a robust candidate for real-

world robotic applications. The model's innate ability to 

operate in real-time scenarios makes it particularly well-

suited for dynamic environments where swift decision-

making is paramount. Furthermore, it's important to 

measure real-time performance to ensure that we're 

evaluating and optimizing effectively. The hardware and 

software integration showcased in this work serves as an 

avant-garde exemplar, illustrating the seamless fusion of the 

YOLOv4 model with a robotic system. A key element 

making this integration work smoothly is the smart use of a 

text file called "coordinates.txt." This file helps the 

Raspberry Pi and Arduino talk to each other seamlessly. 

This, in turn, enables the effective control of servo motors, 

augmenting the precision and coordination of the robotic 

arm. The amalgamation of cutting-edge object detection 

techniques, exemplified by YOLOv4, with advanced 

robotic control mechanisms presents a pioneering stride 

towards the advancement of real-time object detection and 

robotic control paradigms. The results and implications 

outlined herein underscore the transformative potential of 

such integrative approaches in the burgeoning domain of 

intelligent systems. YOLOv4 outperforms ResNet and 

VGG16 in terms of real-time processing speed, making it 

particularly advantageous for robotic arm applications 

requiring swift decision-making. 

The proficient deployment of You Only Look Once version 

4 (YOLOv4) for object detection, as exemplified in Fig. 4, 

substantiates its efficacy in accurately discerning and 

localizing objects within the specified dataset. The visual 

manifestation of YOLOv4's performance attests to its 

resilience and adeptness in addressing a spectrum of 

intricate object detection tasks. The convolutional neural 

network (CNN) architecture inherent in YOLOv4 exhibits a 

remarkable capacity to analyze and interpret complex visual 

information, facilitating the precise identification of objects 

in real-time scenarios. 

 

Fig.4 Object detection Using YOLOv4 

The computational intricacies encapsulated within 

YOLOv4's design intricately balance the trade-off between 

accuracy and processing speed, culminating in a model that 

excels in dynamic, real-world environments. The bounding 

box outputs, as evidenced in Fig. 4, showcase the model's 

prowess in spatially localizing objects with high precision. 

The algorithmic sophistication embedded in YOLOv4 is 

underscored by its ability to seamlessly adapt to varying 

scales and aspect ratios, ensuring a comprehensive and 

nuanced understanding of the detected objects. In this 

illustrative instance, YOLOv4 emerges as a cornerstone in 

the fusion of cutting-edge object detection methodologies 

with real-world robotic applications, manifesting a 

transformative synergy. Taking a close look at Fig. 4 and 

how well YOLOv4 performed really drives home the point 

that it's a cutting-edge solution. It shows that YOLOv4 can 

handle all sorts of tricky object detection tasks with ease. 

This portrayal serves as a testament to the paradigm-shifting 

potential of YOLOv4 in advancing the frontiers of 

intelligent systems, embodying the epitome of precision and 

adaptability in contemporary computer vision applications. 

 

Fig. 5 Robotic Arm and Servo Motor testing 

A robotic arm, equipped with servo motors, has been 

successfully connected and tested. The servo motors are 

interfaced with an Arduino microcontroller, demonstrating 

seamless functionality. This integration showcases the 

effective collaboration between the robotic arm and the 

Arduino platform, promising a robust and versatile system 

for further development. 

The provided Arduino code processes serial data containing 

X and Y coordinates, parsing them to adjust a servo motor's 

position (connected to pin 9) based on the X-coordinate. The 

servo's movement is updated accordingly, and the received 

coordinates are displayed on the Serial Monitor. 

Table 2. Servo Motor Control Specifications. 

Angel Signal 

cycle 

High 

Time 

Direction 

0° 50Hz 0.5ms-

1ms 

Counterclockwise 

(typically) 

90° 50Hz 1.5ms-2 

ms 

Typically middle 

position 

180° 50Hz 2ms-2.5 

ms 

Clockwise(Typically) 
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It's essential to ensure that the servo_control.txt file 

accurately matches your specific servo's specifications for 

precise operation. 

IV. Conclusion 

The integration of state-of-the-art computer vision with 

precise robotic arm control is demonstrated in this study, 

showcasing the implementation of YOLOv4 for real-time 

object detection. The bidirectional data exchange, facilitated 

by the 'coordinates.txt' file, underscores the system's 

robustness, emphasizing high-accuracy servo control. The 

hardware configuration, mechanical design, and software 

implementation form a versatile platform applicable to real-

world scenarios, notably in enhancing interaction and 

autonomy, as seen in potential prosthetic applications. 

Despite these achievements, future enhancements can 

address the intrinsic complexity of robotic arms by 

exploring systems with increased degrees of freedom. To 

enhance adaptability to diverse objects and environments, 

ongoing efforts must prioritize dataset diversity and 

continual evaluation. Subsequent work should focus on 

refining real-world adaptability and exploring deployment 

opportunities, particularly in domains like prosthetics, 

where the fusion of computer vision and robotics holds 

substantial promise for impactful human-machine 

interaction. Signifying a notable advancement in the 

convergence of computer vision and robotics, this approach 

presents a practical and effective method for intelligent 

robotic systems. The bidirectional data exchange 

mechanism, coupled with sophisticated algorithms, lays the 

groundwork for further innovations, heralding a future 

where these technologies seamlessly integrate across 

various fields, delivering heightened precision, versatility, 

and interactive capabilities. 
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