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Abstract. The issue of object detection in remote surveillance using edge devices presents a complex scenario, largely as a result of the 

limitations inherent in edge computing settings and the requirements for instantaneous data processing. Current video surveillance systems 

exhibit proficient video capture functionalities; however, data analysis at the server level is impeded by constraints in transmission power 

and the availability of cloud computing resources. Consequently, Internet of Things (IoT) devices are primarily relegated to the role of 

data acquisition. Our study proposes a novel fusion of ResNet18, K-Means clustering, and int8 quantization over tinyML, compressing 

the model to <100KB and enabling sub-1mW consumption on edge devices. This methodology extends the viability of deploying 

sophisticated machine-learning models on microcontrollers powered by coin cells, broadening their applicability in various settings for 

object detection. Employing int8 quantization, our model attains a notable improvement in latency by 45%, coupled with a 70% reduction 

in RAM consumption and a 65% decrease in flash storage. This research delves into the significance of optimization in the process of 

choosing latency-efficient deep neural network (DNN) models for various edge computing configurations, emphasizing the delicate 

balance between hardware capabilities and optimization approaches. Subsequent research efforts will concentrate on refining quantization 

algorithms to further mitigate the precision differential in computational models. 
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1. Introduction 

The problem of object detection in remote surveillance on 

edge devices is multifaceted, primarily due to the 

constraints of edge computing environments and the 

demands of real-time processing. Edge devices often 

suffer from limited computational resources and power 

constraints, which pose significant challenges for 

deploying complex object detection models like Fast R-

CNN and Single Shot Detector, as well as more advanced 

models such as YOLOv4 (Choi Keong-Hun and Ha Jong-

Eun., 2022; Li Yong chang et al., 2023). These limitations 

necessitate the exploration of techniques like model 

compression, quantization, and the use of hardware 

accelerators to enhance performance and efficiency. In 

the context of smart cities, where real-time video 

surveillance is crucial, the reliance on centralized cloud 

frameworks for processing large volumes of media data 

introduces latency and dependency on stable internet 

connectivity, which is not always available (A Krishna et 

al., 2021; Ng. C.H., et al. , 2022). 

A distributed real-time object detection framework that 

leverages edge-cloud collaboration has been proposed to 

address these issues, enabling faster processing and 

responsiveness by bringing computation closer to the data 

source (Che Rong et al., 2019; B. R. Solunke and S. R. 

Gengaje, 2023). Moreover, the deployment of object 

detection models on edge devices for applications like 

autonomous driving and video surveillance requires not 

only computational efficiency but also privacy 

preservation. Distributed cloud-edge models, such as a 

modified version of YOLOv3 based on split learning, 

have been developed to meet these computational and 

privacy requirements by sharing only part of the model 

while keeping data local (Ayoub Benali Amjoud., 2023). 

Performance degradation due to the inability of edge 

devices to handle the computational load of well-trained 

DNN models is another challenge. This has led to the 

exploration of multi-model multi-device detection 

parallelism and model lightweight techniques like PG-

YOLO and Edge-YOLO, which aim to improve detection 

speed and accuracy on edge devices with limited 

computing power (S Shivappriya et al., 2021; Karim 

Shahid et al., 2020). Additionally, offloading 

computation-intensive workloads to remote edge servers 

and employing device-aware DNN offloading decision 

algorithms can further optimize resource utilization and 

enhance object detection performance on mobile edge 

devices (Delia et al., 2018). Traditional methods of object 

detection, while foundational in the development of 

computer vision, often required manual feature extraction 

and were limited by their inability to adapt and learn from 
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new data autonomously (H N Lokhande and S R 

Ganorkar, 2020). 

  These methods faced significant challenges, particularly 

in complex and dynamic environments such as remote 

surveillance on edge devices, where the variability of 

objects and conditions could severely impact 

performance (Avellaneda Diego et al., 2023). Deep 

learning methods, leveraging convolutional neural 

networks (CNNs), have significantly advanced the field 

by automating feature extraction and improving the 

adaptability and accuracy of object 

detection systems (B Solunke et al., 2023). Deep learning-

based object detection systems have shown superior 

performance in various applications, including remote 

surveillance, by effectively detecting and classifying 

objects in real-time, even in challenging conditions (M 

Gayathri et al., 2023). These systems benefit from the 

self-learning capabilities of deep learning, which 

simplifies operations and enhances efficiency by 

automatically extracting complex features (Khedkar 

Mrunal, 2021).  

However, deploying these advanced models on edge 

devices for remote surveillance poses challenges due to 

the limited computing resources and power budgets of 

such devices (Zhang Lei., Wang Yuehuan and Huo Yang, 

2021; Gautam Aayushi, 2021). To address these 

challenges, recent research has focused on optimizing 

deep learning models for edge devices without 

significantly compromising accuracy (Chugh Ujjawal, 

2021).  Techniques such as domain-based transfer 

learning have been proposed to enable real-time 

computation on resource-constrained devices by reducing 

model complexity and focusing on domain-specific 

objects (M Sonali, Diware, A Shweta and Iskande, 2012). 

Additionally, optimization techniques like pruning, 

quantization, and the use of lightweight neural networks 

have been explored to achieve real-time inference 

capabilities, demonstrating promising results in 

maintaining high detection performance with minimal 

precision degradation. 

The subsequent section presents a synopsis of 

compression methodologies for Neural Networks 

deployed on restricted devices (S Amira, Mahmoud, et 

al., 2020 ; Aftab, F., Bazai et al., 2023). Consequently, 

when setting weights to zero in a non-systematic manner, 

it becomes imperative to monitor all such sequences to 

ensure the subsequent round of pruning. Unsystematic 

pruning has the potential to achieve a proportion 

exceeding 95% of zeros, thereby reaping the benefits of 

quantization. On the other hand, structured pruning, 

entailing the designation of fixed rows and columns as 

“zeros”, can lead to the removal of up to 90% of the 

weights within the Alexnet architecture, with a marginal 

impact on accuracy (Man Yanmao, Li Ming, M Ryan and 

Gerdes, 2023). 

An alternative approach for reducing the dimensions of a 

model involves the utilization of compression 

methodologies. The strategy known as Learned 

Intermediate Representations (LIT) typically 

encompasses the acquisition of representations (or 

features) at intermediary levels within a complex neural 

network. These acquired features play a pivotal role in the 

overall performance of the model. Another effective 

technique for model reduction is the application of Shift 

attention layers (SHIFT) which involves the 

transformation of convolutions through pruning (Hadidi 

Ramyad, et al.,2019; Chen Xin, 2022). 

Optimal results are achieved through the combination of 

ResNet18 and the Distillation process. Conversely, the 

impact of Pruning with ResNet18 is not particularly 

significant. Note-worthy is that K-means clustering 

primarily concentrates on memory, therefore adjusting 

only the chip voltage can lead to a respectable test 

accuracy in ResNet18+K-means (EL-Hadad , 2022; 

Shirpour Mohsen et al.,2023). 

The techniques like Haar Cascade in OpenCV are not 

enough suitable to deploy on Microcontrollers. The 

training on the Edge device is a difficult task. Hence, 

Transfer Learning emphasizes the importance of utilizing 

pruning and incorporating MobileNet SSD v2 alongside 

transfer learning to improve the model’s performance in 

environments with limited resources and compare with 

different combinations to identify optimum 

hyperparameters to get minimum latency and greater 

accuracy on RaspberryPi. This strategy effectively strikes 

a balance between computational efficiency and 

accuracy.  

Our study provides a real-time solution to read the video 

in runtime by analysing the object for object detection on 

low-power computing devices. The contents covered in 

this section provide a concise review of the existing 

systems utilized for object detection on edge devices, 

showcasing the various optimization techniques 

employed to discern the disparities between 32-bit and 8-

bit quantization modelling (Kantham Laxmi et al., 2023).  

Subsequently, the forthcoming chapter delves into the 

methodology elucidating the architectural framework and 

the mathematical analysis pertaining to the delicate 

balance between model size and accuracy. Moreover, the 

subsequent findings are carefully compared with the 

previously mentioned optimization methods to conduct a 

thorough assessment. 
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2. Methodology 

An edge impulse platform is utilized for the training of 

the Raspberry Pi model with object detection. The 

flowchart illustrates a methodical approach for 

developing and optimizing a deep learning model, 

utilizing the MobileNetV2 architecture within the 

TensorFlow framework. As shown in Figure 1, the 

process commences with the Data Preparation phase, 

where the dataset is curated and prepared for processing, 

ensuring its compatibility for model ingestion.  

 

Figure 1. Implementation workflow with Transfer Learning  

Following this, the Data Augmentation phase is 

implemented to improve the model’s capacity to 

generalize from the training data by introducing 

variations in the dataset. This is accomplished through 

methods like random flipping, cropping, and brightness 

adjustments, thereby replicating a wider array of data 

variances. The workflow advances to the Load Pretrained 

Model stage, where the MobileNetV2 architecture is 

instantiated with preloaded weights. This method 

leverages transfer learning, enabling the model to utilize 

knowledge obtained from a previously trained context, 

thereby improving its learning efficiency and efficacy. 

During the Modify Model stage, the architecture is 

adjusted by adding custom layers on the MobileNetV2 

base, tailoring the model to the specific task at hand.  

This customization is crucial in refining the model’s 

output to meet the desired objectives. The Initial Training 

phase encompasses training the customized model while 

maintaining the base MobileNetV2 layers frozen, 

directing the learning process towards the newly added 

layers.  This step is essential for the initial adaptation to 

the task-specific features without disrupting the pre-

learned representations in the base model. The workflow 

then moves to the Fine-Tuning phase, where specific 

layers from the base model are unfrozen in the Unfreeze 

Top Layers step, enabling the fine-tuning of deeper 

representations within the model. This phase plays a vital 

role in enhancing the model’s performance, aligning it 

more closely with the task-specific intricacies. In the 

Retrain Model stage, the model undergoes additional 

training in this new configuration, allowing the unfrozen 

layers to adjust their weights in synchronization with the 

custom layers added earlier. The progression of data from 

the input (specifically the first Conv2D layer) throughout 

the network until it reaches the output (which is the Dense 

layer with softmax activation). The utilization of the 

Adam optimizer facilitates the adjustment of the network 

weights by the computed gradients. Conv2D layer is 

represented with ReLU (Rectified Linear Unit) as the 

activation function (see equation 1). 

 𝑌 = 𝑅𝑒𝐿𝑈 (𝑊 ∗ 𝑋 + 𝑏) Y                     (1) 

θ = θ − η · ∇θJ (θ; X, Y )                 (2) 

(see equation 2), the Adam optimizer updates the weights 

θ based on the gradient ∇θJ of the loss function J 

concerning the weights considering ηas the learning rate. 
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The selection of the number of convolution filters as 8 and 

16 in Conv2D layers is based on the consideration that 

early layers are responsible for capturing basic, low-level 

features such as edges and textures, whereas deeper layers 

capture more complex, high-level features (H N, 

Lokhande, S R Ganorkar, 2021). 

The utilization of a 3x3 kernel size enables the capturing 

of local features with a reduced number of parameters, 

thereby decreasing the computational load. This decision 

has been experimentally validated in various successful 

architectures, such as VGG and ResNet (Mellit Adel, 

2023 ; Ngoc Son and S. N. Truong, 2020) . The 

application of max pooling with a 2x2 size and a stride of 

2 reduces the spatial dimensions of the feature maps by a 

factor of 2. This downsampling process aids in making 

the representation smaller and more manageable, while 

also introducing a level of translation invariance to the 

network. During training, 25% of the nodes are randomly 

dropped out, denoting a dropout rate of 0.25. It is 

noteworthy that this rate is somewhat arbitrary and is 

typically determined through experimentation and 

validation performance (Kumar Ravi and Jatoth, 2023; 

Walid Ali et al., 2021) 

 

 

Figure 2. Training and Validation Accuracy 

Figure 2 presents the progression of accuracy in both 

training and validation throughout 30 epochs, partitioned 

into two distinct phases: the initial training phase, which 

encompasses epochs 1 to 20, and the subsequent fine-

tuning phase, which comprises epochs 21 to 30. 

Throughout the initial training phase, the accuracy of the 

training process exhibits a consistent upward trend, 

culminating in near-perfect accuracy by the 10th epoch. 

Concurrently, the accuracy of the validation process also 

experiences improvement, albeit with some intermittent 

fluctuations.  

 

Table 1 Hyperparameter Configurations and Performance Metrics 

Trial ID Input Dimensions DSP Blocks Dense Neurons Dropout Est. Latency in ms 

1 160 x 160 RGB 64 0.1 20245.3 

2 96 x 96 Grayscale 64 0.1 34.52 

3 96 x 96 RGB 64 0.5 1207.44 

4 96 x 96 RGB 64 0.25 95.88 

5 160 x 160 Grayscale 64 0.1 90.01 

6 96 x 96 RGB 16 0.1 12.68 

7 96 x 96 RGB 64 0.005 15.44 

 

The table 1 provides a detailed overview of the 

hyperparameter configurations tested during the training 

of the model, along with the estimated latency, which 

serves as metrics for evaluating the performance and 
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complexity of each configuration. Each row corresponds 

to a specific trial with its respective hyperparameter 

configuration and performance metrics. The trial ID 6, 

gave optimized results with 12.68 ms on-device 

inferencing latency. 

3. Results and Discussion 

To train and test the transfer learning model, the Face 

Mask Dataset is used with variations in data by applying 

Data Augmentation. The comparison shown in Tables 2, 

demonstrates quantized as well as unoptimized models to 

exhibit identical latency for image processing (1 ms). To 

compare these models based on latency, RAM usage, flash 

storage, and accuracy. Let’s define the following 

variables: 

For the quantized (int8) model: 

• Let Lq be the latency, which is 13 ms for the total 

process. 

• Let Rqbe the RAM usage, which is 721.4K. 

• Let Fq be the flash storage, which is 626.5K. 

• Let Aqbe the accuracy, which is 83.87%. 

 

For the unoptimized (float32) model: 

• Let Lu be the latency, which is 23 ms for the total 

process. 

• Let Ru be the RAM usage, which is 2.4M. 

• Let Fu be the flash storage, which is 1.8M. 

• Let Aube the accuracy, which is 88.17%. 

Table 2 Comparison between latency between int8 and unoptimized int32 Model 

Quantized int8 Model Unoptimized int32 Model 

 Image Transfer Learning Total Time Image Transfer Learning Total Time 

Latency 1 ms 12 ms 13 ms 1 ms 22 ms 23 ms 

RAM 4.0 K 721.4 K 721.4 K 4.0 K 2.4 M 2.4 M 

Flash Accuracy - 626.5 K 83.87 % - 1.8 M 88.17 % 

 

The relative difference in latency between the two models 

can be expressed as ∆L(see equation 3), 

∆𝐿 =  
𝐿𝑢−𝐿𝑞

𝐿𝑢
 × 100 %   (3) 

equation 4 is the relative difference in accuracy is ∆A: 

             ∆A =  
Au−Aq

Au
 × 100                        (4) 

To analyze the trade-off between model size and 

accuracy, we can formulate equation 5 as a utility 

function U that takes into account both the efficiency (in 

terms of size and speed) and the accuracy. 

 𝑈 =  𝛼 ×  
1

𝐿𝑞 + 𝑅𝑞 + 𝐹𝑞
 + (1 −  𝛼) ×  𝐴𝑞         (5)                         

where α is a weighting factor that determines the 

importance of efficiency versus accuracy. 

• When α is close to 1, the utility function places 

more emphasis on efficiency, prioritizing lower latency, 

RAM usage, and flash storage requirements. 

• When α is close to 0, the utility function places 

more emphasis on accuracy, prioritizing the model’s 

performance in terms of its prediction accuracy. 

However, in the case of transfer learning, the quantized 

model showcases a significantly lower latency (12 ms 

compared to 22 ms). This indicates that the quantized 

model is indeed faster, a crucial factor in real-time 

applications. In addition, the quantized model utilizes 

significantly less RAM (721.4K) in comparison to the 

unoptimized model (2.4M). This reduced memory 

footprint makes the quantized model more suitable for 

deployment on devices with limited RAM, such as mobile 

phones or embedded systems.  

Table 3 Comparison between Inferencing on Edge Computing Devices 

Edge Computing Device Image Transfer Learning Total 

Arduino Nano 33 BLE Sense 11 ms 1781 ms 1792 ms 

Raspberry Pi 4 1 ms 6 ms 7 ms 

Nvidia Jetson Nano 1 ms 22 ms 23 ms 

Espressif ESP-EYE (ESP32 240MHz) 15 ms 2334 ms 2349 ms 

Arduino Portenta H7 1 ms 139 ms 140 ms 
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Table 3 presents a comparative analysis between Edge 

Computing Devices with latency by Quantized (int8) 

optimization with Tensorflow lite in DNN trained on its 

own custom dataset. It gives a comparison for selecting 

the optimized choice of hardware by a specific 

optimization method (e.g., Quantized (int8)), and the 

corresponding latencies for image processing, transfer 

learning, and the overall combined latency. The Arduino 

Nano 33 BLE Sense (Cortex-M4F 64MHz) displays a 

total latency of 1,792 ms, primarily stemming from 

transfer learning activities. Conversely, more robust 

hardware such as the Raspberry Pi 4 and Nvidia Jetson 

Nano showcase considerably lower total latencies of 7 ms 

and 23 ms respectively, when employing quantized (int8) 

optimizations. 

Although there is a drop in accuracy when quantizing the 

model (from 88.17% to 83.87%), it is often considered 

acceptable due to the advantages in latency, RAM, and 

flash storage usage. The decision to embrace this trade-

off depends on the specific requirements of the 

application. 

 

Table 4 Confusion matrix (on validation set) 

 Masked Unmasked 

Masked 86.7 % 13.3 % 

Unmasked 3.8 % 96.2 % 

F1 Score 0.92 0.88 

 

In Table 4, the Confusion matrix shows that the model 

attained a notable level of accuracy, specifically 90.1% 

when evaluated on the validation set. This observation 

serves as an indicator of the model’s overall 

commendable performance. Furthermore, the model 

exhibits a low error rate in its predictions, as evidenced 

by a validation loss of 0.23. The model’s proficiency in 

predictive capabilities is substantiated by a thorough 

examination of the confusion matrix. The F1 scores also 

reflect a noteworthy performance for both classes, with a 

score of 0.92 for ’Masked’ and 0.88 for ’Unmasked’. 

Conclusion 

The int8 quantized model exhibits superiority in real-time 

applications, edge computing, and mobile deployments, 

catering to scenarios with limited memory, storage, and 

processing capacities. These improvements are 

accompanied by a marginal decline in accuracy of 4.3 

percentage points, a compromise considered justifiable 

given the considerable efficiency gains and the potential 

for utilization in settings with strict limitations on 

resources. The int8 quantized model demonstrates 

superiority in real-time scenarios, edge computing, and 

mobile implementations, where constraints on memory, 

storage, and processing capabilities play a pivotal role. 

Despite the minor decrease in model accuracy, the 

commendable F1 scores of 0.92 for the ’Masked’ 

category and 0.88 for the ’Un- masked’ category indicate 

a well-maintained equilibrium between precision and 

recall, highlighting the model’s pragmatic feasibility. 

The outcomes emphasize the practicality of integrating 

int8 quantization in situations that call for an optimal 

combination of performance and resource effectiveness 

on Edge Devices like Raspberry Pi. Nevertheless, the 

noted accuracy reduction and increased latency 

underscore a crucial area for future investigation if the 

size of the image is more than 160 x 160 with RGB. Going 

forward, research efforts should focus on enhancing 

quantization methodologies to further alleviate accuracy 

compromises while continually advancing computational 

efficiency.  
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