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Abstract: The concomitant spike in traffic creates substantial obstacles to effective traffic management as metropolitan areas 

experience rapid development. This article details an innovative project in the Australian city of Liverpool that uses smart 

visual sensors to conduct a real-time traffic study. To monitor various forms of transportation in real-time while protecting 

the privacy of individuals, these sensors were created as a pilot project and use computer vision and deep neural networks. 

The study used a complete town center dataset to evaluate the edge-computing device's performance. We present the 

Agnosticity Framework, an open-standards system that can read and write data from various sensors. Two experimental 

results show that the framework improves our general understanding and control of urban traffic dynamics. This research 

provides important insights for future smart city projects and helps create intelligent and privacy-conscious solutions for 

urban traffic studies. 
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1. Introduction 

In the fast-paced and ever-expanding urban landscapes of 

the 21st century, the challenges associated with traffic 

congestion have become increasingly pronounced [1]. As 

cities grow and populations surge, traditional traffic 

management strategies struggle to keep pace with the 

escalating demands on transportation infrastructure [2]. In 

response to this pressing issue, the integration of smart 

technology is emerging as a transforming force, offering 

innovative solutions to monitor and manage traffic 

patterns in real-time [3]. This paradigm shift enhances our 

understanding of urban mobility and lays the foundation 

for informed decision-making, ultimately paving the way 

for more innovative, efficient cities [4]. 

Smart technology has ushered in a new era in 

transportation management, allowing for the collection 

and analysis of real-time data on traffic conditions [5]. 

This data, drawn from a network of sensors, cameras, and 

other intelligent devices strategically positioned 

throughout urban environments, provides a 

comprehensive and up-to-the-minute perspective on the 

flow of vehicles [6]. By advancing data analytics & 

harnessing IoT (Internet of Things) power, traffic 

authorities can gain valuable insights into congestion 

patterns, peak travel times, and potential bottlenecks, 

formulating proactive strategies for alleviating congestion 

and improving overall traffic efficiency [7]. 

One of the advantages of 'real-time traffic study' through 

smart technologies lies in their ability to adapt 

dynamically to changing circumstances [8]. Unlike 

traditional traffic studies that rely on periodic surveys or 

historical data, smart technology enables continuous 

monitoring and adjustment [9]. This adaptability is crucial 

in dynamic urban environments where traffic conditions 

can evolve rapidly. As a result, city planners and traffic 

management authorities can respond in real-time to 

emerging challenges, optimizing traffic signals, rerouting 

vehicles, and implementing other responsive measures to 

enhance the overall flow of traffic [10]. 

Furthermore, integrating smart technology in traffic 

studies fosters a more inclusive and participatory 

approach to urban planning. By leveraging data from 

mobile applications, GPS devices, and social media 

platforms, authorities can engage with citizens to gather 

real-time feedback on traffic conditions [11]. This 

collaborative approach empowers individuals to make 

informed travel decisions and enables authorities to 

crowdsource valuable information about traffic incidents, 

road closures, and alternative routes [12]. The result is a 

more interconnected and responsive urban transportation 

ecosystem that benefits city planners and residents [13]. 

Therefore, the real-time traffic studies facilitated by smart 

technology represent a groundbreaking paradigm shift in 

urban mobility management [14]. As cities grapple with 

the complexities of rapid urbanization, these innovative 

solutions provide a pathway to more intelligent, adaptive, 

and citizen-centric transportation systems [15]. By 
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harnessing the power of real-time data, cities can mitigate 

the challenges posed by traffic congestion and work 

towards building more sustainable, resilient, and livable 

urban environments for future generations. 

1.1 Contributions 

The novel contributions of this study are: 

1. We introduce a 'smart visual sensor' ensuring 

'real-time multi-modal tracking' while 

prioritizing citizens' privacy through advanced 

anonymization for Privacy-First Tracking. 

2. We propose an interoperable system, the 

'Agnosticity framework', to collect, store 

seamlessly, and access data from various 

sensors, enhancing collaboration and scalability. 

3. We develop an intelligent traffic signal algorithm 

that minimizes energy consumption by 

dynamically adjusting timings based on real-

time traffic conditions. 

4. We implement a priority system within traffic 

management for emergency vehicles, ensuring 

swift response times without disrupting regular 

traffic flow. 

2. Related works 

Mohammad et al. [16] (2020) introduced a three-layer 

VFC model for ‘dispersed traffic organization’, 

minimizing ‘Average Response Time (ART)’ 

significantly. The offloading scheme optimizes running & 

vehicles as ‘fog nodes’, addressing challenges in VFC-

enabled traffic management. 

Atta et al. [17] (2020) utilized RFID technology to 

dynamically control traffic signals based on real-time 

congestion, providing a unique approach for timing 

signals proportional to road congestion. The IoT-enabled 

sensors enable dynamic signal timings, minimizing 

congestion for enhanced communication technologies. 

Ma et al [18] (2021) conducted study on ‘Mobility-Based 

Real-Time Air Pollution Exposure Assessment’ in 

Beijing. They demonstrated the impact of smart 

technologies on assessing individual-level pollution 

exposure, comparing ‘residence-based monitoring’ with 

mobility-based real-time assessment. They highlighted 

exposure level difference using different approaches, 

emphasizing the need for fine-resolution assessments. 

Shengdong et al [19] (2019) conducted study on 

‘intelligent Traffic Control System with Cloud 

Computing and Big Data Mining’. They addressed 

challenges in modern intelligent traffic systems, 

proposing an integrated cloud-based control system. They 

utilized deep learning for traffic flow prediction and 

intelligent optimization algorithms for real-time traffic 

flow control, proving the effectiveness through simulation 

results. 

Babar and Arif [20] (2019) developed ‘three-phase 

architecture for real-time Big Data processing in a smart 

transportation system’.  They utilized Spark and Hadoop 

for processing and highlights the scheme's effectiveness 

in terms of throughput in ‘IoT-based smart transportation’ 

environments. 

Yang et al [21] (2020) developed a high-performance 

computing model using DBN and            K-means for 

dynamic traffic planning based on real-time IoT and GIS 

data. They demonstrated model's precision in ‘optimal 

traffic network planning under real-time mass data 

situations and low cost’. 

Yu and Gu [22] (2019) introduced a novel deep-learning 

model, the ‘graph convolutional generative autoencoder, 

for real-time traffic speed estimation’. They outperformed 

existing techniques in comprehensive case studies, 

emphasizing the model's superiority in traffic speed 

estimation. 

Yu et al [23] (2020) developed a ‘deep learning-based 

traffic safety solution for a mixture of autonomous and 

manual vehicles in a 5G-enabled ITS’. They achieved 

high intention recognition rates, effectively improving 

accuracy and real-time intention recognition in a mixed 

traffic environment. 

Chen et al. [24] (2021) introduced ‘gradient boosting 

partitioned regression tree model, for forecasting travel 

time based on big data from industrial IoT infrastructure’. 

They demonstrated enhanced predictive accuracy in real 

traffic IoT data compared to other computational methods. 

Sarrab et al. [25] (2019) developed an ‘intelligent traffic 

monitoring system for a smart city, broadcasting 

congestion updates through roadside message units’. They 

provided ‘real-time traffic updates’ to improve mobility, 

with potential enhancements for ‘optimal re-route 

suggestions to drivers’.
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Table 1: Summary of Research gaps 

Ref No. Author/Year Method Finding Research Gap 

[16] 

Mohammad et al. 

(2020) 

Three-layer VFC model 

for dispersed traffic 

organization 

Reduced Average 

Response Time (ART) 

significantly. Need study extension 

[17] Atta et al. (2020) 

RFID technology for 

dynamic traffic signal 

control 

Dynamic signal timings 

proportional to real-time 

congestion, minimizing 

congestion. 

Probing optimal ways to 

adapt to varying traffic 

conditions in real-time. 

[18] Ma et al. (2021) 

Mobility-Based Real-

Time Air Pollution 

Exposure Assessment 

Highlighted substantial 

differences in exposure 

levels between residence-

based and mobility-based 

assessment. 

Need for fine-resolution 

assessments in 

understanding individual-

level pollution exposure. 

[19] 

Shengdong et al. 

(2019) 

Cloud Computing and 

Big Data Mining for 

Traffic Control 

Integrated cloud-based 

control system with deep 

learning for traffic flow 

prediction. 

Addressing real-time 

challenges in traffic flow 

control and optimization 

within cloud-based 

systems. 

[20] 

Babar and Arif 

(2019) 

Real-Time Data 

Processing in IoT-based 

Smart Transportation 

Developed a 3-phase 

architecture for real-time 

Big Data processing. 

Investigating scalability 

and adaptability of the 

proposed architecture in 

diverse smart 

transportation. 

[21] 

Yang et al. 

(2020) 

Optimization of Real-

Time Traffic Network 

Assignment 

Utilized DBN and K-

means for dynamic traffic 

planning. Demonstrated 

precision in optimal traffic 

network planning. 

Examining the scalability 

and generalizability of the 

proposed high-performance 

computing model. 

[22] 

Yu and Gu 

(2019) 

Graph Convolutional 

Generative Autoencoder 

for Speed Estimation 

Outperformed existing 

techniques in traffic speed 

estimation. 

Investigating the 

applicability of the 

proposed model to different 

transportation network 

structures. 

[23] Yu et al. (2020) 

Deep Learning-Based 

Traffic Safety Solution 

for Autonomous and 

Manual Vehicles 

Achieved high intention 

recognition rates in a 

mixed traffic environment. 

Addressing the adaptability 

of the proposed solution to 

diverse traffic scenarios in 

a 5G-enabled ITS. 

[24] Chen et al. (2021) 

‘Pragmatic Real-Time 

Logistics Management 

with Traffic IoT 

Infrastructure’ 

Introduced gradient 

boosting partitioned 

regression tree model for 

travel time forecasting. 

Investigating the 

applicability of the 

proposed model to various 

logistics scenarios and data 

conditions. 
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Table 1: Summary of Research gaps 

Ref No. Author/Year Method Finding Research Gap 

[25] 

Sarrab et al. 

(2019) 

‘Real-Time Traffic 

Monitoring Systems 

Based on Magnetic 

Sensor Integration’ 

Developed an ‘intelligent 

traffic monitoring system 

for a smart city’. Aimed to 

improve mobility. 

Assessing the scalability & 

practical implementation 

challenges of proposed 

traffic monitoring system. 

 

2.1 Research gap 

The collective findings from the reviewed studies reveal 

several common research gaps within the domain of smart 

traffic management. Firstly, there is a consistent need for 

investigations into the adaptability and scalability of 

proposed models and systems across diverse urban 

environments. Many studies have shown promising 

results within specific contexts, but understanding how 

these solutions perform under varying conditions remains 

essential for further research. Additionally, integrating 

these technologies often introduces new complexities and 

potential challenges, emphasizing the necessity for 

comprehensive studies on the practical implementation 

and real-world performance of smart traffic solutions. 

Furthermore, the identified research gaps include the need 

for standardized approaches to address privacy concerns 

in deploying smart traffic systems and exploring ways to 

enhance the resilience of these systems in the face of 

unforeseen disruptions or cyber threats. Bridging these 

gaps contributes to robust and universally applicable 

smart traffic management solutions. 

3. Problem statement 

The escalating urbanization of cities poses a critical 

challenge in the form of burgeoning traffic congestion, 

compromising the effectiveness of transportation systems 

and negatively impacting the quality of life for residents. 

Traditional traffic management strategies often need to 

improve dress multi-modal transportation's complexities 

and fail to adapt in urban scenarios. As a result, there is a 

pressing need for innovative solutions that leverage smart 

technology to alleviate congestion and enhance overall 

traffic management, with a particular emphasis on privacy 

preservation and adaptability to diverse urban 

environments. 

 

 

4. Objectives 

The novel objectives of this study are: 

1. To dynamically reroute vehicles and optimize 

traffic signal timings in real-time, reducing urban 

congestion during peak hours. 

2. To employ advanced deep neural networks & 

computer vision for real-time, privacy-

preserving tracking of multiple transportation 

modes in urban environments. 

3. To minimize energy consumption by 

implementing an intelligent traffic signal control 

algorithm that adjusts timing based on real-time 

traffic conditions. 

4. To develop a priority system within the urban 

traffic management framework, identifying and 

prioritizing routes for emergency vehicles to 

ensure rapid response times while minimizing 

disruptions to regular traffic flow. 

5. Methodology 

For real-time monitoring of multi-modal transportation 

while protecting privacy of citizens, we develop & test an 

‘edge-computing device’ which employs deep neural 

networks & computer vision. 

5.1 Pilot Project 

Using CCTV live feeds, the project intends to create 

and assess movement trackers. The heart of Liverpool was 

chosen as the experimental site. In order to track traffic 

patterns, twenty sensors will be placed over the downtown 

area. While fifteen make use of fixed CCTVs, five will be 

able to move around with the help of mobile CCTVs. 

Town center where the sensors are located on the map is 

seen in Fig 1. Twenty noise sensors & air quality are 

placed beside the ‘mobility trackers’ in this pilot project 

to assess the effect of traffic on air pollution and noise 

levels. Fig 1 illustrates one such case.
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Fig 1: Town center map: (left): the twenty visual sensors' locations. Urban planners anticipate that the real-time data 

generated from such locations will assist them in updating the mobility plan of city. (Right) 2 CCTV cams placed side by 

side on a pole, together with a purple air quality indicator 

5.2 Traffic Monitoring using Edge-Computing Device 

We present the layout of the sensor that will track and 

identify moving objects including cars, pedestrians, and 

bicycles. 

This study suggests and assesses a sensor that satisfies the 

criteria. The plan is to set up a network of these sensors so 

that traffic may be tracked in real-time throughout the 

entire city. First, we will go over the hardware and how 

the sensor works. After that, we'll go over the software 

components that combine a tracking technique with a 

detection method and explain why we chose them. 

5.2.1. Hardware and Functionality 

Using video analytics, we developed a sensor that can 

identify and follow moving objects in a live video feed; 

this will allow us to keep tabs on network mobility. The 

sensor's most salient characteristic is its adherence to the 

edge-computing paradigm; that is, it does video analytics 

locally and only transmits the processed results. There are 

two primary benefits to this: 

1. Because only indicators and meta-data are 

communicated, rather than raw photos, the network 

bandwidth demand is reduced. 

2. The device is privacy compliant and transmits only 

a limited quantity of information. 

Before deploying the device in smart cities or using 

it in the real world, it must be privacy compliant. It is true 

that the device can work in tandem with preexisting 

CCTV systems without actually sending the video feed. 

Since the sensor can make use of the preexisting CCTV 

infrastructure without requiring any extra cameras, the 

deployment cost is reduced. 

The device has the option of transmitting data over 

Ethernet or the LoRaWAN network, a low-power 

network, wireless long-range that is part of the IoT [26]. 

Duty cycles & Low bandwidth of LoRaWAN device are 

another argument in favor of edge computing. Two main 

parts make up the prototype shown in Fig. 2 that are: 

1. A powerful and energy-efficient ARM-based 

embedded computer called an NVIDIA Jetson TX2 that 

runs Ubuntu 16.04 LTS and accelerates neural network 

computations for image processing;  

2. A Python module called LoPy 4 that manages 

LoRaWAN communications on the AS923 frequency 

plan used in Australia. Observe that the module can 

broadcast on any frequency plan that the LoRaWAN 

protocol supports.
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Fig 2: Inside and outside of smart visual sensor 

Table 2 details NVIDIA Jetson TX2 modules' primary 

technical specs, whereas Table 3 details the Pycom LoPy 

4 modules' specs. To show the sensor's status, it is coupled 

with a DuinoTECH XC-4384 small monochrome OLED 

module. The gadget gets its juice from a 35 W battery 

bank. We see the connections of the components of 

sensors in Fig. 3, which is a simple diagram. Lastly, sensor 

is housed in an aluminum heat sink shell that is waterproof 

to an IP67 standard. This shell can disperse the heat that 

the Jetson TX2 produces, making it ideal for use outside. 

Table 2:  NVIDIA Jetson TX2 Specification 

Features Details 

Power 15 W, 12 V 

Thermals −25 °C to 80 °C 

Socket 50 × 87 mm, 400-pin Samtec board-to-board connector 

Miscellaneous I/O CAN, GPIOs, I2S, I2C, SPI, UART 

PCie Gen 2 | 2 × 1 + 1 × 2 or 1 × 4 + 1 × 1  

USB USB 2.0 + USB 3.0  

Ethernet 1000/100/10 BASE-T Ethernet 

Wireless Bluetooth 4.1, 802.11a/b/g/n/ac 2×2 867 Mbps 

Supported video 

codecs 
VP9, VP8, H.265, H.264 

Decoder (12-Bit Support)     2 K x 4 K 60 Hz Decode  

Storage 32 GB eMMC 5.1, SDIO, SATA 

Memory @ 1866 Mhz | 59.7 GB/s  with 8 GB 128-bit LPDDR4 

GPU @ 1300 MHz with 256-core Pascal 

CPU 
NVIDIA Denver2 (dual-core) @ 2 GHz + ARM Cortex-

A57 (quad-core) @ 2 GHz  

 

Table 3: Pycom LoPy 4 Specifications 

Features Details 

Power 0.35 W, 3.3 V 

Thermals −40 °C to 85 °C 

Miscellaneous I/O PWM, UART, SPI, DAC, ADC, GPIO 

Lora and Sigfox connectivity Semtech SX1276 
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Features Details 

Wireless 868/915 MHz LoRa and Sigfox, Bluetooth BLE, Wifi 802.11b/g/n 16 Mbps 

Memory External flash: 8 MB, RAM:  4 MB + 520 KB 

  

CPU Up to 600 DMIPS Xtensa® 32-bit (dual-core) LX6 microprocessor 

 

 

Fig 3: Sensor  

Jetson TX2 sensor powers the LoPy 4 and the OLED 

screen in addition to managing USB, video analytics, 

Ethernet communication. In turn, power supply unit 

(PSU) powers the Jetson TX2. The LoPy transmits data 

via LoRaWAN, and the screen shows the sensor's status 

in its most simple form. 

On average, twenty times per second, the sensor 

iteratively does the following steps: 

1. Capturing images using a webcam or IP camera. 

2. Identifying the target objects within the frame. 

3. Following the objects by comparing this frame's 

detections to those from the previous one. 

4. Incorporating newly discovered items into the device 

database or revising the trajectories of things already 

there. 

While these processes are ongoing, the sensor will 

occasionally send the video processing findings to the IoT 

Core using LoRaWAN or Ethernet. While the user has 

some leeway in determining the minimum interval 

between transmissions, the protocol limitations of 

LoRaWAN prevent it from being shorter than 5 minutes. 

So that the 32 GB of local storage doesn't get full, the 

database is cleared out after every transmission. Fig 4 

shows the sensor's activity flow diagram.

 

 

Fig 4: Sensor activity flowchart 
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Fig. 5 shows the 3U rack version that was developed for 

use in scenarios where LoRaWAN is unnecessary & 

device accessing IP camera’s video feeds, which is 

common in CCTV installations. Fifteen separate Jetson 

TX2 modules, each with the capability to handle a single 

camera feed, make up this rack unit. The configuration is 

resilient, meaning that even if one unit in the rack fails, 

the others can continue to work. 

 

Fig 5: The 3U server vision sensor housing 15 NVIDIA Jetson TX2 modules, each which can handle one live video stream 

from security camera in real-time 

5.2.2. YOLO V3: Detecting Objects 

This section describes the parts that follow offer more 

information regarding the procedures for detection and 

tracking. These days, there are numerous deep learning-

based computer vision algorithms accessible for object 

detection in images. Choosing an algorithm that can detect 

in real-time in an embedded system with a high degree of 

accuracy is crucial when it comes to traffic flow 

monitoring. Because of these two factors, YOLO V3 [27], 

a well-liked and cutting-edge object detector built on a 

fully convolutional deep neural network, is a strong 

contender. When compared to previous algorithms, 

YOLO V3 can detect objects at three distinct scales and 

provides a fair balance between speed and accuracy. Since 

the size of a moving item is determined by its distance 

from the camera, this final feature is equally essential in 

our situation. 

In contrast to earlier approaches, the YOLO design uses 

only the Darknet deep neural network to process an input 

image once, after scaling it to a certain input size. With 

106 hidden layers collected in residual blocks, this 

network is completely convolutional. It can now identify 

six distinct object types thanks to extensive training and 

adaptation: 

• pedestrian  •    bus  

• bicycle  •    truck  

• car  •    motorbike  

 

Each detection scale causes the network to split the image 

into three grids, with each grid cell predicting K bounding 

boxes. These are the characteristics of each bounding box 

B: 

● its shape defined by the its centroid 

coordinates (x,y), its width w and height h 

● an object confidence score O; and 

● six class probabilities Pi (one for each object 

type) 

‘if O≥ , then B is associated with the object 

type o such that o=arg imax iP
 

If O< , then B is discarded in order to remove the 

bounding boxes with the least confidence score. 

where   is a given confidence threshold’ 

‘Finally, to remove duplicate detection of the same 

object, the Non-Maximal Suppression (NMS) technique 

is applied. If we have an intersection-over-union (IoU) 



 
 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 3912–3932  |  3920 

between two bounding boxes  mB
and mB

 greater than a 

predefined NMS threshold  , i.e., 

if 
),( nm BBIoU

 then the bounding box with the 

least objectness score is removed’. Fig 6 summarize the 

workflow detection.

 

 

Fig 6: YOLO V3's architecture for object detection. ‘A 

fully convolutional neural network including 406 hidden 

layers is trained to predict class probabilities and box 

coordinates at three distinct sizes (big, medium, small). 

We then apply a non-maximum suppression procedure to 

keep only the category and coordinates that have the 

highest score’. 

We have taken advantage of the NVIDIA Jetson TX2 

GPU's CUDA cores by integrating YOLO V3 into 

PyTorch 1.1 for our application. Table 3 displays the 

values of the parameters. Anyone interested in learning 

more about YOLO V3 and how it works can do so here. 

Table 3: Detection task by YOLO V3 parameters 

Parameters Values 

Input sizes 416 × 416 pixel 

Large scale detection grids 13 × 13 cell 

Medium scale detection grids 26 × 26 cell 

Small scale detection grids 52 × 52 cell 

NMS   0.5 

Confidence   0.9 

No. of bounding box per cell K 3 
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5.2.3. SORT: Tracking Objects 

Matching the objects detected in current frames 

with those from previous frame is following step once the 

detection process is completed. The ‘Simple Online and 

Real-time Tracking (SORT)’ technique, which has been 

thoroughly documented and benchmarked, is utilized and 

implemented in Python 3 to carry out this multiple object 

tracking (MOT) task [28]. 

One of our application's most important 

requirements is the ability to use SORT in real-time, hence 

the development of the algorithm has been heavily 

focused on efficiency without sacrificing the exceptional 

tracking performances it is known for. To do this, we 

combine two approaches that have a reputation for being 

both accurate and efficient in computing: 

• The Hungarian algorithm for an optimal solution 

to the prediction-bounding-box problem; 

• A Kalman filter for estimating bounding box 

positions in the current frame from past placements. 

In Kalman filter, the following is the model of each 

tracked item state, or tracklet, t: 

Tayxryxt ],,,,,,[=  

Define the bounding box of an object by ‘centroid 

coordinates’, which are x and y; its area and aspect ratio 

are a and s; and its velocity, which is k˙ with 

},,{ ayxk   feature 

‘It is mentioned that a constant aspect ratio is 

expected. The velocity components are derived by the 

Kalman filter, and only the geometric components of the 

bounding box computed by YOLO V3 are used to update 

the state of t. The initial velocity components in the error 

covariance matrix that the Kalman filter uses are set to 

large values to reflect the uncertainty surrounding the “t” 

initial speed’ 

In order to associate detections with tracklets, the 

Kalman filter predicts the bounding box geometry and 

location for each tracklet in the current frame. The 

Hungarian algorithm then finds the best match between 

the predictions and the detections, with the cost matrix 

determined by the IoU between each pair of detections 

and predictions. One advantage of employing the IoU-

based distance, according to SORT, is that it can handle 

temporary occlusions [30]. ‘Every association for which 

the IoU is less than a threshold minIoU is discarded 

following the assignment stage’. 

‘In order to alleviate the issue of false positive 

detection, keep the device's memory from filling up fully, 

and enhance the tracking of objects that can be obscured 

for a maximum of maxage
frame, two other parameters, 

minhit and maxage
 are also employed’. If a tracklet is not 

identified for a consecutive maxage
 frame, it will be 

destroyed. Tracklets are only saved if they have been 

viewed for at least in minhit frames. Version 4-UUID is 

the unique identifier assigned to each new tracklet. Table 

4 lists the tracking parameter values that the visual sensor 

employed. 

Table 4: Tracking task by SORT parameters  

Parameters Values 

Threshold minIoU  0.3 

  

Maximum age maxage
 40 

Minimum hits minhit  3 

 

Object of interest will be assigned a new tracklet and id if 

it later re-enters the camera's range of vision. The 

architecture for gathering data from the sensor network is 

presented in the next section. 

 

5.3 Agnosticity  

The software framework called "Agnosticity" was 

created for ‘Liverpool project’. The basic principle is 

leveraging open-source technology & software to their 

fullest extent possible, without assuming anything about 

the sensors or communication protocols that are being 

used. The purpose of Agnosticity is to facilitate the 
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gathering, storing, and retrieval of data from IoT and to 

make it possible for various technologies to work together 

through the OneM2M standard [31, 32]. The rapid 

expansion of the Internet of Things has made 

interoperability an essential need for any Smart City 

application [33]. In order to gather data from many 

sources and offer a unified entry point, the infrastructure 

level is seeing an increase in the number of sensors, 

protocols for networks, and use delegates. The open-

source oneM2M and SmartM2M standard 

implementation is the Eclipse OM2M project. Through 

offering a horizontal M2M service platform for service 

development independent of the underlying network, it 

hopes to facilitate the deployment of vertical applications 

and heterogeneous devices. OM2M provides a RESTful 

API that includes basic methods for re-targeting, group 

organization, synchronized and asynchronous 

communications, resource discovery, container 

management, application registration, and machine 

authentication. 

The overall design of the Agnosticity framework 

used in this research is shown in Fig 7. The OM2M 

platform receives data from 15 fixed optical sensors that 

are linked to CCTV network by HTTP Post. Twenty air 

quality sensors and five mobile visual sensors use IoT and 

LoRaWAN Network to transmit data. By utilizing the 

MQTT broker, a dedicated plugin retrieves data from The 

Things Network and re-publishes it to the OM2M 

platform via HTTP Post. This means that the OM2M 

platform has immediate access to all data in a designated 

container. The subscription system automatically saves 

each one to a special database for the future. 

 

Fig 7: The project's overall design. The open-source software that the Agnosticity software stack is built upon is quite well-

established. 

‘The open-source implementation of the OM2M standard, 

data collection and access are guaranteed’. We can build 

several apps on Agnosticity framework top. We can 

access data directly using the ‘OM2M RESTful API’ or 

we can request data from database. As an example, the 

web-based dashboard depicted in Fig 8 allows for a visual 

examination of the data gathered from the various sensors. 
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Fig 8: The data obtained from the many sensors used in 

the Liverpool project is shown in an interactive dashboard 

that is accessible through the web. You can use it on 

desktop browsers as well as mobile ones; the interface is 

responsive. 

6. Validation Experiment 

We look at the sensor's efficiency, precision, and system 

utilization to see how well it worked. We began by using 

a validation dataset culled from the literature to assess the 

sensor's accuracy and effectiveness in detecting 

pedestrians. After that, we analyzed the system's and 

network's usage based on data collected from an actual 

experiment in which the sensor was linked to a CCTV. 

6.1. Performance and Accuracy  

Using the Oxford Town Center Dataset, we assessed the 

sensor's precision and functionality [34]. The movie 

shows a bustling street in the town center from a CCTV 

angle, and it's in high quality (1920 × 1080 at 25 fps). 

Three minutes' worth of footage, or 4,500 frames, served 

as the basis for the validation experiment. In this particular 

sequence, the creators of the dataset labeled the video with 

the positions of 230 pedestrians. So, we compared our 

sensor's readings to the ground truth to see how well it 

worked. 

Summarized in Table 5 are the performance results for the 

following variables, together with statistic calculated over 

the 4500 frames: 

The performance outcomes with basic statistics are 

calculated across the 4500 frames is presented in Table 5. 

The findings show that the algorithm under-estimates the 

number of detections while yet maintaining an acceptable 

frame rate. 

Table 5: Performance summary with basic data calculated over 4500 frames. These data show that the algorithm under-

estimates the number of detections while yet maintaining an acceptable frame rate 

 Detections True Error Relative Error Accuracy fps 

Mean 10.53 15.88 −5.35 0.32 0.70 19.58 

Standard Deviations 2.81 4.70 3.36 0.16 0.16 3.50 
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 Detections True Error Relative Error Accuracy fps 

Minimum 2.01 6.01 17.01 0.01 0.23 4.64 

25th-percentiles 8.01 13.01 −8.01 0.22 0.58 17.29 

Medians 11.01 16.01 −5.01 0.34 0.67 19.78 

75th-percentiles 13.01 19.01 −3.01 0.43 0.79 22.23 

Maximum 20.01 28.01 2.01 0.78 1.34 22.98 

 

● detections: sensor detecting the number of 

objects 

● true: the ground truth; the amount of object 

annotated in the dataset 

● error: difference between true and detections 

● true

error
errorrelative

||
=

 

● true

ection
accuracy

det
=

 

● fps: the number of frames per second (FPS), 

which is the inverse of the time it takes to process one 

frame of the video. 

We now examine the validation analysis in greater detail. 

The sensor's early results show that it had a median 

relative inaccuracy of 35% and an average accuracy of 

70%. The relative error and accuracy were both affected 

by the sensor's tendency to underestimate the number of 

detections, as indicated by the error. Figure 9 shows the 

distribution of the relative error and accuracy across all 

frames. 

 

Fig 9: Accuracy (left) and percentage deviation (right) of the kernel density estimation calculated over the Oxford dataset's 

4500 frames 

The number of FPS and the number of pedestrians 

detected with time are shown in Fig. 10. The anti-

correlation between the two curves is plain to notice. True, 

FPS performance did seem to drop as the number of 

detections increased. That was because the SORT tracking 

method was a bottleneck because it wasn't optimized to 

use the Jetson TX2's CUDA cores. Applying this tracker 

on the GPU will solve this limitation in future algorithm 

iterations. 
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Fig 10: The change over time in FPS processed by the sensor (blue) and no. of objects recognized (red). Its evident that a 

lesser number of detections results in a higher frame rate. Since there are more items to track, the SORT algorithm is 

mostly to blame for the FPS decline. This task does not make use of the Jetson TX2's CUDA cores. 

We show in Fig. 11 how the sensor's accuracy and the 

ground truth have changed over a period of more than 

4500 frames. The curves show that they were anti-

correlated, with accuracy rising with low ground truth 

detection numbers and falling with big crowd sizes. The 

occurrence of occlusions in densely populated areas 

explains this. In fact, the algorithm may only identify one 

of the two individuals if the other is hiding the other. This 

is partially caused by the way YOLO V3 behaves, that 

uses a ‘non-maximum suppression’ mechanism in 

scenarios when there are several overlapping bounding 

boxes. 

 

Fig 11: Accuracy's evolution over time with the ground truth (orange line) and the ideal accuracy (blue line). With small 

groups, accuracy is higher and falls with huge crowds. 

‘A scatter plot showing the ratio of ground truth detections 

to sensor detections is shown in       Fig 12. The correlation 

was clearly linear; that is, the higher the ground truth, the 

higher the number of objects picked up by the sensor. 

Since the sensor was underestimating the amount of 

detections, this result further demonstrates that it was 

more prone to false negative errors than false positives’. 

While both under- and overestimation can lead to 

inaccurate traffic monitoring results, under-estimation is 

more common and less troublesome. Our algorithm's 

precision would unquestionably be enhanced by a more 

comprehensive examination of the error rate. Still, the 

trends in object detection rates are spot on, leading to this 

sensor's generally good accuracy and performance. 
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Fig 12: Ratio of ground truth detections to detections. We see that the relationship is linear, indicating that trends are 

captured by the algorithm. 

6.2. Network & System Utilization 

As the sensor is deployed in the actual world, Fig. 13 

depicts the evolution of average temperatures, disk, 

memory, GPU, CPU, & network use every 2 seconds. 

Throughout this 10-minute trial, the sensor was linked to 

a closed-circuit television system that was watching a 

building's entry and the adjacent street. 

 

Fig. 13: Real-time installation of sensor during a monitoring in 15-minute of the GPU, CPU, RAM, average 

temperature, and disk usages (top) & network use (bottom). A total of 280 distinct artifacts have been found over this time. 
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The ‘top panel’ shows that the system temperature, 

memory & disk use, and utilization were all stable. 

Throughout the course of the trial, the GPU's utilization 

fluctuated between 100% and 40% on occasion. The 

‘tracking algorithm's implementation on ‘CPU’, which 

served as a bottleneck, explains this, as indicated earlier. 

There was a correlation between spikes in CPU usage and 

dips in GPU usage. 

The outbound & inbound network bandwidth used in each 

second is shown in the bottom panel. A frame was 

acquired from the CCTV system, and the incoming data 

matched that. There was a correspondence between the 

data transmission and the data posting to the Agnosticity 

platform. Every minute, there is a noticeable outgoing 

peak that corresponds to the sensor's transmitting rate. The 

fact that there was less data sent out than data received is 

readily apparent. This was due to the fact that the 

transmission just included meta-data retrieved from the 

frame like trajectories & counts. That being said, the 

sensor doesn't necessitate a significantly high bandwidth. 

7. Real -time Applications 

Two practical uses of the visual sensor are described in 

this section. The first one was keeping track of how many 

people were entering and leaving a facility during 

emergency evacuations for one hour. Outcomes from a 

week-long traffic monitor exercises in Liverpool were 

presented in second. The method’s validity in real-life 

settings was established by those two applications. The 

closed-circuit television cameras were transmitting a 25-

fps full HD video stream in both cases. 

7.1. Indoor Installation  

The vision sensor was first tested by tracking the 

movement of people on the ground level of the University 

of Wollongong's SMART Infrastructure Facility building. 

Pedestrian movement can be easily monitored from this 

building, which includes several labs and instructional 

activities. A stairwell serves as the primary means of 

entrance to the first level, and the camera was positioned 

in front of it. 

From 14:30 to 15:30 on a typical workday, the 

experiment tracked the number of persons detected by the 

sensor (Fig. 14). Inside a structure, it is hardly surprising 

that no vehicle or bicycle was identified. It was also 

possible to see two peaks with no detection in the middle. 

The fact that fire alarm go off while the experiment is 

underway provides an explanation. The writers of this 

research did not intentionally set off this false alarm in 

order to collect more data, so that's a relief. Curiously, the 

facility was essentially evacuated because none is found 

during fire alarm events. Also, 2nd peak is low than 1st, 

which means that few persons went back when the 

firefighters said it was okay to do so. It appears from these 

preliminary results that this sensor has the potential to 

identify suspicious crowd movements. 

 

Fig 14: The number of people found within a structure over the course of an hour. 

In Fig 14, the beginning and ending of the fire alarm occurrence are represented by the two peaks. In this one-hour experiment, 

631 individuals were found and followed. The generated trajectories are displayed in Fig. 15, superimposed on the sensor's 

actual field of view. The trajectories are evidently in line with expectations; there are, for example, no trajectories between 

floors. Apart from the trajectories, the gathered data could also yield other intriguing insights, such a ‘heat map like the one’ 

shown in Fig 16 that illustrates highest number of detections within the sensor's field of view throughout the experiment. The 
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longest or shortest amount of times spent at a particular spot, the speeds at which the boxes are identified, or the automatic 

recognition of unusual activities like crossing lines without permission are examples of additional metrics. 

 

 

Fig 15: The paths taken by the people identified and tracked by the sensor. The 631 lines each correspond to a single 

individual 

 

Fig 16: A heat map displaying the highest number of individuals identified inside the sensor's area of vision 

7.2. Liverpool: Outdoor Installation 

After the first round of testing in a controlled setting, 

twenty vision sensors were placed across the heart of 

Liverpool (Fig 1). The camera, whose position is shown 

in Fig 17, is the primary focus of this application. The 

abundance of nearby restaurants and businesses means 

that this spot is right close to a street that sees a lot of foot 

traffic. There are three crosswalks visible from where the 

camera is positioned. 

 

Fig 17: The sensor is situated near a pedestrian street in the city's center (highlighted in red). The blue line represents the 

camera's field of vision 

From 20 to 27 February 2023, a week's worth of counting 

results are displayed in Fig. 18. The chart shows the 

amount of people, cars, and bikes spotted every minute 

over the course of eight days. It is clear from this graph 
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that the city's circadian rhythm is at its most active 

between the hours of 08:00 and 16:00. Figure 19, which 

shows the number of hourly detections, makes this point 

clearer. 

 

Fig. 18: The number of bicycles, cars, and pedestrians the sensor saw between February 20, 2023, and February 27, 2023. 

Every data point shows how many objects of a particular type were found during the previous minute 

 

Fig 19: The number of walkers (green), bicycles (red), and cars (yellow) that were observed on February 23, 2023, hourly 

Compared to the previous three days, there appeared to be 

more pedestrian activity on these days. Day 5, or February 

24, 2023, was a Sunday and had the least amount of 

pedestrian activity. The busiest time of day was usually 

about noon. ‘The vehicle graph (shown in orange) shows 

two daily activity peaks, the first occurring around 9:00 

and the second around 16:00. Although the outcomes 

appear to be in line with what one could anticipate from 

an intersection of that kind, urban planners must do a 

thorough analysis. However, it does demonstrate the 

sensor's ability to identify changes in the daily circadian 

cycle of traffic flows’. 

The coordinates of all bicycle and pedestrian detections 

made on February 23, 2023, are shown in Fig. 20. In these 

20,399 distinct things were found that day. Every blue dot 

indicates the presence of a pedestrians, whereas every 

orange dot indicates presence of a bicycles. Although a 

single dot represents a single detection, in most cases, a 

single person was picked up more than once while they 

were within the camera's field of vision. ‘Examining the 

spatial distribution of the detection over the frame is made 

possible by this display. It permits taking into account the 

pedestrian flows that cross the road at a crosswalk in the 

current context (corresponding to the top and bottom of 

the graph)’. It was seen that several of the pedestrians 

were not inside the crosswalk. Bicycles were detected, 

indicating a combination of bicycle and pedestrian 

movement. On the other hand, very few bicycles were 

seen, which is consistent with the opinions that residents 

voiced at the community workshop. 
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Fig 20: The pixel coordinates (X,Y) for the identified bicycles (orange) and walkers (blue) on February 23, 2023, within the 

frame. Bounding box centroid associated with an item identified at those coordinates is represented by each dot 

Fig. 21 displays the resulting paths that the cyclists and 

pedestrians used. It appears that there are two distinct 

flows: ‘one from the bottom left to the bottom right, and 

the other from the top left to the middle right’. The 

mobility patterns at this crossing are shown by these two 

flows. 

 

Fig 21: Wheelchair and pedestrian trajectories inside the frame on February 23, 2023. There are two distinct pedestrian 

flows 

The various outcomes displayed in this section are meant 

to draw attention to the information provided to urban 

planners. Urban planners are presently analyzing those 

data in greater detail. 

8. Conclusion  

This study introduces a novel edge computing visual 

sensor for an Internet of Things system, employing the 

Agnosticity framework to track the movement of cars, 

bikes, and pedestrians. The sensor, built on the NVIDIA 

Jetson TX2 platform, combines the SORT real-time 

tracking technique with YOLO V3 for object detection, 

transmitting privacy-compliant metadata over Ethernet or 

LoRaWAN. Deployed in Liverpool, Australia, the 

system, comprising 20 sensors, enables real-time traffic 

monitoring. Future work will focus on enhancing tracking 

and detection algorithms, exploring the NVIDIA Xavier 

platform for improved performance, and adapting YOLO 

V3 to frameworks like Caffe and Tensorflow for increased 
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efficiency. The study will investigate optimizing the 

SORT method for GPU processing in the future. 
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