

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 3896–3903 | 3896

Optimizing Real-Time Object Detection on Edge Devices: A Transfer

Learning Approach

Harshad Lokhande1*, Sanjay Ganorkar2*

Submitted: 03/02/2024 Revised: 11/03/2024 Accepted: 17/03/2024

Abstract. The issue of object detection in remote surveillance using edge devices presents a complex scenario, largely as a result of the

limitations inherent in edge computing settings and the requirements for instantaneous data processing. Current video surveillance systems

exhibit proficient video capture functionalities; however, data analysis at the server level is impeded by constraints in transmission power

and the availability of cloud computing resources. Consequently, Internet of Things (IoT) devices are primarily relegated to the role of

data acquisition. Our study proposes a novel fusion of ResNet18, K-Means clustering, and int8 quantization over tinyML, compressing

the model to <100KB and enabling sub-1mW consumption on edge devices. This methodology extends the viability of deploying

sophisticated machine-learning models on microcontrollers powered by coin cells, broadening their applicability in various settings for

object detection. Employing int8 quantization, our model attains a notable improvement in latency by 45%, coupled with a 70% reduction

in RAM consumption and a 65% decrease in flash storage. This research delves into the significance of optimization in the process of

choosing latency-efficient deep neural network (DNN) models for various edge computing configurations, emphasizing the delicate

balance between hardware capabilities and optimization approaches. Subsequent research efforts will concentrate on refining quantization

algorithms to further mitigate the precision differential in computational models.

Keywords: K-Means, DNN , IoT, Video Surveillance, edge computing, tinyML

1. Introduction

The problem of object detection in remote surveillance on

edge devices is multifaceted, primarily due to the

constraints of edge computing environments and the

demands of real-time processing. Edge devices often

suffer from limited computational resources and power

constraints, which pose significant challenges for

deploying complex object detection models like Fast R-

CNN and Single Shot Detector, as well as more advanced

models such as YOLOv4 (Choi Keong-Hun and Ha Jong-

Eun., 2022; Li Yong chang et al., 2023). These limitations

necessitate the exploration of techniques like model

compression, quantization, and the use of hardware

accelerators to enhance performance and efficiency. In

the context of smart cities, where real-time video

surveillance is crucial, the reliance on centralized cloud

frameworks for processing large volumes of media data

introduces latency and dependency on stable internet

connectivity, which is not always available (A Krishna et

al., 2021; Ng. C.H., et al. , 2022).

A distributed real-time object detection framework that

leverages edge-cloud collaboration has been proposed to

address these issues, enabling faster processing and

responsiveness by bringing computation closer to the data

source (Che Rong et al., 2019; B. R. Solunke and S. R.

Gengaje, 2023). Moreover, the deployment of object

detection models on edge devices for applications like

autonomous driving and video surveillance requires not

only computational efficiency but also privacy

preservation. Distributed cloud-edge models, such as a

modified version of YOLOv3 based on split learning,

have been developed to meet these computational and

privacy requirements by sharing only part of the model

while keeping data local (Ayoub Benali Amjoud., 2023).

Performance degradation due to the inability of edge

devices to handle the computational load of well-trained

DNN models is another challenge. This has led to the

exploration of multi-model multi-device detection

parallelism and model lightweight techniques like PG-

YOLO and Edge-YOLO, which aim to improve detection

speed and accuracy on edge devices with limited

computing power (S Shivappriya et al., 2021; Karim

Shahid et al., 2020). Additionally, offloading

computation-intensive workloads to remote edge servers

and employing device-aware DNN offloading decision

algorithms can further optimize resource utilization and

enhance object detection performance on mobile edge

devices (Delia et al., 2018). Traditional methods of object

detection, while foundational in the development of

computer vision, often required manual feature extraction

and were limited by their inability to adapt and learn from

1*,2Department of E&TC Engineering, Sinhgad College of Engineering,

SPPU, Pune

*Corresponding Author: Harshad Lokhande

*Department of E&TC Engineering, Sinhgad College of Engineering,

SPPU, Pune

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 3896–3903 | 3897

new data autonomously (H N Lokhande and S R

Ganorkar, 2020).

 These methods faced significant challenges, particularly

in complex and dynamic environments such as remote

surveillance on edge devices, where the variability of

objects and conditions could severely impact

performance (Avellaneda Diego et al., 2023). Deep

learning methods, leveraging convolutional neural

networks (CNNs), have significantly advanced the field

by automating feature extraction and improving the

adaptability and accuracy of object

detection systems (B Solunke et al., 2023). Deep learning-

based object detection systems have shown superior

performance in various applications, including remote

surveillance, by effectively detecting and classifying

objects in real-time, even in challenging conditions (M

Gayathri et al., 2023). These systems benefit from the

self-learning capabilities of deep learning, which

simplifies operations and enhances efficiency by

automatically extracting complex features (Khedkar

Mrunal, 2021).

However, deploying these advanced models on edge

devices for remote surveillance poses challenges due to

the limited computing resources and power budgets of

such devices (Zhang Lei., Wang Yuehuan and Huo Yang,

2021; Gautam Aayushi, 2021). To address these

challenges, recent research has focused on optimizing

deep learning models for edge devices without

significantly compromising accuracy (Chugh Ujjawal,

2021). Techniques such as domain-based transfer

learning have been proposed to enable real-time

computation on resource-constrained devices by reducing

model complexity and focusing on domain-specific

objects (M Sonali, Diware, A Shweta and Iskande, 2012).

Additionally, optimization techniques like pruning,

quantization, and the use of lightweight neural networks

have been explored to achieve real-time inference

capabilities, demonstrating promising results in

maintaining high detection performance with minimal

precision degradation.

The subsequent section presents a synopsis of

compression methodologies for Neural Networks

deployed on restricted devices (S Amira, Mahmoud, et

al., 2020 ; Aftab, F., Bazai et al., 2023). Consequently,

when setting weights to zero in a non-systematic manner,

it becomes imperative to monitor all such sequences to

ensure the subsequent round of pruning. Unsystematic

pruning has the potential to achieve a proportion

exceeding 95% of zeros, thereby reaping the benefits of

quantization. On the other hand, structured pruning,

entailing the designation of fixed rows and columns as

“zeros”, can lead to the removal of up to 90% of the

weights within the Alexnet architecture, with a marginal

impact on accuracy (Man Yanmao, Li Ming, M Ryan and

Gerdes, 2023).

An alternative approach for reducing the dimensions of a

model involves the utilization of compression

methodologies. The strategy known as Learned

Intermediate Representations (LIT) typically

encompasses the acquisition of representations (or

features) at intermediary levels within a complex neural

network. These acquired features play a pivotal role in the

overall performance of the model. Another effective

technique for model reduction is the application of Shift

attention layers (SHIFT) which involves the

transformation of convolutions through pruning (Hadidi

Ramyad, et al.,2019; Chen Xin, 2022).

Optimal results are achieved through the combination of

ResNet18 and the Distillation process. Conversely, the

impact of Pruning with ResNet18 is not particularly

significant. Note-worthy is that K-means clustering

primarily concentrates on memory, therefore adjusting

only the chip voltage can lead to a respectable test

accuracy in ResNet18+K-means (EL-Hadad , 2022;

Shirpour Mohsen et al.,2023).

The techniques like Haar Cascade in OpenCV are not

enough suitable to deploy on Microcontrollers. The

training on the Edge device is a difficult task. Hence,

Transfer Learning emphasizes the importance of utilizing

pruning and incorporating MobileNet SSD v2 alongside

transfer learning to improve the model’s performance in

environments with limited resources and compare with

different combinations to identify optimum

hyperparameters to get minimum latency and greater

accuracy on RaspberryPi. This strategy effectively strikes

a balance between computational efficiency and

accuracy.

Our study provides a real-time solution to read the video

in runtime by analysing the object for object detection on

low-power computing devices. The contents covered in

this section provide a concise review of the existing

systems utilized for object detection on edge devices,

showcasing the various optimization techniques

employed to discern the disparities between 32-bit and 8-

bit quantization modelling (Kantham Laxmi et al., 2023).

Subsequently, the forthcoming chapter delves into the

methodology elucidating the architectural framework and

the mathematical analysis pertaining to the delicate

balance between model size and accuracy. Moreover, the

subsequent findings are carefully compared with the

previously mentioned optimization methods to conduct a

thorough assessment.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 3896–3903 | 3898

2. Methodology

An edge impulse platform is utilized for the training of

the Raspberry Pi model with object detection. The

flowchart illustrates a methodical approach for

developing and optimizing a deep learning model,

utilizing the MobileNetV2 architecture within the

TensorFlow framework. As shown in Figure 1, the

process commences with the Data Preparation phase,

where the dataset is curated and prepared for processing,

ensuring its compatibility for model ingestion.

Figure 1. Implementation workflow with Transfer Learning

Following this, the Data Augmentation phase is

implemented to improve the model’s capacity to

generalize from the training data by introducing

variations in the dataset. This is accomplished through

methods like random flipping, cropping, and brightness

adjustments, thereby replicating a wider array of data

variances. The workflow advances to the Load Pretrained

Model stage, where the MobileNetV2 architecture is

instantiated with preloaded weights. This method

leverages transfer learning, enabling the model to utilize

knowledge obtained from a previously trained context,

thereby improving its learning efficiency and efficacy.

During the Modify Model stage, the architecture is

adjusted by adding custom layers on the MobileNetV2

base, tailoring the model to the specific task at hand.

This customization is crucial in refining the model’s

output to meet the desired objectives. The Initial Training

phase encompasses training the customized model while

maintaining the base MobileNetV2 layers frozen,

directing the learning process towards the newly added

layers. This step is essential for the initial adaptation to

the task-specific features without disrupting the pre-

learned representations in the base model. The workflow

then moves to the Fine-Tuning phase, where specific

layers from the base model are unfrozen in the Unfreeze

Top Layers step, enabling the fine-tuning of deeper

representations within the model. This phase plays a vital

role in enhancing the model’s performance, aligning it

more closely with the task-specific intricacies. In the

Retrain Model stage, the model undergoes additional

training in this new configuration, allowing the unfrozen

layers to adjust their weights in synchronization with the

custom layers added earlier. The progression of data from

the input (specifically the first Conv2D layer) throughout

the network until it reaches the output (which is the Dense

layer with softmax activation). The utilization of the

Adam optimizer facilitates the adjustment of the network

weights by the computed gradients. Conv2D layer is

represented with ReLU (Rectified Linear Unit) as the

activation function (see equation 1).

 𝑌 = 𝑅𝑒𝐿𝑈 (𝑊 ∗ 𝑋 + 𝑏) Y (1)

θ = θ − η · ∇θJ (θ; X, Y) (2)

(see equation 2), the Adam optimizer updates the weights

θ based on the gradient ∇θJ of the loss function J

concerning the weights considering ηas the learning rate.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 3896–3903 | 3899

The selection of the number of convolution filters as 8 and

16 in Conv2D layers is based on the consideration that

early layers are responsible for capturing basic, low-level

features such as edges and textures, whereas deeper layers

capture more complex, high-level features (H N,

Lokhande, S R Ganorkar, 2021).

The utilization of a 3x3 kernel size enables the capturing

of local features with a reduced number of parameters,

thereby decreasing the computational load. This decision

has been experimentally validated in various successful

architectures, such as VGG and ResNet (Mellit Adel,

2023 ; Ngoc Son and S. N. Truong, 2020) . The

application of max pooling with a 2x2 size and a stride of

2 reduces the spatial dimensions of the feature maps by a

factor of 2. This downsampling process aids in making

the representation smaller and more manageable, while

also introducing a level of translation invariance to the

network. During training, 25% of the nodes are randomly

dropped out, denoting a dropout rate of 0.25. It is

noteworthy that this rate is somewhat arbitrary and is

typically determined through experimentation and

validation performance (Kumar Ravi and Jatoth, 2023;

Walid Ali et al., 2021)

Figure 2. Training and Validation Accuracy

Figure 2 presents the progression of accuracy in both

training and validation throughout 30 epochs, partitioned

into two distinct phases: the initial training phase, which

encompasses epochs 1 to 20, and the subsequent fine-

tuning phase, which comprises epochs 21 to 30.

Throughout the initial training phase, the accuracy of the

training process exhibits a consistent upward trend,

culminating in near-perfect accuracy by the 10th epoch.

Concurrently, the accuracy of the validation process also

experiences improvement, albeit with some intermittent

fluctuations.

Table 1 Hyperparameter Configurations and Performance Metrics

Trial ID Input Dimensions DSP Blocks Dense Neurons Dropout Est. Latency in ms

1 160 x 160 RGB 64 0.1 20245.3

2 96 x 96 Grayscale 64 0.1 34.52

3 96 x 96 RGB 64 0.5 1207.44

4 96 x 96 RGB 64 0.25 95.88

5 160 x 160 Grayscale 64 0.1 90.01

6 96 x 96 RGB 16 0.1 12.68

7 96 x 96 RGB 64 0.005 15.44

The table 1 provides a detailed overview of the

hyperparameter configurations tested during the training

of the model, along with the estimated latency, which

serves as metrics for evaluating the performance and

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 3896–3903 | 3900

complexity of each configuration. Each row corresponds

to a specific trial with its respective hyperparameter

configuration and performance metrics. The trial ID 6,

gave optimized results with 12.68 ms on-device

inferencing latency.

3. Results and Discussion

To train and test the transfer learning model, the Face

Mask Dataset is used with variations in data by applying

Data Augmentation. The comparison shown in Tables 2,

demonstrates quantized as well as unoptimized models to

exhibit identical latency for image processing (1 ms). To

compare these models based on latency, RAM usage, flash

storage, and accuracy. Let’s define the following

variables:

For the quantized (int8) model:

• Let Lq be the latency, which is 13 ms for the total

process.

• Let Rqbe the RAM usage, which is 721.4K.

• Let Fq be the flash storage, which is 626.5K.

• Let Aqbe the accuracy, which is 83.87%.

For the unoptimized (float32) model:

• Let Lu be the latency, which is 23 ms for the total

process.

• Let Ru be the RAM usage, which is 2.4M.

• Let Fu be the flash storage, which is 1.8M.

• Let Aube the accuracy, which is 88.17%.

Table 2 Comparison between latency between int8 and unoptimized int32 Model

Quantized int8 Model Unoptimized int32 Model

 Image Transfer Learning Total Time Image Transfer Learning Total Time

Latency 1 ms 12 ms 13 ms 1 ms 22 ms 23 ms

RAM 4.0 K 721.4 K 721.4 K 4.0 K 2.4 M 2.4 M

Flash Accuracy - 626.5 K 83.87 % - 1.8 M 88.17 %

The relative difference in latency between the two models

can be expressed as ∆L(see equation 3),

∆𝐿 =
𝐿𝑢−𝐿𝑞

𝐿𝑢
 × 100 % (3)

equation 4 is the relative difference in accuracy is ∆A:

 ∆A =
Au−Aq

Au
 × 100 (4)

To analyze the trade-off between model size and

accuracy, we can formulate equation 5 as a utility

function U that takes into account both the efficiency (in

terms of size and speed) and the accuracy.

 𝑈 = 𝛼 ×
1

𝐿𝑞 + 𝑅𝑞 + 𝐹𝑞
 + (1 − 𝛼) × 𝐴𝑞 (5)

where α is a weighting factor that determines the

importance of efficiency versus accuracy.

• When α is close to 1, the utility function places

more emphasis on efficiency, prioritizing lower latency,

RAM usage, and flash storage requirements.

• When α is close to 0, the utility function places

more emphasis on accuracy, prioritizing the model’s

performance in terms of its prediction accuracy.

However, in the case of transfer learning, the quantized

model showcases a significantly lower latency (12 ms

compared to 22 ms). This indicates that the quantized

model is indeed faster, a crucial factor in real-time

applications. In addition, the quantized model utilizes

significantly less RAM (721.4K) in comparison to the

unoptimized model (2.4M). This reduced memory

footprint makes the quantized model more suitable for

deployment on devices with limited RAM, such as mobile

phones or embedded systems.

Table 3 Comparison between Inferencing on Edge Computing Devices

Edge Computing Device Image Transfer Learning Total

Arduino Nano 33 BLE Sense 11 ms 1781 ms 1792 ms

Raspberry Pi 4 1 ms 6 ms 7 ms

Nvidia Jetson Nano 1 ms 22 ms 23 ms

Espressif ESP-EYE (ESP32 240MHz) 15 ms 2334 ms 2349 ms

Arduino Portenta H7 1 ms 139 ms 140 ms

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 3896–3903 | 47

Table 3 presents a comparative analysis between Edge

Computing Devices with latency by Quantized (int8)

optimization with Tensorflow lite in DNN trained on its

own custom dataset. It gives a comparison for selecting

the optimized choice of hardware by a specific

optimization method (e.g., Quantized (int8)), and the

corresponding latencies for image processing, transfer

learning, and the overall combined latency. The Arduino

Nano 33 BLE Sense (Cortex-M4F 64MHz) displays a

total latency of 1,792 ms, primarily stemming from

transfer learning activities. Conversely, more robust

hardware such as the Raspberry Pi 4 and Nvidia Jetson

Nano showcase considerably lower total latencies of 7 ms

and 23 ms respectively, when employing quantized (int8)

optimizations.

Although there is a drop in accuracy when quantizing the

model (from 88.17% to 83.87%), it is often considered

acceptable due to the advantages in latency, RAM, and

flash storage usage. The decision to embrace this trade-

off depends on the specific requirements of the

application.

Table 4 Confusion matrix (on validation set)

 Masked Unmasked

Masked 86.7 % 13.3 %

Unmasked 3.8 % 96.2 %

F1 Score 0.92 0.88

In Table 4, the Confusion matrix shows that the model

attained a notable level of accuracy, specifically 90.1%

when evaluated on the validation set. This observation

serves as an indicator of the model’s overall

commendable performance. Furthermore, the model

exhibits a low error rate in its predictions, as evidenced

by a validation loss of 0.23. The model’s proficiency in

predictive capabilities is substantiated by a thorough

examination of the confusion matrix. The F1 scores also

reflect a noteworthy performance for both classes, with a

score of 0.92 for ’Masked’ and 0.88 for ’Unmasked’.

Conclusion

The int8 quantized model exhibits superiority in real-time

applications, edge computing, and mobile deployments,

catering to scenarios with limited memory, storage, and

processing capacities. These improvements are

accompanied by a marginal decline in accuracy of 4.3

percentage points, a compromise considered justifiable

given the considerable efficiency gains and the potential

for utilization in settings with strict limitations on

resources. The int8 quantized model demonstrates

superiority in real-time scenarios, edge computing, and

mobile implementations, where constraints on memory,

storage, and processing capabilities play a pivotal role.

Despite the minor decrease in model accuracy, the

commendable F1 scores of 0.92 for the ’Masked’

category and 0.88 for the ’Un- masked’ category indicate

a well-maintained equilibrium between precision and

recall, highlighting the model’s pragmatic feasibility.

The outcomes emphasize the practicality of integrating

int8 quantization in situations that call for an optimal

combination of performance and resource effectiveness

on Edge Devices like Raspberry Pi. Nevertheless, the

noted accuracy reduction and increased latency

underscore a crucial area for future investigation if the

size of the image is more than 160 x 160 with RGB. Going

forward, research efforts should focus on enhancing

quantization methodologies to further alleviate accuracy

compromises while continually advancing computational

efficiency.

Acknowledgement

We would like to convey our profound appreciation to the

Research Center at Sinhgad College of Engineering for

their exceptionally generous provision of hardware and

software support, bestowed under the esteemed auspices

of Savitribai Phule Pune University. It is paramount to

acknowledge that this invaluable support has played an

indispensable role in facilitating the successful execution

of our research endeavours. Moreover, we are obliged to

express our deepest appreciation to MIT Art Design and

Technology University for their invaluable assistance in

the comprehensive collection of data. The contributions

rendered by their esteemed personnel and abundant

resources have proven to be pivotal in augmenting the

depth and breadth of our study. It is without a doubt that

our research has greatly thrived due to the remarkable

collaboration and abundant resources provided by both

institutions and for this, we are profoundly grateful.

References

[1] Choi, K.-H. and Ha, J.-E., 2022. Results

Comparison of Applying Object Detection and

Object Segmentation Methods on Visual

Surveillance Dataset.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 3896–3903 | 3902

[2] Li, Y., Jia, J., Zuo, Y. and Zhu, W., 2023. Effective

out-of-distribution Detection for TinyML. Available

at:

https://doi.org/10.1109/icassp49357.2023.1009474

6.

[3] Krishna, A., Pendkar, N., Kasar, S., Mahind, U. and

Desai, S., 2021. Advanced Video Surveillance

System. In: 2021 3rd International Conference on

Signal Processing and Communication (ICPSC),

IEEE.

[4] Che, R., Wang, L., Wang, Y., Lin, Q. et al., 2019.

Research on Intelligent Video Surveillance System

in Remote Area Based on NB-IoT. In: Proceedings

of the 2019 2nd International Conference on

Algorithms, Computing and Artificial Intelligence.

ACM.

[5] Solunke, B.R. and Gengaje, S.R., 2023. Traditional

and Deep Learning based Object Detection

Methods. In: International Conference on Emerging

Smart Computing and Informatics (ESCI).

Available at:

https://doi.org/10.1109/esci56872.2023.10099639.

[6] Benali, A. and Amrouch, M., 2023. Object

Detection using Deep Learning, CNNs and Vision

Transformers: A Review. IEEE Access, 11,

pp.35479-35516.

[7] Shivappriya, S., Jasmine, M., Priyadarsini, P. et al.,

2021. Cascade Object Detection and Remote

Sensing Object Detection Method Based on

Trainable Activation Function. Remote Sensing.

[8] Shahid, K., Zhang, Y., Yin, S. et al., 2020. A brief

review and challenges of object detection in optical

remote sensing imagery. Multiagent and Grid

Systems.

[9] Rusci, M., Fariselli, M., Capotondi, A. et al., 2020.

Leveraging Automated Mixed-Low-Precision

Quantization for Tiny Edge Microcontrollers.

Communications in Computer and Information

Science, 1325, pp.296-308.

[10] Dokic, K., Martinovic, M., Mandusic, D. et al.,

2020. Inference speed and quantisation of neural

networks with TensorFlow Lite for Microcontrollers

framework. In: 2020 5th South-East Europe Design

Automation, Computer Engineering, Computer

Networks and Social Media Conference (SEEDA-

CECNSM), IEEE, pp.1-6.

[11] Velasco-Montero, D., Jorge, et al., 2018.

Performance analysis of real-time DNN inference

on Raspberry Pi. Real-Time Image and Video

Processing, 2018.

[12] Lokhande, H.N. and Ganorkar, S.R., 2020.

Challenges in Scene Interpretation for Video

Surveillance. Test-Engineering and Management,

83(2).

[13] Avellaneda, D., Mendez, D. and Fortino, G., 2023.

A TinyML Deep Learning Approach for Indoor

Tracking of Assets. Sensors, 23(3), 1542. Available

at: https://doi.org/10.3390/s23031542.

[14] Solunke, B., Sachin, R. and Gengaje, 2023. A

Review on Traditional and Deep Learning based

Object Detection Methods. International

Conference on Emerging Smart Computing and

Informatics (ESCI).

[15] Gayathri, M.D., Lakshmanan, V. and Krishna, 2023.

Object Surveillance Detection. International Journal

For Science Technology And Engineering.

Available at:

https://doi.org/10.22214/ijraset.2023.49595.

[16] Khedkar, M., 2021. Wireless Intruder Detection

System for Remote Locations. Turkish Journal of

Computer and Mathematics Education

(TURCOMAT), 12(12), pp.1390-1401. Available

at: https://doi.org/10.17762/turcomat.v12i12.7621.

[17] Zhang, L., Wang, Y. and Huo, Y., 2021. Object

Detection in High-Resolution Remote Sensing

Images Based on a Hard-Example-Mining Network.

IEEE Transactions on Geoscience and Remote

Sensing.

[18] Gautam, A., Sukhwinder, and Singh, 2021. Deep

Learning Based Object Detection Combined with

Internet of Things for Remote Surveillance.

Wireless Personal Communications.

[19] Chugh, U., Mitra, A., Ankur, et al., 2021. In: IEEE

International Symposium on Circuits and Systems

(ISCAS), IEEE, pp.1-5.

[20] Sonali, M., Diware, A., Shweta, and Iskande, 2012.

Remote Surveillance System for Mobile

Application. Network and Complex Systems, 3,

pp.14-19.

[21] Amira, S., Mahmoud, M., Sayed, et al., 2020. Object

Detection Using Adaptive Mask RCNN in Optical

Remote Sensing Images. International Journal of

Intelligent Engineering and Systems.

[22] Yanmao, M., Li, M., Ryan, M. and Gerdes, 2023.

Remote Perception Attacks against Camera-based

Object Recognition Systems and Countermeasures.

ACM Transactions on Cyber-Physical Systems.

[23] EL-Hadad, R., Tan, Y.-F, Tan, W.-N, 2022.

Anomaly Prediction in Electricity Consumption

Using a Combination of Machine Learning

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 3896–3903 | 3903

Techniques. International Journal of Technology.

Volume 13(6), pp. 1317-1325

[24] Hadidi, R., Cao, J., Michael, S. et al., 2019. Robustly

Executing DNNs in IoT Systems Using Coded

Distributed Computing. In: Proceedings of the 56th

Annual Design Automation Conference, ACM,

pp.1-2. Available at:

https://doi.org/10.1145/3316781.3322474.

[25] Rusci, M., Capotondi, A., Conti, F. et al., 2018.

Work-in-Progress: Quantized NNs as the Definitive

Solution for Inference on Low-Power ARM

MCUs?. In: International Conference on

Hardware/Software Codesign and System Synthesis

(CODES+ISSS), pp.1-2. Available at:

doi:10.1109/CODESISSS.2018.8525915.

[26] Chen, X., Guo, A., Si, X., Yang, J. et al., 2022. A

Quantization Model Based on a Floating-point

Computing-in- Memory Architecture. In: IEEE Asia

Pacific Conference on Circuits and Systems

(APCCAS), pp.493-496.

[27] Shirpour, M., Khairdoost, N., Michael, et al., 2023.

Traffic Object Detection and Recognition Based on

the Attentional Visual Field of Drivers. IEEE

Transactions on Intelligent Vehicles.

[28] Kantham, L., Durgam, R., Jatoth, K. et al., 2023.

Real-time Classification of Vehicle Logos on

Arduino Nano BLE using Edge Impulse. In: 4th

International Conference on Signal Processing and

Communication (ICSPC), pp.316-320.

[29] Lokhande H.N., Ganorkar S. R., 2021. Masked Face

Detection And Voice Based Alert System For Blind

People Under Covid-19. International Journal of

Engineering Development and Research, 9, pp.104-

108.

[30] Mellit, A., Nicola, A., Blasuttigh, P., Massi, P. et al.,

2023. TinyML for fault diagnosis of Photovoltaic

Modules using Edge Impulse Platform. In: 2023

11th International Conference on Smart Grid

(icSmartGrid), pp.1-5.

[31] Son, N. and Truong, S.N., 2020. A Low-cost

Artificial Neural Network Model for Raspberry Pi.

Engineering Technology & Applied Science

Research, 10(2), pp.5466-5469.

[32] Ravi, K. and Jatoth, 2023. Real-time classification

of haze and non-haze images on Arduino Nano BLE

using Edge Impulse. In: 4th International

Conference on Computing and Communication

Systems (I3CS), pp.1-7.

[33] Ali, W., Daher, A., Rizik, M. et al., 2021. Porting

Rulex Software to the Raspberry Pi for Machine

Learning Applications on the Edge. Sensors.

[34] Aftab, F., Bazai, S.U., Marjan, S., Baloch, L.,

Aslam, S., Amphawan, A., Neo, T.-K., 2023. A

Comprehensive Survey on Sentiment Analysis

Techniques. International Journal of Technology.

Volume 14(6), pp. 1288-1298

[35] Ng.C.H., Connie, T., Choo, K.Y., Goh, M.K.O.,

2022. Fusion of Visual and Audio Signals for

Wildlife Surveillance. International Journal of

Technology. Volume 13(6), pp. 1213-1221

