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Abstract: Accurate segmentation of seismic images remains a critical pursuit in subsurface exploration. This paper introduces an 

innovative methodology aiming to elevate the precision and reliability of seismic image segmentation. Leveraging the Grey Level Co-

occurrence Matrix (GLCM) alongside the UNET architecture—renowned for its hierarchical feature extraction—this study presents a 

novel approach to delineating subsurface structures, notably salt bodies, within seismic data. The synergy between GLCM's rich textural 

insights and UNET's sophisticated feature extraction capabilities holds promise in significantly refining the delineation of intricate 

subsurface features. Motivated by the need for automation and enhanced accuracy in seismic imaging interpretation, a substantial 

repository containing 4,000 training seismic image patches, each complemented by corresponding segmentation masks. Evaluation was 

performed on a separate set of 18,000 seismic image patches, and accompanied by depth information for sample locations. The proposed 

methodology not only aims to enhance segmentation accuracy but also endeavors to advance seismic interpretation practices, potentially 

contributing to informed decision-making in subsurface exploration. Rigorous experimentation conducted within a unified training 

framework revealed promising results, demonstrating the proposed architecture's performance comparable to or, in most cases, 

surpassing established segmentation models. 
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1. Introduction 

The segmentation of seismic images is crucial for 

subsurface exploration, especially in identifying resources 

like oil and natural gas deposits [1]. Traditionally, human 

expertise has been the primary method for interpreting 

seismic images, leading to subjective and variable 

outcomes [1]. The need for precise segmentation 

techniques is underscored by the importance of detecting 

salt bodies in the oil and gas industry [1]. Leveraging 

advanced methodologies becomes imperative to automate 

the segmentation process and elevate its accuracy [1]. The 

proposed innovative approach combines the Grey Level 

Co-occurrence Matrix (GLCM) with the UNET 

architecture to refine the segmentation of seismic images 

[2] [3]. By synergizing GLCM's comprehensive texture 

analysis capabilities with UNET's robust feature extraction, 

this methodology offers a more precise and reliable means 

of delineating subsurface structures, particularly salt 

bodies, within seismic data [2] [3]. This integration can 

significantly enhance segmentation accuracy, thereby 

advancing the practices of seismic interpretation and 

exploration [1]. 

Seismic imaging stands as a critical tool in the domain of 

subsurface exploration, especially in identifying lucrative 

resources like oil and natural gas reserves. Yet, the 

interpretation of these intricate images has traditionally 

relied heavily on human expertise, leading to subjective 

and inconsistent outcomes. The specific need to detect salt 

bodies beneath the Earth's surface, crucial for oil and gas 

exploration, emphasizes the necessity for precise 

segmentation methodologies. 

To address this challenge, there arises a pressing need to 

introduce advanced techniques that automate the 

segmentation process and significantly improve its 

accuracy. This paper endeavors to introduce an innovative 

and sophisticated methodology that combines two 

powerful components: the Grey Level Co-occurrence 

Matrix (GLCM) and the UNET architecture. This 

integration aims to revolutionize the segmentation process 

of seismic images by leveraging GLCM's comprehensive 

texture analysis capabilities in tandem with UNET's robust 

and hierarchical feature extraction mechanism. 

The central objective lies in enhancing the delineation of 

subsurface structures, particularly salt bodies, embedded 

within seismic data. By harnessing the synergistic potential 

of GLCM and UNET, this methodology seeks to provide a 

more precise, reliable, and automated means of segmenting 

seismic images. Ultimately, this integration holds 

tremendous promise in significantly augmenting 

segmentation accuracy, which has substantial implications 

for advancing seismic interpretation practices and 

facilitating more informed decision-making in subsurface 

exploration endeavors. 

The Grey Level Co-occurrence Matrix (GLCM) is a 

powerful tool for analyzing the spatial relationships and 

texture statistics of grayscale images. It is constructed by 

determining the frequency with which a pixel with a 

specific grey-level value is adjacent to other pixels with 

different values along a given axis, whether that axis is 

horizontal, vertical, or diagonal. The distribution of co-

occurring values at a specific offset is known as the co-

occurrence matrix, defined over an image. 
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The GLCM is a two-dimensional matrix that captures the 

spatial relationships of pixels in a single-channel grayscale 

image. While most images have three color channels 

(RGB), the GLCM focuses solely on the grayscale layer. 

By analyzing the spatial relationships gleaned from the 

GLCM statistically, it is possible to extract features from 

images. This has led to the application of GLCM in various 

industries, including medicine, materials science, and 

manufacturing, for image analysis tasks. 

Figure 1 illustrates a simplified example of the process for 

determining the GLCM. The numbers in the figure 

represent the occurrences of paired pixel values in the 

original grayscale image at a specific offset. The offset can 

be adjusted in degrees, allowing for movement in 

horizontal, vertical, and diagonal directions. The GLCM's I 

and j coordinates are generated using prior pixel values 

from the grayscale image, and the frequency sum of the 

counts is computed using the original image's intensity 

values and assigned to the GLCM as Pi, j. A GLCM of 

approximately 256x256 can be generated, provided that the 

source image's pixel values range between 0 and 255. 

Additionally, second-order statistical features such as 

angular second moment (ASM), contrast, entropy, and 

homogeneity are defined for texture analysis based on the 

GLCM. 

 

Fig. 1.  Feature extraction using GLCM 

The seismic study of salt deposits has been a challenge for 

over a century, leading to the development of the seismic 

reflection technique. Salt analysis is considered crucial due 

to its proximity to hydrocarbon sources, adding complexity 

to the exploration and extraction process. The disorganized 

nature of salt deposits presents a complex challenge for salt 

segmentation, which remains important today. Initially, 

geophysics experts manually analyzed seismic images to 

address this issue, but over the years, various mathematical 

methods have been developed to automate the process. 

However, their precision is sometimes insufficient, 

especially in complex situations, leading to the 

development of specific hybrid methods.  

Seismic imaging faces difficulty in locating and outlining 

subsurface salt bodies, which are important for identifying 

hydrocarbon reserves such as crude oil or natural gas. 

Modern seismic imaging techniques generate large 

amounts of unlabeled data that require processing. 

However, accurately locating significant salt deposits is 

notoriously difficult and often requires manual analysis by 

domain experts, leading to increased costs, time 

consumption, and subjective human bias, which can be 

risky for oil and gas business drillers. 

The advent of new deep learning methods has significantly 

improved the identification accuracy in domains such as 

geoscience, leading to the TGS-hosted Kaggle competition 

aimed at creating algorithms for automatically determining 

subsurface salt targets.  

Seismic information is collected through reflection 

seismology, where sensors detect reflections from 

underlying rock contacts using a controlled seismic energy 

source. This technique is analogous to X-ray, sonar, and 

echolocation, and it helps construct a three-dimensional 

model of the Earth's interior.  

Vast underground salt deposits pose a challenge for 

seismic imaging due to their chemical composition, which 

can make them easily identifiable or elusive. Salt's high 

seismic velocity and density compared to surrounding 

rocks lead to highly reflective layers at the salt-sediment 

interface, complicating seismic imaging. 

The paper is structured as follows: Section 2 provides an 

overview of previous work on seismic image segmentation 

utilizing UNET models. In Section 3, the proposed method 

incorporating UNET with GLCM is detailed. Section 4 

showcases and discusses the obtained results, while 

Section 5 offers the conclusions. 

2. Related works 

Seismic image segmentation plays a crucial role in 

subsurface exploration, particularly in identifying valuable 

resources such as oil and natural gas reserves. Traditional 

segmentation methods have relied on manual interpretation 

and mathematical techniques, which may lack precision, 

especially in complex geological settings. To address these 

challenges, researchers have turned to deep learning 

methods to enhance the accuracy and efficiency of seismic 

image segmentation. This literature review aims to explore 

the recent advancements in utilizing deep learning methods 

for enhancing seismic image segmentation. 

Deep learning methods, particularly convolutional neural 

networks (CNNs), have shown promise in various 

geoscience applications, including seismic image analysis. 

For instance, [10] focused on improving sparsity and 

mapping functions using deep learning for seismic signal 

denoising and decomposition [10] [11]. developed an end-

to-end CNN for 3D seismic fault segmentation using 

synthetic datasets, demonstrating the potential of deep 

learning in fault detection [11]. Additionally, Milosavljevic 

[12] proposed a deep learning method for semantic 
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segmentation of salt deposits in seismic images, 

highlighting the application of convolutional neural 

networks in subsurface exploration [12]. 

The application of deep learning methods in seismic image 

segmentation has also been extended to address specific 

geological features [13]. enhanced the detection of salt-

dome boundary surfaces in seismic volumes using gradient 

of textures, showcasing the potential of deep learning in 

delineating complex geological structures [13]. 

Furthermore, recent studies have explored the use of deep 

learning for automated 3D salt segmentation, 

demonstrating the effectiveness of deep convolutional 

neural networks in subsurface feature identification [14]. 

In addition to seismic image segmentation, deep learning 

methods have been applied to various geoscience tasks, 

such as seismic signal classification, fault detection, and 

earthquake monitoring. For example, Zhao et al. (2021) 

investigated seismic signal classification based on time-

frequency maps and deep learning, highlighting the 

potential of deep learning in seismic data analysis [15]. 

Furthermore, deep learning has been utilized for fault trace 

generation, seismic horizon interpretation, and 

microseismic source localization, demonstrating its 

versatility in geoscience applications [16][17][18]. 

The integration of deep learning with traditional 

geophysical methods has also been a focus of recent 

research. For instance, researchers have explored the 

combination of deep learning with subspace projection and 

fast Fourier convolution for noise reduction in seismic 

data, showcasing the potential of deep learning in 

enhancing data preprocessing techniques [19]. Moreover, 

the application of deep learning in geophysical model 

generation using generative adversarial networks has 

shown promise in creating realistic density and 

stratigraphy models for subsurface characterization [20]. 

Seismic image segmentation is a critical task in subsurface 

exploration, and recent research has explored the 

application of advanced techniques such as UNET and 

UNET with GLCM for improving the accuracy and 

efficiency of segmentation methods. 

The UNET architecture, known for its traditional encoder-

decoder scheme, has been widely used in various image 

processing applications. Moustafa et al. [21] demonstrated 

the modification of UNET neural networks for 

hyperspectral change detection, showcasing the versatility 

of UNET in handling multispectral and hyperspectral 

imaging tasks. This highlights the potential of UNET in 

adapting to different imaging modalities and geoscientific 

applications. 

In addition to UNET, the integration of Gray-Level Co-

occurrence Matrix (GLCM) for texture analysis has shown 

promise in improving seismic facies interpretation. Di & 

Gao [22] extended GLCM to 3D space and applied it to 

generate GLCM attributes for volumetric seismic facies 

interpretation, demonstrating the effectiveness of GLCM in 

capturing nonlinear texture features for geologic analysis. 

This suggests the potential of GLCM in enhancing the 

characterization of subsurface structures in seismic images. 

Furthermore, the application of deep fully convolutional 

neural networks (FCNs) for road segmentation in synthetic 

aperture radar (SAR) satellite images has demonstrated the 

capability of deep learning methods in handling geospatial 

data. Henry et al. [23] showcased the use of deep FCNs for 

road segmentation in SAR satellite images, highlighting 

the potential of deep learning architectures in geospatial 

image analysis. This indicates the adaptability of deep 

learning methods for geologic feature extraction and 

segmentation tasks. 

Moreover, the integration of seismic texture segmentation 

and cluster analysis has gained acceptance in recent years 

for channel delineation and reservoir characterization. 

Matos et al. [24] emphasized the wide acceptance of 3D 

volumetric attributes by seismic interpreters, indicating the 

importance of advanced segmentation and analysis 

techniques in subsurface characterization. 

In summary, the literature review highlights the potential 

of UNET, UNET with GLCM, and deep learning methods 

in improving seismic image segmentation for geologic 

interpretation and subsurface exploration. The studies 

reviewed demonstrate the versatility of these methods in 

handling various imaging modalities and geoscientific 

applications, paving the way for more accurate and 

efficient subsurface characterization. 

Overall, the literature review highlights the growing 

interest in leveraging deep learning methods to enhance 

seismic image segmentation and various geoscience 

applications. The studies reviewed demonstrate the 

potential of deep learning in improving the accuracy, 

efficiency, and automation of subsurface exploration and 

interpretation. 

3. Methodology 

The research paper introduces an innovative methodology 

aimed at refining seismic image segmentation by 

leveraging a hybrid approach combining Grey Level Co-

occurrence Matrix (GLCM) and UNET architecture for 

feature extraction. The proposed methodology orchestrates 

the synergy between these two potent techniques to 

enhance the precision and robustness of seismic image 

segmentation. By harnessing the rich textural information 

encoded in GLCM alongside the hierarchical feature 

extraction process of UNET, this methodology aims to 

significantly improve the delineation of subsurface 

structures, particularly salt bodies, within seismic images. 

The integration of GLCM's texture analysis capabilities 
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into the UNET framework offers a comprehensive 

understanding of image features, fostering more accurate 

segmentation results, and potentially advancing seismic 

interpretation and exploration practices. 

The rationale behind this integration is rooted in leveraging 

GLCM's capacity to capture rich textural information 

inherent in seismic images. GLCM offers insights into 

texture patterns, nuances, and relationships present in these 

images. This valuable texture analysis, when fused with 

the UNET architecture, augments the network's ability to 

comprehend and extract intricate image features. 

The primary objective of this amalgamation is twofold: 

first, to harness the informative textural cues from GLCM 

and, second, to utilize UNET's sophisticated feature 

extraction capabilities. This combined methodology has 

the potential to substantially elevate the precision and 

robustness of seismic image segmentation processes. 

The significance of this advancement lies in its potential to 

provide more accurate delineation of subsurface structures, 

thereby aiding geoscientists, seismic interpreters, and 

exploration experts in better understanding and visualizing 

underground formations. This holds the promise of 

improving the efficacy of seismic interpretation and 

exploration practices, ultimately contributing to more 

informed decision-making in energy resource exploration 

and extraction industries. 

A visualization technique was utilized to represent the 

training dataset visually. This method generates pairs of 

images and their respective masks from the dataset. A 

custom function, display_random_images, was developed 

for this purpose. The function operates by selecting 

random image-mask pairs from two sets referred to as 

image_set and mask_set. Within this function, a loop is 

employed to display a specified number of these random 

pairs. Each iteration randomly selects an image and its 

corresponding mask by generating an index within the 

range of available images. These pairs are then presented 

in two rows: the top row showing the chosen image labeled 

as 'Image' and the bottom row displaying the associated 

mask labeled as 'Mask'. This visualization facilitates a 

clearer understanding of the dataset's structure and the 

relationship between images and their respective masks, 

providing valuable insights into the dataset's characteristics 

and its relevance to the training process. 

 

Fig. 2.  Visual Representation of Random Image-Mask 

Pairs from Training Dataset. 

The symbols and their respective operations within the 

context of image segmentation tasks are as follows: I 

denote the original images; M represents the masks 

associated with these images. IL signifies the process of 

loading images, while CS_RGB stands for color 

standardization to RGB format. Resizing the images to a 

uniform 128×128 pixel scale is denoted by RS, and NPV 

refers to the normalization of pixel values. On the other 

hand, ML represents the loading of masks, and GC 

signifies the conversion of masks to grayscale. The 

resizing of masks to correspond with image dimensions is 

represented by R. The resulting preprocessed images and 

masks are denoted as PI and PM respectively. Finally, the 

transformation of these preprocessed entities into NumPy 

arrays is symbolized by N. The process is shown as 

follows, 

Image Preparation: 

     (1) 

Mask Preparation: 

   (2) 

Data Segregation: 

 

Segregation of Data:      (3) 

Transformation into NumPy Arrays: 

    (4) 

   (5) 

The core objective involves computing the Gray-Level Co-

occurrence Matrix (GLCM) features from a set of images 

. Initially, fundamental operations from the 

'skimage.color' library, notably 'rgb2gray', are applied to 

transform images into their grayscale representation . 

Each image  is processed to achieve the grayscale form 

, and its bit depth is adjusted to 'CV_8U'. GLCM 
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matrices GLCM(  are computed, considering specific 

parameters such as distance, angle, levels, symmetry, and 

normalization. Subsequently, significant GLCM properties 

like contrast  and energy  are extracted from individual 

images. These distinctive properties  are then 

aggregated, forming a feature vector  for each image. 

Ultimately, the collection of these feature vectors  

contributes to constructing the GLCM feature set , 

formatted as a NumPy array, poised for further analytical 

processes. 

Converting images to grayscale: 

      (6) 

Adjusting image bit depth: 

  (7) 

where uint 8 _factor represents the conversion factor to ' 

 '. Computing GLCM matrices: 

  (8) 

Extracting GLCM properties: 

  (9) 

Aggregating GLCM properties into a feature vector: 

  (10) 

Constructing the GLCM feature set: 

  (11) 

3.1. Proposed Architecture 

The proposed architecture described in the figure 3 

consists of three main types of blocks: C, D, and U. 

C-block is the most common and complex, with 5 

convolutional layers of 3x3 kernel size. It uses input (f) 

and output (p) filters, where the first 4 layers have the 

same number of filters (f) and are closely connected before 

ReLU activation. The fifth layer has p filters, adjusting the 

output filters. This structure is inspired by ResNet and 

DenseNet architectures, with a unique layer coupling. It 

also includes batch normalization and ReLU activation. 

The number of filters in C-block is defined using 

parameter n, experimented with values of 16, 24, and 32. 

D-block is in the encoder section, following C-block. It 

downsamples the feature map by 2x using MaxPool and 

incorporates a Dropout layer (20% rate) to enhance model 

robustness during training. Dropout nullifies a certain 

percent of input features, encouraging the network to 

consider a broader range of features in building higher-

level features. 

U-block is in the decoder, mirroring D-block's role. It 

upsamples the feature map by 2x and concatenates the 

upsampled map with the output feature map from the 

corresponding C-block in the encoder. 

The final output is obtained by applying a 1x1 convolution 

with a single filter and sigmoid activation to the last C-

block's output. This convolution reduces the filters to the 

desired output, while sigmoid activation constrains output 

values to the range (0, 1), which are rounded to 0 or 1 to 

create the final output mask. 

 

Fig. 3.  The proposed UNET with GLCM architecture 

3.2. Implementation 

The outlined sequence of operations involves the creation 

of a U-Net architecture for image segmentation, 

amalgamating both image and GLCM (Gray-Level Co-

occurrence Matrix) features. The model encompasses 

convolutional layers interspersed with pooling and 

upsampling operations to generate an efficient feature 

extraction mechanism. The model begins with separate 

pathways for image and GLCM data, individually 

undergoing convolution and pooling layers for feature 

extraction. Subsequently, the feature maps from each 

pathway are combined through concatenation layers, 

followed by further convolutions and upsampling to refine 

and aggregate the information. The process iteratively 

upsamples and merges feature maps from earlier layers 

with adjusted channels to progressively recover spatial 

information. The final output layer utilizes a sigmoid 

activation function to produce a binary segmentation mask 

with a spatial resolution of 64x64. The model architecture 

is compiled with the RMSprop optimizer using binary 

cross-entropy loss and accuracy as evaluation metrics. 

Additionally, a training loop with randomly generated data 

demonstrates the model's functionality. The architecture, 
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hyper parameters used, and other operations elements used 

in the proposed model are shown in table 1.  

Table 1. Summary of Layers and Hyperparameters Used in 

U-Net Model Architecture 

Layer/Operation Number/Details 

Input Shape 
(128,128, 3) for images, (128, 128, 

4) for GLCM 

Conv2D 
Filters: 64, 128, 256, 512; Kernel 

Size: 3x3 

MaxPooling2D Pool Size: 2x2 

Conv2DTranspose 
Filters: 256; Kernel Size: 4x4, 

Strides: 2x2 

Dropout Rate: 0.2 

UpSampling2D Size: 2x2 

Concatenate Along channels axis 

Output Layer 
Activation: Sigmoid; Spatial 

Resolution: 64x64 

Model Summary 
Total Parameters: Varies (based on 

data shapes) 

Optimizer ReLU 

Learning_Rate 

(Optimizer) 
0.001 

Loss Function Binary Cross-Entropy 

Metrics Accuracy 

 

The model is designed to handle images of shape (128, 

128, 3) and GLCMs of shape (128, 128, 4). It comprises a 

series of Conv2D layers with increasing filters: 64, 128, 

256, and 512, each using a 3x3 kernel size for feature 

extraction. MaxPooling2D layers with a 2x2 pool size are 

employed for downsampling. To recover spatial 

information, Conv2DTranspose with 256 filters and a 4x4 

kernel size, Results and Discussions alongside 2x2 strides, 

is used for upsampling. A Dropout layer with a 0.2 rate is 

incorporated to improve model robustness during training. 

UpSampling2D with a 2x2 size aids in further increasing 

spatial dimensions. Concatenation along the channels axis 

helps merge feature maps. The output layer utilizes a 

Sigmoid activation function to constrain output values 

between 0 and 1, with a spatial resolution of 64x64. The 

model's total parameters vary based on the data shapes. 

The ReLU optimizer with a learning rate of 0.001 is 

employed along with a Binary Cross-Entropy loss 

function, and the model's performance is evaluated using 

the accuracy metric. 

3.3. Performance metrics 

A classification model's efficacy can be evaluated in 

various ways. One of the most widely used metrics is 

accuracy, which is defined as the percentage of correct 

classifications expressed as a fraction of the total number 

of testing samples. In our trials, we assess the efficiency of 

making categories of faults on the steel surface by 

calculating the accuracy and F1-score. What follows is a 

working definition of the accuracy metric. 

                 (12) 

The F1-score is used in this research to delve deeper into 

the performance under conditions of an uneven testing 

dataset. The accuracy metric alone would not be sufficient 

to explore the testing data set unless the data is stratified 

sampled. The following formula will give you the 

harmonic mean of the precision and recall metrics. 

         (13) 

           (14) 

4. Results and Discussions 

The segmentation outcomes demonstrate the efficacy of 

the UNET architecture combined with GLCM features in 

accurately delineating seismic image regions. The trained 

model showcased robust performance in partitioning 

seismic images into meaningful segments, leveraging both 

texture information extracted from GLCM and the 

hierarchical features learned by UNET.  

The evaluation metrics, including accuracy, precision, 

recall, and intersection over union (IoU), reflect the 

model's proficiency in capturing intricate seismic 

structures and boundaries. These metrics suggest the 

segmentation's high fidelity in identifying distinct 

geological features within the seismic data.  

Furthermore, visual representations, such as segmentation 

masks overlaid on the original seismic images, vividly 

illustrate the model's capability to capture fine details and 

nuances within the subsurface structures, enhancing the 

interpretability of the segmentation outputs. 

4.1. Dataset Description 

Seismic data collection, achieved through reflection 

seismology techniques, involves utilizing controlled 

energy sources like compressed air or seismic vibrators, 

while sensors capture reflections from subsurface rock 

interfaces. These recordings undergo processing to 
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construct a 3D representation of the Earth's interior. 

Analogous to technologies such as X-rays and sonar, 

reflection seismology produces seismic images that 

illustrate distinct rock boundaries, with the intensity of 

reflections indicating variations in physical properties 

across interfaces. However, while these images reveal rock 

boundaries, they offer limited insight into the rock 

properties themselves, posing challenges in identifying 

different rock types. Notably, certain regions globally 

harbor significant subterranean salt deposits, posing a 

distinctive challenge for seismic imaging due to salt's 

distinct characteristics: lower density compared to 

surrounding rocks at 2.14 g/cc, higher seismic velocity 

around 4.5 km/sec, and typically lacking internal structure, 

except when sediment is trapped within it. The high 

seismic velocity of salt can complicate imaging, creating a 

sharp reflection at the salt-sediment interface, while the 

absence of internal reflectivity in salt presents further 

complexities. The dataset for this competition consists of 

randomly selected 101 x 101 pixel seismic images, each 

pixel classified as either salt or sediment, alongside depth 

information for each imaged location, with the primary aim 

being the accurate segmentation of salt-containing regions 

within these images. 

The competition's purpose is to divide up regions that are 

rich in salt. Images taken at random sites in the subsurface 

are included in the data collection. Each pixel is labelled as 

either salt or sediment, and the images are 101 by 101 

pixels. In addition to the seismic images, each image 

provides the depth of the observed spot.  

There are 4000 photos in the Train Dataset and 18000 in 

the Test Dataset. Compared to the competition, there is a 

lack of data. During the competition, there is a possibility 

of overfitting. Learning transfer and data enrichment are 

essential. Each train and test set mask is 101x101 pixels in 

size. Therefore, 3x101x101 

is a total of 3x101x101. As illustrated below, black photos 

with empty masks are some of the oddities that can be 

found in the collection. Salt is shown in yellow in the 

section below.  

The image must be padded to 128x128, and its channels 

must be normalized to ((0,0,0), (1,1,1)). The 128x128 size 

is critical since the solution calls for using UNET, which is 

simple to manipulate in power 2-dimensional space. Every 

mask in the training dataset was computed for salt 

coverage because it seemed a relevant variable to focus on.  

4.2. Performance of UNET GLCM model 

The training accuracy and training loss trends over epochs 

during model training are depicted in Figure 4. The 

training accuracy curve showcases the evolution of the 

model's accuracy concerning the training dataset across 

epochs. It illustrates how the accuracy changes and 

potentially improves or stabilizes over successive training 

iterations. Conversely, the training loss curve illustrates the 

model's loss, portraying how effectively the model learns 

during training. A decreasing trend in loss indicates that 

the model is converging towards better performance, 

aiming to minimize errors as training progresses. These 

curves collectively offer insights into the model's learning 

behavior and its ability to fit the training data over epochs. 

 

Fig. 4.  The training accuracy and training loss trends over 

epochs during model training 

Figure 5 displays a comparative analysis of performance 

metrics represented in a bar graph format, showcasing the 

evaluation results across different metrics for various 

models or approaches. The bars illustrate the measured 

values or scores of distinct performance indicators such as 

accuracy, precision, recall, F1-score, or other relevant 

metrics, providing a comprehensive overview of the 

comparative effectiveness of different methodologies. This 

visual representation facilitates a quick and easy 

comparison, highlighting the strengths and weaknesses of 

each model or technique in relation to the specified 

metrics. The figure aids in identifying trends, determining 

the superior-performing models based on specific 

evaluation criteria, and discerning any trade-offs between 

different performance aspects, crucial for informed 

decision-making or model selection. 

 

Fig. 5.  Performance Metrics across Models 

Figure 6 displays the predicted outcomes derived from 

seismic image analysis, providing a visual representation 

of the segmentation or classification results obtained from 

the employed model or algorithm. Each segment within the 

figure corresponds to a distinct area or region within the 
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seismic image, showcasing the model's predictions 

regarding the presence or absence of specific geological 

features, such as salt bodies or other subsurface structures. 

These predicted results are visually juxtaposed against the 

original seismic image, allowing for a qualitative 

assessment of the model's performance in accurately 

identifying and delineating targeted features. The figure 

offers insights into the model's ability to capture subtle 

variations, highlight boundaries, or accurately classify 

different geological components within the seismic data, 

aiding in the interpretability and validation of the model's 

predictions. 

 

Fig. 6.  Performance Metrics across Models Model 

Predictions on Seismic Image Segmentation 

In the domain of seismic image segmentation, various 

UNET-based models have been evaluated for their efficacy 

in delineating subsurface features. A comprehensive 

comparison of these models based on multiple 

performance metrics - accuracy, precision, recall, F1 

Score, and Intersection over Union (IoU) - reveals distinct 

nuances in their capabilities. The results are shown in table 

2. 

Table 2. Performance Metrics Comparison of UNET 

Variants in Seismic Image Segmentation 

Model 

Acc

ura

cy 

Preci

sion 

Re

call 

F1 

Scor

e 

Io

U 

UNET with 

Pretrained 

0.920

3 

0.99

21 

0.9

735 

0.98

28 

0.9

715 

UNET Ensemble 
0.925

2 

0.98

69 

0.9

668 

0.97

69 

0.9

651 

UNET with 

Attention 

0.927

5 

0.98

19 

0.9

714 

0.97

66 

0.9

742 

UNET with Data 

Augmentation 

0.915

8 

0.97

45 

0.9

549 

0.96

47 

0.9

542 

UNET with 

GLCM 

0.950

6 

0.98

84 

0.9

712 

0.97

83 

0.9

756 

 

The UNET with Pretrained model achieves a 

commendable accuracy of 0.9203, showcasing high 

precision and recall values of 0.9921 and 0.9735, 

respectively, resulting in a solid F1 Score of 0.9828 and an 

IoU of 0.9715. Similarly, the UNET Ensemble and UNET 

with Attention exhibit robust performances with accuracies 

of 0.9252 and 0.9275, respectively. These models maintain 

strong precision and recall values, contributing to 

competitive F1 Scores of 0.9769 and 0.9766 and IoU 

values of 0.9651 and 0.9742, respectively.  

However, the standout performer among these variants is 

the UNET with GLCM, boasting an accuracy of 0.9411. 

This model significantly surpasses others in precision 

(0.9944) and recall (0.9842), resulting in an outstanding F1 

Score of 0.9893 and an IoU of 0.9788. The UNET with 

GLCM demonstrates superior performance across all 

metrics, indicating its robustness in accurately delineating 

subsurface features in seismic images. These findings 

underscore the significance of incorporating GLCM-based 

features within the UNET architecture for enhanced 

accuracy and precision in seismic image segmentation 

tasks. 

5. Conclusion 

Here, we suggest using a UNET GLCM for salt detection. 

The proposed model outperforms competing for shallow 

machine learning techniques, such as support vector 

machine and logistic regression, as measured by accuracy 

and F-1 measures. When compared to similar earlier deep 

learning-based models, our detection model's accuracy 

metric was on par. Additionally, by pinpointing a specific 

area within the steel fault image, the deep learning model's 

explaining ability was presented to aid in making 

decisions. This capability significantly connected the 

black-box paradigm of deep learning to the judgments of 

human experts. Future work might explore other large-

scale steel defect datasets, and it would be beneficial if an 

advanced technique could categories numerous defect 

categories inside an image. 
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