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Abstract: Big data applications such as the Aadhar project necessitate the storage of large volumes of biometric data, which requires about 

20,218 TB of storage space. Big data projects, which present enormous storage and processing challenges, demand large storage servers 

and high-end computers. This paper suggests a novel method to enhance the resolution of compressed fingerprint images using a super-

resolution (SR) model that reconstructs a high-resolution (HR) image from a low-resolution (LR) image can significantly reduce the 

requirement for large amounts of data and costly hardware in such cases. This proposed size optimized GAN (Generative Adversarial 

Network) based SR model of size 2.9 MB, that enlarges a low-resolution image to a scale factor of eight times. The model was trained on 

the fingerprint data set FVC 2004 (Fingerprint Verification Competition) and then tested on the FVC 2004 data set. The various human 

visual system (HVS) parameters, such as peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and mean squared error 

(MSE), were measured, and their values were found to be 35.97, 0.958, and 19.5, respectively. Perceptual loss was measured in terms of 

generator loss as 0.981 and discriminator loss as 0.550. The accuracy of matching between the ground-truth image and the regenerated 

image was measured through the SIFT (scale-invariant feature transform) method and obtained an identification accuracy of 98.7%.  This 

approach has the potential to increase the performance of fingerprint recognition systems for latent fingerprint images. 

Keywords: Fingerprint image, Generative adversarial network, Single image super-resolution, SIFT. 

1. Introduction 

High-resolution (HR) images with distinct object 

boundaries or detailed visual descriptions are crucial for 

researchers to better understand the semantics of real-world 

images. Big data applications that make use of image 

processing techniques always demand high-end machines 

for storage, retrieval and analysis. The technology to meet 

these requirements demands high-performance computing 

for massive computational resources and it incurs huge costs 

in terms of both hardware and software. [1].  So, there must 

be an image processing model which will reduce the 

complexity involved while processing and analyzing big 

data applications. It is difficult and costly to obtain HR 

images using potential hardware-based methods. For 

instance, one of the options such as shrinking the pixel size 

would reduce the quantity of light that sensors could capture 

resulting in an increase in shot noise. Another option 

enlarging the sensor slows down the charge transfer rate and 

substantially raises the price of imaging systems. Therefore, 

using algorithmic-based methods to regenerate HR images 

from low-resolution (LR) image is preferable than 

hardware-based ones. Super resolution (SR) approaches are 

algorithm-based techniques that aim to reconstruct an HR 

image from input of LR observations taken in the same 

scene.  

 With the introduction of deep learning, big data 

applications seem to rely more on deep learning-based 

methods. In an automatic fingerprint identification system, 

the accuracy of identification depends on the number of 

minutiae points, which are contributed by the structural 

details of ridges and valleys in the image. Also, the storage 

requirement of high-resolution images is not feasible for 

scalable applications. Main motivation for this work was to 

meet the above three objectives.  Major contributions are  

1.  Novel Model Development: This study introduces a 

pioneering super-resolution model developed entirely from 

scratch, without reliance on pre-trained models. This 

approach ensures that the model is tailored specifically to 

the task of fingerprint image enhancement, maximizing its 

effectiveness and adaptability. 

2.    Fine-Tuning with Large Dataset: We augment the 

robustness and generalization capabilities of our model by 

fine-tuning it with the extensive Socofing dataset, a 

significant collection of fingerprint images. This process 

enhances the model's ability to capture diverse fingerprint 

patterns and variations, improving its performance across 

various real-world applications. 

3.    Eightfold Resolution Enhancement: This model 

achieves an impressive eightfold enhancement in the 

resolution of input fingerprint images. This substantial 

improvement not only enhances the visual quality of the 

images but also enables more accurate and reliable 

fingerprint recognition and analysis tasks. 
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4. Optimized Network Parameters: We meticulously select 

network parameters to strike a balance between 

computational efficiency and storage requirements. By 

optimizing these parameters, our model achieves superior 

performance while minimizing computational overhead, 

making it practical for deployment in resource-constrained 

environments. 

  In this work, identification accuracy of the reconstructed 

image was verified using SIFT method. Number of key 

minutiae points in the regenerated and ground-truth image 

are measured and compared using publicly available 

algorithm fingerprint minutiae viewer (FpMV). Also, HVS 

(Human Visual System) parameters of the reconstructed 

image was measured and values are compared with the state 

of-the-art techniques. 

 The paper is organized in such a way that the related work 

for super-resolution methods is given in section 2 and the 

proposed methodology in section 3. Results and discussion 

explained in section 4 and section 5 deals with the 

conclusion of the proposed work. 

2. Literature Review 

Major approaches for super-resolution include classical 

image processing techniques and learning-based methods. 

In the deep learning approach, residual network-based 

super-resolution models, autoencoder-based super-

resolution models and generative adversarial network-based 

super-resolution models are prominently used and are 

described below.  

A convolutional neural network-based super-resolution 

(SR) model was devised in [2] to enhance resolution of 

fingerprint images. This model showed advancements in 

increasing the number of minutiae points, essential for 

fingerprint analysis. Furthermore, the integration of nearest 

neighbor indexing techniques facilitated computationally 

feasible search operations during automatic fingerprint 

identification. Evaluation of the model demonstrated an 

identification accuracy of 85%. In reference [3], a deep 

convolutional neural network, integrated with noise filtering 

for fingerprint enhancement, was employed with adaptively 

updated filter sizes. This model achieved a per-pixel 

accuracy of 94.8%. In reference [4], Laplacian and Prewitt 

filters were utilized for edge sharpening, followed by a 

convolutional neural network to enhance the resolution of 

fingerprint images, yielding an accuracy of 75.6%. In [5], 

convolutional neural network autoencoders were employed, 

achieving a resolution enhancement accuracy of 95.04%. 

Reference [6] applied a generative adversarial network 

(GAN) with residual connections for fingerprint image 

enhancement. Additionally, ridge structure extraction was 

utilized to enhance resolution, with a measured Structural 

Similarity Index (SSIM) value of 0.937. Two GAN 

networks were utilized for unsupervised super-resolution of 

images in [7]. Moreover, in [8], a lightweight GAN with 

auto-encoding was employed for feature extraction and HR 

image generation, with FID and IS scores of 64.7 and 9.4, 

respectively. Reference [9] employed a conditional GAN 

for resolution enhancement, achieving an accuracy of 94.3% 

with an error rate of 0.4. In [10], a denoising autoencoder 

network was utilized for enhancing latent fingerprint 

images, resulting in an identification accuracy of 76.36%. 

Reference [11] introduced a deep residual network for 

fingerprint image enhancement, emphasizing pore detection 

to enhance fingerprint identification accuracy to 93.4%, 

with an error rate of 8.7%. Multiscale residual networks 

were utilized for super-resolution of natural images in [12], 

yielding PSNR and SSIM values of 28.7 and 0.68, 

respectively. Moreover, in [13], a progressive multiscale 

residual network was employed for natural image 

enhancement, integrating both pixel-wise and channel-wise 

attention mechanisms for relevant feature extraction.   [14], 

a fingerprint image enhancement model combined a 

diffusion-coherence filter with a 2D log-Gabor filter for 

improved results. This model shows an error rate of 35. In 

[15], a GAN network was proposed, featuring an auto-

encoder-based discriminator, aimed at balancing generator 

and discriminator losses to enhance model performance. 

Reference [16] introduced a GAN-based super-resolution 

(SR) model utilizing deep convolutional neural networks, 

demonstrating improved stability during training. WGAN, 

presented in [17], prioritized stability in parameter 

optimization and training processes. Furthermore, [18] 

enhanced WGAN performance by introducing gradient 

penalty in their SR model. [19] utilized a GAN-based SR 

model with a least square loss function in the discriminator 

to boost model performance. In [20], a lightweight SR 

model combining convolutional neural networks with edge 

filters was employed, albeit achieving lower accuracy in 

classification performance. Finally, [21] employed a 

convolutional neural network efficiently extracting 

minutiae features from fingerprint images at a low scale 

factor.  Performance summary of super-resolution 

techniques are shown in table 1. 

Table 1.  A Summary of super-resolution techniques on 

fingerprint datasets  

Sl No System 
Method-

ology 

Perfor-

mance 

Metrics 

Meas-

ured 

Limita-

tion 

1 

Shervin 

Minaee et 

al. 

Convo-

lutional 

Neural 

Network 

Accu-

racy: 

95.7 % 

Com-

plex 

Model 
-2019 
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2 

Uttam U. 

Deshpande 

et al 

(2020) 

Convo-

lution 

Neural 

Network 

Accu-

racy: 80 

Incom-

plete 

Feature 

Extrac-

tion  

3 

Syeda 

Nyma 

Ferdous et 

al. (2020) 

GAN  

Accu-

racy 94 

%, Error 

rate 0.4 

% 

Model 

Com-

plex 

4 

Ajnas Mu-

hammed et 

al. (2020) 

Deep 

CNN 

com-

bined 

with 

noise fil-

tering 

PSNR: 

34.05, 

SSIM: 

98.53, 

MSE 

0.0009 

Scaled 

Twice 

only 

5 

Rashmi 

Gupta et 

al. (2020) 

Ridge 

Orienta-

tion  

Accu-

racy: 

97.95 

Prior 

data-

based 

diction-

aries are 

applied  

6 

Serigo 

Sapanora 

et al. 

(2021) 

CNN 

auto-en-

coder  

Accu-

racy: 

95.02 %, 

MSE: 

0.0048 

Loss of 

true fea-

ture 

points in 

latent 

space 

7 

Sandoval 

Verssimo 

De Sousa 

Neto et al 

(2022) 

Deep 

Convo-

lutional 

Auto-

Encoder 

Accu-

racy: 

94.8 % 

Low 

scale 

factor, 

Input 

image 

size big  

8 

Andreea-

Monica 

Dinca 

Lazarescu 

et al. 

(2022) 

CNN 

Com-

bined 

with 

prewet 

and La-

placian 

Filters 

Accu-

racy: 

75.6 % 

Max-

pooling 

applied 

after 

every 

convolu-

tional 

layer 

9 

Subhajit 

Chatterjee 

et al 

(2022) 

GAN  

Accu-

racy:  

99.3 

Auto-

encoder 

structure 

in dis-

crimina-

tor 

 

3. Proposed Methodology 

The architecture of the proposed GAN-based SR model is 

depicted in Fig. 1. This study consists of two modules. The 

first module aims to enhance the resolution of a given low-

resolution fingerprint image by a factor of eight using a 

GAN network. The second module identifies crucial minu-

tiae points in the enhanced image and evaluates the quality 

of the image using the publicly available Fingerprint Minu-

tiae Viewer (FpMV) algorithm and comparing it with the 

ground-truth image. Additionally, image matching accuracy 

between the enhanced image and the ground truth is meas-

ured using the Scale Invariant Feature Transform (SIFT) 

method. The GAN model comprises two networks: a gener-

ator and a discriminator. The input to the generator is a low-

resolution image, which then generates a high-resolution 

image from the compressed input. The generator loss is 

measured in terms of adversarial loss and mean squared er-

ror. The discriminator receives inputs either of the enhanced 

image or the ground truth image, determining whether the 

regenerated image is real or fake. The generator network in 

this SR model is based on a convolutional neural network 

with residual blocks, while the discriminator part is based 

on convolutional operations and transposed convolution op-

erations. Network parameters of this model are shown in ta-

ble 2, and table 3 shows details of layers employed in gen-

erator and discriminator networks.   

. 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 4300–4210  |  4303 

 

Fig.1.Proposed Model Architecture 

 

 

      Fig.2. Discriminator Network in Proposed Model 

 

 

Fig.3. Generator Network in Proposed Model 

3.1.     Generator 

 The generator part of the proposed model is shown in fig3. 

Our architecture comprises three convolutional layers 

followed by four ResNet blocks and four transposed 

convolution layers for deconvolution operations. Notably, 

we maintain consistency in input and output image sizes 

through strategic padding and a uniform stride value of 1 

across all layers. Additionally, we introduce innovative 

features such as concatenating outputs from ResNet blocks 

to enhance performance. LeakyReLU activation functions 

are applied consistently to promote non-linearity and feature 

extraction. Furthermore, our deliberate choice of a stride 

value of 2 for deconvolution operations optimizes spatial 

fidelity during upscaling. 

3.2.   Discriminator 

The discriminator component of our model, depicted in Fig. 

2, plays a pivotal role in guiding the generator towards 

producing high-quality images. Comprising six 

convolutional layers, its architecture is carefully crafted to 

discern and provide feedback on image fidelity. Initially, the 

first convolutional layer employs 16 filters with a kernel size 

of 4x4, followed by the second layer with 32 filters of the 

same size. Subsequently, the third and fourth layers escalate 

in complexity, featuring 64 and 128 filters, respectively, 

each with a 4x4 kernel size. Notably, the LeakyReLU 

activation function is chosen for all layers except the final 

one, where Softmax is applied. A crucial design choice lies 

in the strategic utilization of a stride value of 2 in every 
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layer, facilitating broader discrimination capabilities across 

features. By orchestrating this discriminator architecture, 

we aim to leverage its feedback loop to steer the generator 

towards producing images of superior quality, thereby 

enhancing overall model performance. 

Table 2.  Network Parameters in proposed model 

 

Table 3. Layer Parameters in Generator and Discriminator 

Networks 

Block  Layer Details  

No of 

Chan

nels 

Ker

nel 

Size 

Strid

e 

Pad

ding 

Conv

1  

Convolution 

Layer, Leaky 

ReLU 

16 
3 X 

3 
1 1 

Conv

2 

Convolution 

Layer, Leaky 

ReLU 

32 
3 X 

3 
1 1 

Conv

3 

Convolution 

Layer, Leaky 

ReLU 

64 
3 X 

3 
1 1 

Res-

Net 

Block 

Convolution 

Layer, Leaky 

ReLU 

64 
3 X 

3 
1 1 

De-

con-

volu-

tion 

Conv2DTrans

pose Layer 
64 

3 X 

3 
2 1 

De-

con-

volu-

tion 

Conv2DTrans

pose Layer 
32 

3 X 

3 
2 1 

De-

con-

volu-

tion 

Conv2DTrans

pose Layer 
16 

3 X 

3 
2 1 

Conv

4 

Convolution 

Layer, Leaky 

ReLU 

16 4x4 2 1 

Conv

5 

Convolution 

Layer, Leaky 

ReLU 

32 4x4 1 1 

Conv

6 

Convolution 

Layer, Leaky 

ReLU 

64 4x4 2 1 

Conv

7 

Convolution 

Layer, Leaky 

ReLU 

128 4x4 1 1 

Conv

8 

Convolution 

Layer,Soft-

max 

1 4x4 2 1 

 

3.3. Experimental Set-Up and Training procedure 

In this study, the dataset was meticulously prepared using 

Python with TensorFlow technology, leveraging the 

computational power of an Intel Xeon 64-bit 2.60 GHz CPU 

and Nvidia Quadro T1000 4GB GPU. The dataset creation 

process involved resizing original images to a standardized 

400x400 resolution to obtain high-resolution (HR) images. 

These HR images were then down sampled to generate 

corresponding low-resolution (LR) images, forming the 

training and testing datasets. In the training phase, the 

generator received the first LR image as input to produce a 

generated image of size 400x400. Subsequently, either the 

generated HR image or the original HR image was randomly 

fed into the discriminator. The discriminator's output 

indicated whether the input was real (original HR image) or 

fake (generated HR image), marked respectively as 1 and 0. 

With the known ground truth of the discriminator's input, 

the discriminator loss was calculated to update its weights, 

aiming to enhance its accuracy in 

discriminating between real and fake images. Meanwhile, 

the generator loss was determined by combining the 

discriminator loss (negated) and the pixel loss (mean 

squared error), guiding weight updates in the generator 

layer. Through this iterative process, the discriminator 

continually refined its ability to distinguish real from fake 

images, while the generator learned to produce high-quality 

images closely resembling real ones. Training progressed 

until the discriminator's discrimination capabilities were 

significantly challenged, indicating the generator's success 

in generating authentic-looking images. At this point, the 

training process halted, marking the convergence of the 

coupled discriminator-generator training. 

3.4. Details of Dataset Employed 

The proposed model was trained on publicly available 

Network Architectu

re 

Loss 

Functions 

Optimizat

ion 

function 

Activati

on 

Functio

n 

Traini

ng 

Batch 

size 

and 

Epoch 

Generator Convolutio

nal layers 

and 

ResNet 

Blocks 

Pixel loss 

and 

Discrimin

ator loss 

Adam 

with 

learning 

rate 0.001 

Leaky 

ReLU 

in all 

layers 

16 & 

200 

Discrimin

ator 

Convolutio

nal layers 

and 

Transpose

d 

convolutio

nal layers 

Binary 

Cross 

Entropy 

loss 

Adam 

with 

learning 

rate 0.001 

Leaky 

ReLU 

in every 

layer 

except 

last 

layer. 

Soft 

max 

applied 

in last 

layer 

16 & 

200 
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standard data-set FVC-2004. The data-set FVC2004 has 3 

sets of finger print images with different resolutions and 

applied in such a way that 90 % of the images are used for 

training and 10 % of the images are used for testing purpose. 

The dataset details are shown below in Table 4. 

Table 4. Details of dataset employed in proposed model. 

[24] 

Data-Set 
Number of 

Images 
Image Size 

FVC 2004, 

Database 1 
240 640 X 480 

FVC 2004, 

Database 2 
240 328 X 364 

FVC 2004, 

Database 3 
240 300 X 480 

 

3.5. Performance Evaluation metrics [25]. 

Structural Similarity Index Measure (SSIM):  Structural 

analysis of the regenerated image with ground-truth image 

is measured using SSIM. It compares structural similarity 

with respect to luminance, contrast and structural features of 

both images. The SSIM value varies from -1 to 1. The SSIM 

expressed between two images x and y is given as in 

equation (1). 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦+𝑐1)(2𝜎𝑥𝑦+𝑐2)

(𝜇𝑥2+𝜇𝑦2+𝑐1)(𝜇𝑥2+𝜇𝑦2+𝑐2)
                           (1) 

Where x and y are ground-truth image and reconstructed 

images being compared. 

µx , µy   : Average luminescence values of x, y 

σxy    : Covariance of x and y 

σx
2, σy 

2   :  Variances of x and y 

Peak signal-to-noise ratio (PSNR): The PSNR value 

indicates how similar two images are. PSNR is used to 

measure the quality between ground-truth image and the 

reconstructed image. It is given as in equation (2). 

𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔10 10(2
𝑛 − 1) √𝑀𝑆𝐸⁄                                   (2) 

 Mean Squared Error (MSE): MSE value shows amount of 

error    in the reconstructed image. It is calculated using 

equation (3) 

𝑀𝑆𝐸 = ∑ ∑ (𝑋(𝑖,𝑗) − 𝑌(𝑖,𝑗))
2𝑁

1
𝑀
1                                               (3) 

                 

Where X(i,j) ,  Y( i,j ) represents pixe1l value at ( i ,j) in  

ground   

truth image and reconstructed image. 

3.6. Tools Used  

Details of tools applied are described in table 5. 

Table 5. Details of Tools employed 

         

4. Results and Discussion 

The performance of this model was evaluated across three 

different behaviours of the proposed architecture, as 

depicted in Table 6. It is evident from the table that the 

second case exhibits superior performance compared to the 

other two cases, demonstrating higher values for key HVS 

parameters such as SSIM, PSNR, and MSE, alongside a 

reduced number of parameters and computational 

complexity. Consequently, the model was configured based 

on these parameters.  

Table 6. Kernel Behavior and result obtained in Proposed 

model. 

Sl No  

Author & 

Year of 

Publish-

ing  

Meth-

odology 

Identifi-

cation 

Accu-

racy in 

% 

1 

Uttam U. 

Deshpande 

et al, 2020 

[2] 

 Convo-

lution 

Neural 

Network 

80 

2 

Rasmi 

Gupta et 

al. 2020 

[23] 

 Orien-

tation 

and 

Phase 

Recon-

struction  

97.7 

Sl. 

No 

Tool Used Functions Developed 

By 

1  SIFT (Scale 

Invariant Feature 

Transform). 

Tool to find 

similarity 

between 

images. 

David Lowe 

1999. [27] 

2 FpMV(Fingerprint 

Minutiae Viewer) 

1. Displays the 

dimension of an 

image. 

2. Displays the 

total minutiae 

detected by” 

mindtct”. 

43 Displays the 

minutiae based 

on user selected 

quality value. 

National 

Institute of 

Standards 

and 

Technology 

(NIST). [26] 

 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 4300–4210  |  4306 

3 

Sergio Sa-

ponara et 

al. 2021 

[5] 

Convo-

lution 

Auto-

Encoder 

95.02 

4 

Sandoval 

Verssimo 

de Sousa 

Neto et al. 

2022 [24] 

Convo-

lution 

Deep 

Auto-

Encoder 

94.1 

5 

Andreea-

Monica et 

al. 2022 

[21] 

CNN 

Com-

bined 

with 

Edge 

features  

94.1 

6 

Kona-

kanchi 

Anusha 

and P. V. 

Siva Ku-

mar et al. 

2023 [22] 

 CNN 

com-

bined 

with fil-

tering a 

99, 

Scale 

Factor 2  
nd Edge 

detec-

tion  

7 
Proposed 

SR Model 

Size 

Opti-

mized 

GAN 

98.7, 

Scale 

factor 8  

 

 

4.1. Model Size Comparison 

Fig.4. illustrates that the generator size in our proposed 

GAN architecture is measured at 2.9 million parameters, 

whereas the discriminator consists of 0.724 million 

parameters. A comparison is made with state-of-the-art 

methods utilizing GANs for enhancing the resolution of 

fingerprint images. This figure demonstrates that our model 

achieves eightfold resolution enhancement of low-

resolution images with an optimal size in comparison to 

state-of-the-art methods. 

 

Fig.4. Proposed model size comparison with state-of-the-art 

methods 

Table 7. Accuracy Comparison with state-of-the-art 

methods 

C

as

e 

# 

Num-

ber of 

Ker-

nels 

Num

ber 

of 

Pa-

ram-

eters 

PS

NR 

SSI

M 

MS

E 

Mo

del 

Siz

e 

FPS(Fra

mes/sec-

ond) 

1 

 8-16-

32-

Res-

Net_

Block

-32-

16-8   

5,41,

065 

26.

14

5 

0.7

45

8 

24.

12 

2.1

8 

M

B  

379 

2 

16-

32-

64-

Res-

Net_

Block

-64-

32-16  

5,53,

417 

35.

97

4 

0.9

58

4 

19.

45 

 

2.9

9 

M

B   

346 

3 

32-

64-

128-

Res-

Net_

Block

-128-

64-32  

13,0

2,53

7 

34.

56

7 

0.9

57

1 

20.

69

8 

5.0

9 

M

B   

207 

                

 

4.2. Identification Accuracy Measurement using SIFT 

algorithm and comparison with state-of-the-art methods. 

The identification accuracy of regenerated image was 

measured using the scale-invariant feature transform (SIFT) 

method. It begins by identifying key points in the image that 

are invariant to changes in scale and rotation, ensuring that 

these points can be reliably recognized regardless of their 

appearance in different contexts. These key points are then 

refined to precisely localize their positions and orientations 

within the image. Next, descriptors are generated for each 

key point, capturing unique characteristics of the 

surrounding image region such as gradients and textures. 

These descriptors serve as compact representations of the 

key points and are used for matching similar features 

between images. By comparing descriptors, SIFT can find 

corresponding points across different images. The proposed 

model shows identification accuracy of 98.7%.  Fig. 5 

shows matching procedure using SIFT method which find 

matching accuracy between regenerated image and ground-

truth image. Table 7 shows comparison of our model with 

state-of-the-art methods on accuracy in fingerprint 

identification. 
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Fig.5. Image similarity checking using SIFT method 

4.3.   Reconstructed images Obtained for randomly selected 

images from FVC 2004 and comparison with state-of-

the-art methods.  

The model's performance is evaluated using both 

performance metrics and visual assessment of output images 

generated from randomly selected images in the FVC 2004 

dataset. Fig. 6 depict the low-resolution input image, 

ground-truth image, reconstructed image produced by the 

proposed model, and the output image obtained through 

bicubic interpolation. The comparison reveals that the 

reconstructed image from the proposed model closely 

resembles the original image, whereas the image from 

bicubic interpolation appears blurred. This visual evidence 

underscores the effectiveness of the proposed model in 

achieving high-fidelity image reconstruction compared to 

traditional interpolation methods. 

 

 

Fig.6. Result obtained in proposed model:   Input image, 

Ground-Truth image, Reconstructed Image, Interpolated 

image for randomly selected image from FVC 2004 Dataset 

4.4. Minutiae points extracted using FpMV(Fingerprint 

Minutiae Viewer ) Method. 

The Fingerprint Minutiae Viewer (FpMV) distribution is 

developed by the National Institute of Standards and 

Technology (NIST). The goal of this software is to provide 

researchers a tool to view a fingerprint image with minutiae 

points overlaid on top of the fingerprint. The minutiae 

detection is based on "mindtct" application from the NIST 

Biometric Image Software (NBIS). It displays minutiae 

points and quality of the image. In fig.7, top figure 

represents minutiae points and quality of reconstructed 

image for a sample image from the dataset and bottom figure 

shows minutiae points and quality of ground-truth image of 

same sample image from the dataset. Here red and green 

dots represent ridge endings and bifurcations.  Fig. 8 shows 

key minutiae points detected in the ground-truth image(top) 

and reconstructed image(bottom) using FpMV algorithm for 

a sample image from the dataset and also number of key 

minutiae points in the reconstructed image is more than that 

of ground-truth image. 
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Fig.7. Number of minutiae points and quality of 

reconstructed image (top) and ground-truth image (bottom) 

for a sample image from FVC 2004 dataset using FpMV 

method 

 

 

Fig.8. Number of minutiae points identified in the 

reconstructed image(top) and in ground-truth image 

using(bottom) for a sample image from FVC 2004 dataset 

using   FpMV method. 

5.  Conclusion 

This study focused on single-image super-resolution of 

fingerprint images, enlarging a low-resolution image of size 

50x50 by a factor of eight using size-optimized GAN SR 

model. The resulting reconstructed output image shows 

superior performance compared to state-of-the-art methods. 

Evaluation metrics including SSIM, PSNR, MSE 

demonstrated the enhanced quality of reconstructed image. 

Furthermore, employing the FpMV algorithm, the number 

of minutiae points in both the original and reconstructed 

images were measured indicating the fidelity in reserving 

details during super-resolution process further validate the 

accuracy of the reconstructed image, image similarity was 

verified using SIFT algorithm, revealing an impressive 

identification accuracy of 98.7 %.  These findings 

underscore the efficacy of the proposed model, showcasing 

its capability to outperform existing methods in single-

image super-resolution of fingerprint images. Future 

research directions include extending this approach to 

enhance resolution in latent fingerprint images obtained 

from crime scenes, thereby contributing to advancements in 

forensic science. 
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