

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 12–24 | 12

Optimizing Resource Allocation in Cloud Systems using Reinforcement

Learning Driven Dynamic VM Placement

Utpal Chandra De *1, Rabinarayan Satapathy 2, Sudhansu Shekhar Patra3

Submitted: 12/03/2024 Revised: 27/04/2024 Accepted: 04/05/2024

Abstract: Virtual machines (VMs) are extensively used these days as a substitute for physical machines. When the computation power

requirement goes beyond that of the existing physical systems, based on client-specific memory requirements, their tools subscriptions,

and services the appropriate number of VMs needs to be allocated dynamically. The aim is to minimize the resource cost and energy

consumption for optimal usage and enhancement of savings. This is hence an optimization problem that needs to be addressed based on

various parameters linked to the system. In this paper, we have worked towards the allocation or placement of VMs in a cloud system,

where based on previous requirements we train a model by reinforcement using the A3C algorithm, considering the replays of experiences

in various states of the environment to ensure optimal allocation of VMs and hence the real-time functionality of the cloud system.

Keywords: Dynamic VM Allocation, Reinforcement Learning, Experience Replay, Optimization, A3C algorithm

1. Introduction

Limitations of physical systems based on their

computational power and memory availability are not a

hidden thing these days. These issues are addressed using

VMs through VDIs to acquire more resources based on

requirements and perform the necessary tasks at hand. Also,

at times when there are specific client-specific tools or

subscribed services, we need to have a VM that will ensure

delivery of the tasks regardless of the system being worked

upon.

Now based on the actual requirement, a certain number of

systems need to be allocated to solve a particular task. This

may change with respect to time which in turn makes their

allocation a dynamic task during real-time operations. For

instance, for a specific task, n number of machines can be

allotted but during reduced load conditions, the memory

allotted for the machines not in use may go in vain. This

leads to unnecessary cost addition and also energy wastage.

The other way also holds true where extra memory might be

needed suddenly and the only way to allocate it is through

manual monitoring and control.

The organization of the paper is like this, after introducing

the base concept in Section 1, we have performed a literature

survey of similar works previously done in Section 2. The

core concepts of reinforcement learning have been

discussed in Section 3. The concepts of Q-learning and

Deep Q-learning have been explained in Sections 4 and 5,

Followed by which A3C algorithm and its uses have been

explained in Section 6. Section 7 explains the dataset in

hand, the training process followed by the results &

discussion of the implementation. The work has been finally

concluded in Section 8, where we have also discussed the

possible future implications of it. The references cited in the

literature survey have been sequentially mentioned after the

Appendix.

2. Literature Survey

Previously authors have worked in this domain using static

approaches, decision-based systems, optimization

algorithms, etc. Authors in [1] have proposed a two-step

cascaded model to optimize the dynamic resource allocation

process using predictive analytics to predict the number of

VMs required, followed by an ML-driven placement

technique for Virtual Machine Allocation. Teaching-Based

Learning Optimization (TBLO), a population-based meta-

heuristic has been used for cost optimization by the authors

in [2] for VM Allocation. In [3] the authors have used a

context-aware multi-objective genetic algorithm called

AGAFF – Aware Genetic Algorithm First Fit to place VMs

in a multi-data center cloud environment. The model

proposed by authors in [4] improves the decision-making

process in VM placement based on resource wastage,

placement time, and power consumption using a fitness

function that leverages three techniques – Particle Swarm

Optimization with Levy Flight (PSOLF), Flower Pollination

Optimization (FPO), and a hybrid of both (HPSOLF-FPO).

Authors in [5] have surveyed VM Placement techniques and

approaches based on network methodologies, energy and

power algorithms, cost-optimization, multi-objective

optimization, etc. in cloud environments.

A detailed review of preference representations has been

explained in [6] explaining their existing usage and adopted

1 School of Computer Applications, KIIT (Deemed to be University), India.

ORCID ID : 0000-0002-1487-066X
2 Faculty of Emerging Technologies, Sri Sri University, India

ORCID ID :
3 School of Computer Applications, KIIT (Deemed to be University), India.

ORCID ID : 0000-0001-9996-7681

* Corresponding Author Email: deutpal@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 12–24 | 13

solving approaches. The authors have also discussed the key

challenges and research opportunities in VM Allocation.

Authors in [7] have proposed a star topology-based model

for initial VM fault tolerance placement for cloud data

centers, based on power consumption rate, failure rate, fault

tolerance, etc. The authors in [8] have proposed a Multi-

Objective Workflow Scheduling (MOWS) scheme

addressing the issues of information leaks caused due to data

alteration or intermediate data security in the environment.

A comprehensive survey of challenges faced during the

management of virtualized resources has been performed by

the authors in [9]. This includes existing proposals and

problem formulation along with the pros and cons of these

reviewed papers. Authors in [10] have proposed a way for

redundant VM placement optimization based on three

algorithms. First, for selecting the appropriate set of servers

for hosting the VM based on network topology. The second

one finds the optimal strategy to allocate the primary and

backup machines. The third algorithm is a heuristic that

performs the task-to-VM reassignment optimization.

In [11], the authors have determined the placement of

machines in data centers using a multi-objective PSO

algorithm. Authors in [12] have proposed an SDN Assistant

Routing scheme with multiple servers, finite buffers &

multiple vacations for the impatient behavior of clients

where certain client retention policies have been used to

retain impatient clients in a cloud system. The same authors

in [13] have worked towards electricity consumption using

an energy-efficient traffic management approach with two

server modes – sleep and on, analyzed using a 2D Markov

Chain. Authors in [14] have described an offloading system

using M/M/c/K queueing model which predicts the number

of VMs to be activated while in Fog computing to actively

process the jobs. The queue time has also been reduced for

the delay-sensitive tasks by performing the optimization

through this system. In [15], the authors have also proposed

an SDN-based offloading technique using the golden jackal

algorithm that has been used to schedule tasks to VMs in the

fog layer. The VM allocation problem has been formulated

using SAW/WSW to allocate VMs asymmetrically based on

CPU utilization and memory usage [16]. The proposed

ServerCons algorithm minimizes the number of live

migrations, nodes used, and hence the energy usage. The

authors have proposed a VM schedule management system

for smart grid applications based on panel size [17], to

reduce the consumption of brown energy up to an optimized

level.

Authors in [18] have performed various experiments to

explore the domain of deep reinforcement learning, where

they have tried to answer various questions like acceleration

of the learning processes, wrong learning by agents, etc. In

[19], the authors have investigated Double Deep

Reinforcement Learning where the trainer learns in parallel

to the agent to eventually create an automatic learning plan

for the agent. Here three reward functions – Friendly,

Adversarial, and Dynamic have been compared based on the

learner’s reward. The authors have proposed a segmented

and recursive RL algorithm in [20] that reduces the training

period and the latency of the systems, hence meeting the

time and resource requirements of the AI systems. [21]

shows us a framework guiding us regarding associated agent

design decisions. Inspired by information theory, this

provides us with insights regarding what information to

seek, how to seek that & what things to retain from that.

Authors in [22] have presented a survey and provided a

broad conceptual overview of model-based RL, which is an

integration of RL and planning. This consists of two steps

namely dynamics model learning and planning learning

integration. In the context of control engineering, [23] uses

the principles of RL to design feedback policies for

continuous time-dynamical systems hence combining the

features of both adaptive and optimal control. Techniques

such as Q-learning, Game-Theoretic Learning &

intermittent RL have been described in detail, finally

describing the details of application in autonomous vehicles.

Q-learning, Sampled Data Q-learning followed by System

Dynamics Approximation has been explained in [24]. The

Actor-Critic Identifier Architecture for the Hamilton-

Jacobi-Bellman approximation has been discussed in [25]

along with the actor-critic and identifier designs followed

by the convergence and stability analysis and simulation

results. These book chapters are a part of ‘Reinforcement

Learning and Approximate Dynamic Programming for

Feedback Control’. Authors in [26] have used the

techniques of deep RL to create a target-based detection

system for unmanned aerial vehicles, developing an

integrated cam-based system to automate the landing of

GPS-equipped quadcopters. The same authors in [27] have

used the same concept for surveillance to capture triggered

activities.

State-of-the-art RL techniques are used by major firms

today. Deepmind AI has been successfully able to reduce

the cooling bill [28] for Google Data centers by 40%.

Inspired by this and other similar ideas and techniques, we

have tried to optimize the VM allocation process in Cloud-

based systems which will be discussed in the next section.

3. Reinforcement Learning

In this paper, we have leveraged the techniques of

reinforcement learning to optimally allocate VMs in a

dynamic cloud environment. First, we shall discuss the

basics of the interaction of an agent with an environment,

the reward system, and the whole concept of how we

reinforce an agent to learn. Then we move on to the

mathematical modeling of the system followed by its

integration with deep learning. Finally, we discuss how not

just a single agent, but several agents work asynchronously

towards our optimization task. This theory is concluded with

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 12–24 | 14

the results obtained through our dataset followed by which

we finally conclude the work by discussing its future

prospects and scopes.

The foundation of Artificial Intelligence [29] is created by

training an agent to work and learn in a given environment

to achieve its goal. This agent initially performs random

actions with zero knowledge but is eventually trained in the

environment by imposing a reward system to its actions.

The actions lead the agent from one state in the environment

to another. Thus, depending upon the state newly acquired,

the agent is rewarded based on whether the state is close to

the desired state or away from it.

These systems are defined by the elements as shown below:

s – State

e - Environment

a – Action

R – Reward

γ – Discount Factor

Fig. 1 shows the visual representation of a generic AI

Training system.

Fig 1. AI Training System

3.1. Bellman Equation

If the agent starts from any general state and we let it explore

the environment by taking its time to figure out its path to

reach the desired state, it can trace its path back to the initial

state by marking all the intermediary states by some flag

variable, say V=1. Now if the starting position of the agent

is changed, it won’t be able to trace its path to the goal state

as the flagged values of a lot of states are marked as 1.

Formulated by Richard Ernest Bellman [30], the Bellman

equation gives us the direction to train our agent to move

towards the desired state starting from any state, hence

addressing the problem discussed above. The Bellman

Equation is given in Equation 1 below.

𝑉(𝑠) = 𝑚𝑎𝑥⏟
𝑎

(𝑅(𝑠, 𝑎) + γV(sˊ)) (1)

Where,

s – Current state

a – Action

sˊ – Next State after a

R(s, a) – reward for being in s and performing a

V – flagged value representation of the state.

3.2. Markov Decision Process

There are certain processes where there is a predefined path

or set of actions to be taken by the agent to reach the

destined state. There is a single takeable action at a given

state that can be performed with 100% surety making it a

deterministic process. On the other hand, the task in our

hand is a non-deterministic process where there is no single

takeable action at a given state. Hence there is always a

probabilistic value for taking an action at a given state to

transition to the other. This has been demonstrated in Figure

2 below.

Fig 2(a). Single server system

Fig 2(b). Multi server system

Considering Figure 2(a) above consisting of m number

of VMs, when a certain VM is chosen for placement, it will

obviously be placed in the server that is present. But in the

case of Figure 2(b) with s number of servers, unless a rule-

based optimization system is installed for the VM

Placement, there will be a probabilistic value for the

placement of the selected VM corresponding to each server,

hence making it a non-deterministic process.

Secondly, in these cases, the requirement pattern can be

statistically analyzed but precise prediction becomes

difficult unless we reinforce the trend properly. These are

stochastic processes and follow Markov’s Property. If the

conditional probability distribution of future states of the

process depends only upon the present state and not on the

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 12–24 | 15

sequence of events that preceded it, such a process with this

property is called a Markov Process. Hence, we need to use

Markov Decision Processes [31] (MDPs) which provide a

mathematical framework for modeling the decision-making

process in situations where outcomes are partly random and

partly under the control of a decision-maker. Following this

property, Equation (1) takes a form where the weighted sum

of probabilities is used corresponding to each probable

upcoming state.

𝑉(𝑠) = 𝑚𝑎𝑥⏟
𝑎

(𝑅(𝑠, 𝑎) + γ ∑ 𝑃(𝑠, 𝑎, 𝑠ˊ)𝑠ˊ V(𝑠ˊ))

 (2)

Where,

∑ 𝑃(𝑠, 𝑎, 𝑠ˊ)

𝑠ˊ

= 𝑃1(Server1) + 𝑃2(Server2)

+ 𝑃3(Server3) + ⋯ + 𝑃𝑠(Server𝑠)

is the reward for being in s, performing a & moving to sˊ.

3.3. Policies and Living Penalties

To proceed through a sequence of states, we need a proper

plan of execution. But it is important to note that a plan

works only when we know exactly what steps to follow

next. But in the real-time context, we face randomness and

various other non-deterministic hindrances, and this is

where a policy (π) comes into play, where the action is

decided not based on a predefined set of rules and

regulations, but by reinforcing the agent to learn from

dynamic environments. Based on the randomness of each

state, the probability values may change. We calculate the

current state probability values and compare them to the

previously calculated values for each state, according to

which the agent decides its next action.

Policies are made and imposed for each state by imposing a

living penalty in our case. In this way the agent not just finds

a way to the desired state but is also bound to optimize its

path and reach the desired state quickly. The living penalty

is basically a negative reward R(s) in each state. This value

of R(s) in itself is a hyperparameter. If the negativity

increases above a certain limit, the model tends to overfit.

To minimize the penalty that can be incurred, the agent

tends to take a path that doesn’t actually reach the desired

state, but the overall penalty is less compared to taking other

takeable paths and reaching the desired state.

4. Q-Learning

So far, we looked at the values of each state V(si). But to

take this ahead from the perspective of the agent, we need

to consider the value (or quality) of various actions that can

be performed by it in a given state. We denote this quality

as Q(s, a). Based on the action that the agent takes, it can

end up at multiple states, and then the new values are

calculated, and so on. This takes the form of a recursive

event that we execute through a recursive function of V. But

for that, we need to map our V(s) to Q(s, a) from Equation

(2).

For performing an action in a state, the agent certainly gets

to have a reward regardless of whether it is negative, zero,

or positive. Hence R(s, a) is a quantified metric that certainly

adds up to the quality of action taken by the agent. The next

thing that happens after the agent is rewarded is that the

agent ends up in another state. There can be multiple such

states and different probability values corresponding to

them, but wherever the agent ends up there’s going to be a

V value of that state V(sˊ). But since there are multiple such

probable states, we will add the weighted probabilities

corresponding to those states as we did earlier in Equation

(2). Hence our quality is expressed mathematically [32] as

shown in the equation below.

𝑄(𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + γ ∑ 𝑃(𝑠, 𝑎, 𝑠ˊ)𝑠ˊ V(𝑠ˊ) (3)

From Equation (3) above, we see that the Q value is exactly

similar to the value inside the max() in Equation (2) Or in

simpler terms Equation (2) can also be written as:

𝑉(𝑠) = 𝑚𝑎𝑥⏟
𝑎

(𝑄(𝑠, 𝑎)) (4)

If we look at it, we see that in Equation (2) or Equation (4),

we are looking at the maximum of the result we get across

all possible actions, by taking each of those actions, and in

Equation (3) we are looking at what would we get by

taking a certain action, and hence the quality of a specific

action.

To entirely get rid of the recursive V(), we put Equation (4)

in Equation (3) in terms of the new state or sˊ, as shown in

the equation below.

𝑄(𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + 𝛾 ∑ 𝑃(𝑠, 𝑎, 𝑠ˊ)𝑠ˊ 𝑚𝑎𝑥⏟
𝑎ˊ

𝑄(𝑠ˊ, 𝑎ˊ) (5)

Equation (5) above, gives us the recursive formula in terms

of the Q-value of an action.

4.1. Temporal Difference

In the case of a deterministic environment, it’s

straightforward to calculate the V-values as a specific plan

can be followed. But in cases where there is stochasticity or

randomness in the environment, the computation of these

values is not easy. Temporal differences simplify the task

for the agent to compute these values. Temporal difference

is the difference between quality between two subsequent

states – sˊ and s.

Since we are looking at the Q-values, we shall move ahead

with Equation (5) . For the sake of simplicity, we write it in

the format of the deterministic Bellman Equation similar to

Equation (1), where we replace the whole summation term

with simply the max() function corresponding to the new

state. This notation has been used in various literatures and

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 12–24 | 16

we shall also proceed ahead the same way. Hence, Equation

(5) takes the form as mentioned below:

𝑄(𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + 𝛾 𝑚𝑎𝑥⏟
𝑎ˊ

(𝑄(𝑠ˊ, 𝑎ˊ))

 (6)

So earlier for a given state, the Q-value stored in the memory

is denoted by Q(s, a). The same value after recalculations

for the new state that we end up in, is given by Equation (6).

Hence the temporal difference is the difference between

these two mentioned in the equation below.

𝑇𝐷(𝑎, 𝑠) = 𝑅(𝑠, 𝑎) + 𝛾 𝑚𝑎𝑥⏟
𝑎ˊ

(𝑄(𝑠ˊ, 𝑎ˊ)) − 𝑄(𝑠, 𝑎) (7)

We call it the temporal difference [33] because what we

calculate over here is essentially the same thing but at

different intervals of time or states. We can use this

difference to our advantage if there’s a shift in time. One

thing that we did earlier in Eq. 6 is to simply calculate the

new Q-value by getting rid of the old one. But that’s not a

smart act as our environment is subject to randomness.

There might be cases where the old Q-values consistently

happen say 90-95% of the time then all of a sudden, a

random event is triggered causing the new event. In this way

what we would do is simply discard the value that’s

responsible for the bulk of the situation and move ahead

with a value that happens only 5-10% of the time. This is

why we don’t completely change our Q-values but rather

change them step by step, bit by bit.

 We would express this in terms of timestamps

where Equation (7) takes the form as mentioned below.

𝑇𝐷(𝑎, 𝑠) = 𝑅(𝑠, 𝑎) + 𝛾 𝑚𝑎𝑥⏟
𝑎ˊ

(𝑄(𝑠ˊ, 𝑎ˊ)) − 𝑄𝑡−1(𝑠, 𝑎)

 (8)

Where,

𝑄𝑡(𝑠, 𝑎) = 𝑄𝑡−1(𝑠, 𝑎) + 𝛼𝑇𝐷𝑡(𝑎, 𝑠)

 (9)

Putting Eq. 8 in Eq. 9, we get

𝑄𝑡(𝑠, 𝑎) = 𝑄𝑡−1(𝑠, 𝑎) + 𝛼 (𝑅(𝑠, 𝑎) + 𝛾 𝑚𝑎𝑥⏟
𝑎ˊ

(𝑄(𝑠ˊ, 𝑎ˊ)) −

𝑄𝑡−1(𝑠, 𝑎)) (10)

From Eq. 10 above, we can say that,

If α = 0,

𝑄𝑡(𝑠, 𝑎) = 𝑄𝑡−1(𝑠, 𝑎)

 (11)

If α = 1,

𝑄𝑡(𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + 𝛾 𝑚𝑎𝑥⏟
𝑎ˊ

(𝑄(𝑠ˊ, 𝑎ˊ))

 (12)

From Equation (11), we see that when α = 0, see that there’s

no difference between the Q-values of the two subsequent

states and the agent doesn’t learn anything. From Equation

(12), we see that when α = 1, we acquire back Equation (6)

again, which is not the best approach as we discussed above.

Hence, we see that the α value is a hyperparameter where 0

< α < 1. After a certain number of iterations, when Equation

(8) converges, we see that there’s no significant temporal

difference between the Q-values of the subsequent states

and with α ≠ 0 we get,

𝑄𝑡(𝑠, 𝑎) ≈ 𝑄𝑡−1(𝑠, 𝑎)

 (13)

This means that the agent has sufficiently learnt, and we

don’t need to run iterations to update the values anymore.

However, in cases where our environments change with

respect to time, (not just random and stochastic changes, but

the whole environment changes) we need to keep these

iterations running & update our Q-values so that we

reinforce the agent to be adaptive to the changing

environment and hence the optimal policy as well coz with

changing environment the optimal policy also changes.

5. Deep Q-Learning

The concepts related to Q-learning have been explained in

detail in the previous sections. In this section, we integrate

deep learning with Q-learning and leverage the power of

neural networks to predict the best takeable action to move

from one state to the next.

 Referring to Figure 2(b), we see that there are m number

of machines that can be allocated to s number of servers at

any time stamp t. In addition to this, there might be certain

timestamps where no action needs to be taken, i.e., no VM

needs to be allocated or deallocated to or from a server.

Hence, we need to map the set of inputs and outputs to a

neural network and design the architecture of it. For every

given set of VM and Server, we need to identify two things

–

1. Whether do we need to allocate or deallocate the

VM.

2. If we need to allocate, whether the server can take the

load of the machine to be allocated.

Hence, our inputs to the architecture at any timestamp t are

– 𝑉𝑀𝑖 & 𝑆𝑗. The deallocation of a machine can be performed

by running a scan time to time across all servers, to identify

the idle resources and deallocate them through a trigger.

Hence, the prime challenge now is with allocation of these

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 12–24 | 17

VMs to our Servers. The input set at a timestamp t – {𝑉𝑀𝑖,

𝑆𝑗} are fed to the network and the output leads to a range of

Q values corresponding to the s servers i.e., {Q1, Q2, …, Qs}.

These Q-values are passed through a SoftMax layer to

acquire the probability values for each predicted quality

corresponding to the s servers and perform the best

allocation based on them. The NN architecture has been

shown in Fig. 3 with the set of inputs and outputs as

mentioned above.

Fig. 3 Deep Q-Learning Architecture

In Fig. 3 above, S(Q) is the SoftMax function defined as

follows:

𝑆(𝑄)𝑘 =
𝑒𝑄𝑘

∑ 𝑒𝑄𝑘𝑠
𝑘=1

 (14)

 The output hence acquired from this is the maximum

probabilistic values of the Q values, and the allocation of

that VM corresponding to the server is performed. This acts

as a policy to select the next action as discussed previously

in Section-5.2. It’s also important to note here that SoftMax

is just one of such action selection policies. Other policies

may be ϵ-greedy [35], ϵ-soft(1 - ϵ), etc.

 Like the training process of neural networks, after

forward propagation, the value loss is calculated as per the

following equation.

𝐿𝑉 = ∑(𝑄𝑇𝑎𝑟𝑔𝑒𝑡 − 𝑄)2 (15)

Then the control backpropagates the network to adjust the

weights of the network. This whole sequence is called an

epoch. This training sequence is repeated up to a certain

number of epochs to acquire or reach the maxima.

5.1. Experience Replay

There are two things that happen on a broader level during

the whole process – training and acting. During the training

phase, the network learns with every new state and updates

the weights by which it gets better and better at dealing with

the environment.

Now at times due to monotonicity in the environment where

in each new state, there’s no significant change in the

environment and a sequential nature of experiences, a bias

might come up during the training phase due to

interdependent and correlated consecutive states in the

environments. As a solution to this, the neural network isn’t

trained based on the whole set of experiences but on a batch

of such uniformly distributed experiences. A batch can be a

rolling window of experiences and can break the

interdependence and correlation hence the pattern of the

bias. In addition to this, sometimes there might be very

valuable and rare experiences that might be difficult for the

agent to learn if the experiences are not stored and saved in

batches. This is called experience replay [34] where the

experiences saved in batches are replayed and used to train

the network enabling it to eradicate such biases and learn

every aspect of the environment well.

5.2. Action Selection Policies

After analyzing the training aspect of the process in the

previous section, we look at the acting part of it. As

discussed in Section 7 about the significance of policies, we

will look at the various ways to select the appropriate policy

to act.

 From Fig. 3, we can see that the SoftMax function has

been used after the Q values corresponding to the various

servers have been calculated. The question is, why don’t we

directly use the Q-values to perform our next action using

the value that is the best? This can be explained through

some scenarios. Let’s say the best value at a time instant t is

Q3, and the action corresponding to that is performed. But

eventually, it turns out to be a bad action due to which the

agent gets a negative reward. But since the policy says to

perform the action corresponding to the best Q-value the

agent is forced to explore the environment and learn by itself

that Q3 is not a good action to be performed based on the

negative rewards to be acquired. In such cases, the agent is

forced to learn by itself and update the weights according to

the rewards it gets.

 On the other hand, there might be cases where the agent

gets stuck in a local maximum. Through its initial

exploration, the agent might think that it is taking the correct

action based on the positive rewards but due to its limited

perception it may get biased towards the actions it took so

far and get reinforced by them. What if there are other local

maximums or a global one that is not yet into the experience

of the agent which might lead it to take better actions. This

is where the action selection policies come into the picture

where we can leverage the good actions discovered so far

by the agent but also at the same time help it to not get stuck

in a local maximum.

6. A3C Algorithm

Developed at Google Deepmind in 2016, stands for

Asynchronous Advantage Actor Critic Algorithm [36]. The

architecture used for this algorithm is faster compared to

simple Deep Q-learning and takes less training time,

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 12–24 | 18

achieving better results. We shall look at each of the

individual entities separately and finally club them together

in an implementable way to carry our task ahead.

6.1. Actor - Critic

In Fig. 3 we saw that we get s number of outputs

corresponding the s policies of VM placement to the s

servers. Keeping those outputs intact, we separately take

one output for the value of the state. In this way, we have

two sets of outputs, one corresponding to the policy – π(s),

which is taken care of by the actor network and the other

corresponding to the value – V(s), which is taken care of by

the critic network. The segregation of the output layer into

actor and critic networks after slightly modifying Fig. 3 has

been shown in Fig. 4. From here onwards, for simplification

we shall use a vector representation as input to the neural

network, square boxes to represent a layer of neurons and a

single arrow to represent the fully connected layers.

Fig. 4 Actor Critic Architecture

6.2. Asynchronous

To make the actor critic network asynchronous [37], instead

of having just a single agent, we deploy a set of agents,

initialized differently to attack the environment. This

initialization is performed by setting different seeds

randomly for each agent. In this way, for n agents we get to

have n-times the experience compared to the experience

otherwise acquired by a single agent. In this way, we reduce

the chance of the agents getting stuck at a local maximum.

The likelihood of several agents getting stuck at a local

maximum decrease with an increase in the number of

agents, as long as agents interact with each other & share

their experience. In this way, getting towards the desired

state becomes comparatively fast. This experience is shared

through the critic – V(s). The actors might be different, but

the critic neuron must be the same for all agents.

 Initially, each agent used to have its own environment to

explore. But the creator of PyTorch adjusted the code

available in GitHub where all the networks were reduced to

one single network, i.e., all the agents will now have just one

environment to learn from or we can say that all the agents

will asynchronously attack one environment to find the

maximum

6.3. Advantage

Since the output has been segregated into two sets of

neurons, we have two different losses over here. One is the

value loss as mentioned in Equation (15) in Section 5. The

other one is the policy loss for the calculation of which we

need to consider the advantage [38] given by

𝐴 = 𝑄(𝑠, 𝑎) − 𝑉(𝑠)

 (16)

The critic shares a V-value which is common for all the

agents. Hence it knows how much better our selected Q-

value is when compared to the known V-value. The policy

loss is then similarly backpropagated through the network.

The weights are adjusted such that the advantage is

maximized. In this way, the critic neuron through the known

value – V(s), observes the policies made by the agents,

enabling them to cooperate. The practicability of the actions

of an agent is determined by its entropy, given by Equation

(17) [39]. The representation of the Asynchronous

Advantage Actor-Critic Network is shown in Fig. 5.

𝐻(𝑥) = − ∑ 𝑃(𝑥) 𝑙𝑛(𝑃(𝑥𝑖))𝑛
𝑖=1 (17)

The entropy loss for the SoftMax Policy output is calculated

and summed over all states. The final adjusted loss is

calculated by Eq. 18 mentioned below.

𝐿 = 𝐿𝑉 + 𝐿𝜋 − 𝛽𝐿𝐻 (18)

Where,

LV is the value loss.

Lπ is the policy loss.

LH is entropy loss.

β [40] is the momentum or influence of entropy loss.

Fig. 5 A3C Architecture

7. Results and Discussion

Most of the codes publicly available have been written in

TensorFlow, but for the sake of simplicity, we have used

PyTorch for our implementation. For experimentation

purposes, we used the Google Cluster Usage Traces dataset

[42 – 43] which consists of job events and resource

consumption from the data centers in Google, managed by

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 12–24 | 19

Borg cluster management software.

7.1. The Dataset

This dataset is a collection of data that describes the

workloads running on Google’s compute clusters. It gives

us information about the clusters such as jobs (submission,

scheduling and completion), tasks placement, migration and

eviction), machines (attributes, availability and failures) and

requests and usage of CPU, memory, network and disk.

These things have been used to study the patterns

characteristics of workloads, evaluate and improve the

policies, model and simulate the behavior and hence the

performance of the cluster. The granular aspects have been

explained in detail in [44 – 45].

The dataset consists of 405894 data points corresponding to

33 features, which act as an input to our model. The data is

labelled, i.e., there is a clear indication corresponding to

each datapoint, whether the job, collection or task instance

failed or not. Out of these, there are 313216 datapoints

where the allocation was performed successfully. All these

33 attributes are not of use to us, hence we group the

relevant attributes together under VM and S, to feed out

architecture with inputs. The relevant attributes as per their

category have been segregated below in Table 1.

Table 1 – VM, S and Policy Mappings

VM S Π

Collection ID Alloc Collection ID Enable

Scheduling Class Resource Request Evict

Priority Constraint Fail

Instance Index Vertical Scaling Finish

Machine ID Assigned Memory Kill

Start After Collection IDs Page Cache Memory Lost

 Cluster Queue

 Schedule

 Update Pending

 Update Running

These attributes were stacked and used as inputs to the

model. The output attribute corresponding to policies (π) is

the event attribute, based on which the system decides an

action to take out of 10 different actions and move to the

next state. The list of actions is also mentioned in the third

column of Table 1. The rest of the attributes are intrinsic to

the event, whose work is single handedly taken care of by

the critic network. Based on the values of these attributes,

the agent is trained and set to explore the global optimal path

to reach the desired state.

7.2. Model Training

Deploying a single agent in the environment and training is

a very tedious task and needs high computational power.

This has been demonstrated in Figure 6.

Fig. 6 Single Agent Training

In addition to this, from the trend line in Figure 6 we can see

that even after 10k epochs, there is still scope for the agent

to learn with a gradual increase in the slope. Hence, instead

of wasting time to find the maxima, we leveraged the power

of A3C algorithm as explained in Section 6 above. Instead

of deploying a single agent, we’ve deployed three agents to

attack the environment simultaneously. In this way, the

agents cooperate and hence, learn

faster to find the optimal position. This saved us days of time

and we could train the model within a duration of 8½ hours.

We achieved the maximum at somewhere around 950

epochs, followed by which there is a decreasing trend. The

training graph for A3C model up to 1000 epochs is shown

in Figure 7. This shows that in this way the agents cooperate

and learn quickly in the environment.

Fig. 7 Three Agent Training

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 12–24 | 20

7.3. 1.2. Model Output

We studied three types of allocations – random, static and

our A3C based allocations. Based on these we have

compared several metrics through which we can check the

efficacy of the system.

Table 2 – Average Resource, CPU and Memory Utilizations

Allocation

Strategy
Average Resource Utilization Average CPU Utilization Average Memory Utilization

Random Allocation 68.7% 63.5% 72.4%

Static Allocation 65.2% 60.2% 70.8%

A3C Allocation 85.6% 79.8% 75.5%

Table 3 – Cost Savings and Energy Efficiency

Allocation

Strategy
Cost Savings Energy Efficiency

Random Allocation 8.2% 63.5%

Static Allocation 12.6% 60.2%

A3C Allocation 34.8% 79.8%

Table 4 – Average Response Time and Throughput across Batch and Interactive Workloads

Workload Type Allocation Strategy Average Response Time Throughput

Batch

Random Allocation 290 ms 210 Tasks/min

Static Allocation 320 ms 180 Tasks/min

A3C Allocation 190 ms 320 Tasks/min

 Random Allocation 210 ms 350 Tasks/min

Interactive Static Allocation 180 ms 400 Tasks/min

 A3C Allocation 140 ms 510 Tasks/min

Values in Table 2 show that the A3C allocation outperforms

both static and random allocations, & hence is more

effective in adapting to workload changes and utilizing

allocated resources. The static allocation is unable to

accommodate dynamic workload patterns, hence resulting

in lower utilization. Random placement while slightly

better, still lacks the intelligence provided by A3C decision

which leads to suboptimal resource allocation. The values in

Table 2 also show that the proposed A3C approach

consistently outperforms the rest of the two approaches

justifying the A3C approach’s capability to optimize the

allocations of both CPU and memory resources. Static

allocation falls short in allocating resources efficiently,

resulting in lower utilization. Random allocation, while

slightly better again lacks the intelligence of the A3C

approach leading to suboptimal resource allocation, again

justifying the resource utilization. Figure 8 shows the

Average utilizations of resource, CPU and memory across

the three modes of allocations, namely – Static, Random and

A3C.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 12–24 | 21

Fig. 8 – Average Utilizations

Fig. 9 – Cost and Energy Savings

Fig. 10 – Throughput

Table 3 shows the ability to allocate resources efficiently

according to workload demands. Random and static

allocations exhibit lower cost savings due to their lack of

adaptability to dynamic situations. Hence, we see that the

proposed A3C approach not only optimizes resource

utilization but also minimizes unnecessary expenditure

which makes it a cost-effective solution for cloud resource

allocation. Table 3 also presents a comprehensive analysis

of energy efficiency achieved by different allocation

strategies. In correlation with cost savings, the proposed

approach significantly contributes to energy efficiency

compared to static allocation. This approach’s ability to

allocate resources dynamically according to workload

demands minimizes resource wastage, hence causing both

environmental and financial benefits. Random and static

allocation exhibit lower energy efficiency due to a lack of

adaptability. Figure 9 shows the graphical representation of

the cost savings and energy efficiency across the three

allocation modes.

From Table 4 above, we see that for both batch and

interactive workloads the A3C technique yields improved

response time and throughput compared to static and

random strategies. This shows its adaptability to various

workload characteristics. The lower response times and

higher throughputs enhance the efficiency of the A3C model

ensuring optimal performance for diverse workloads. Figure

10 graphically represents the throughput across batch and

interactive workloads for the three allocation modes being

discussed. Figure 11 graphically represents the average

response time across batch and interactive workloads for the

three allocation modes being discussed.

Fig.11 – Average Response Time

8. Conclusion and Future Scope

After looking at the outputs obtained after using the

proposed A3C approach in the traces dataset, we acquired

satisfactory results compared to the rest allocation strategies

in all aspects whether be it in terms of energy saving, cost

cutting, utilization, throughput, or response time. Practically

it is impossible to meet the ideal conditions, but one always

aims to optimize the model as much as possible.

There are various other methods such as the massively

distributed General RL Architecture (Gorila) [46], dueling

[47] for model-free RL, LSTM-based A3C architectures,

etc. which have outperformed other conventional algorithms

in gaming environments. These can be tweaked and

implemented as per the optimization requirement in hand in

the future to see if the values can be optimized further.

Appendix

The publicly downloadable version of the dataset can be

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 12–24 | 22

obtained at:

https://www.kaggle.com/datasets/derrickmwiti/google-

2019-cluster-sample.

Author contributions

Conceptualization, RS, SSP; methodology, UCD, RS;

formal analysis, SSP; writing—original draft preparation,

UCD; writing—review and editing, UCD, RS, and SSP;

visualization, SSP; supervision, RS, SSP; project

administration, RS. All authors have read and agreed to the

published version of the manuscript.

Conflicts of interest

The authors declare no conflict of interest.

References

[1] U. C. De, R. Satapathy & S. S. Patra, "Optimizing

Resource Allocation using Proactive Predictive

Analytics and ML-Driven Dynamic VM Placement,"

4th Global Conference for Advancement in

Technology, 2023.

[2] U. C. De, R. Satapathy and S. S. Patra, "Cost Analysis

and Optimization of Virtual Machine Allocation in the

Cloud Data Center," International Conference on

Inventive Computation Technologies (ICICT), pp.

809-813, IEEE, 2023.

[3] S. M. Seyyedsalehi and M. Khansari, "Virtual

Machine Placement Optimization for Big Data

Applications in Cloud Computing," in IEEE Access,

10, pp. 96112-96127, 2022.

[4] S. Mejahed, M. Elshrkawey, "A multi-objective

algorithm for virtual machine placement in cloud

environments using a hybrid of particle swarm

optimization and flower pollination optimization",

PeerJ Computer Science, 8, e834, 2022.

[5] Sudhakar, Saravanan, "A Survey and Future Studies of

Virtual Machine Placement Approaches in Cloud

Computing Environment", 6th International

Conference on Cloud Computing and Internet of

Things, pp. 15-21, 2021.

[6] A. Alashaikh, E. Alanazi, A. Al-Fuqaha, "A survey on

the use of preferences for virtual machine placement in

cloud data centers", ACM Computing Surveys

(CSUR), 54(5), pp. 1-39, 2021.

[7] W. Zhang, X. Chen, J. Jiang, "A multi-objective

optimization method of initial virtual machine fault-

tolerant placement for star topological data centers of

cloud systems", Tsinghua Science and Technology,

26(1), pp. 95-111, 2020.

[8] Farzaneh Abazari, Morteza Analoui, Hassan Takabi,

Song Fu, "MOWS: Multi-objective workflow

scheduling in cloud computing based on heuristic

algorithm", Simulation Modelling Practice and

Theory, 93, pp. 119-132,2019.

[9] M. C. Silva Filho, C. C. Monteiro, P. R. Inácio, M. M.

Freire, "Approaches for optimizing virtual machine

placement and migration in cloud environments: A

survey", Journal of Parallel and Distributed

Computing, 111, pp. 222-250, 2018.

[10] Ao Zhou, Shangguang Wang, Member, Bo Cheng,

Member, Zibin Zheng, Member, Fangchun Yang,

Senior Member, Rong N. Chang, Senior Member,

Michael R. Lyu, Fellow, Rajkumar Buyya, "Cloud

Service Reliability Enhancement via Virtual Machine

Placement Optimization”, IEEE Transactions on

Services Computing, 10(6), pp. 902-913, 2017.

[11] J. Gao, G. Tang, "Virtual Machine Placement Strategy

Research", International Conference on Cyber-

Enabled Distributed Computing and Knowledge

Discovery, 2013, pp. 294-297,2013.

[12] B. B. Dash, R. Satapathy, S. S. Patra, "SDN-Assisted

Routing Scheme in Cloud Data Center using Queueing

Vacation Policy", 2nd International Conference on

Edge Computing and Applications (ICECAA), pp. 1-

6, 2023.

[13] B. B. Dash, R. Satapathy and S. S. Patra, "Energy

Efficient SDN-assisted Routing Scheme in Cloud Data

Center", 2nd International Conference on Vision

Towards Emerging Trends in Communication and

Networking Technologies (ViTECoN), pp. 1-5, 2023.

[14] S. Behera, N. Panda, U. C. De, B. B. Dash, B. Dash,

S. S. Patra, "A task offloading scheme with Queue

Dependent VM in fog Center”, 6th International

Conference on Information Systems and Computer

Networks (ISCON), pp. 1-5, 2023.

[15] B. B. Dash, S. S. Patra, R. Satpathy and B. Dash,

"Improvement of SDN-based Task Offloading using

Golden Jackal Optimization in Fog Center," World

Conference on Communication & Computing

(WCONF), pp. 1-6,2023.

[16] S. S. Patra, R. Govindaraj, S. Chowdhury, M. A. Shah,

R. Patro and S. Rout, "Energy Efficient End Device

Aware Solution Through SDN in Edge-Cloud

Platform," in IEEE Access, vol. 10, pp. 115192-

115204, 2022.

[17] Inès De Courchelle, Tom Guérout, Georges Da Costa,

Thierry Monteil, Yann Labit, “Green energy efficient

scheduling management”, Simulation Modelling

Practice and Theory, Volume 93, pp. 208-232, 2019.

[18] M. Kaloev, G. Krastev, "Experiments Focused on

Exploration in Deep Reinforcement Learning", 5th

International Symposium on Multidisciplinary Studies

https://www.kaggle.com/datasets/derrickmwiti/google-2019-cluster-sample
https://www.kaggle.com/datasets/derrickmwiti/google-2019-cluster-sample

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 12–24 | 23

and Innovative Technologies (ISMSIT), pp. 351-355,

2021.

[19] J. Kiefer and K. Dorer, "Double Deep Reinforcement

Learning", 2023 IEEE International Conference on

Autonomous Robot Systems and Competitions

(ICARSC), pp. 17-22, 2023.

[20] M. H. Krishna and M. M. Latha, "Complexity and

Performance Evaluation of Segmented and Recursive

Reinforcement Learning", IEEE 4th International

Conference on Computing, Power and

Communication Technologies (GUCON), pp. 1-7,

2021.

[21] Xiuyuan Lu, Benjamin Van Roy, Vikranth

Dwaracherla, Morteza Ibrahimi, Ian Osband, Zheng

Wen, "Reinforcement Learning Bit by Bit", now,

2023.

[22] Thomas M. Moerland, Joost Broekens, Aske Plaat and

Catholijn M. Jonker, "Model-based Reinforcement

Learning: A Survey", Foundations and Trends® in

Machine Learning, 16(1), pp 1-118, 2023.

[23] Kyriakos G. Vamvoudakis and Nick-Marios T.

Kokolakis, "Synchronous Reinforcement Learning-

Based Control for Cognitive Autonomy", Foundations

and Trends® in Systems and Control, 8(1–2), pp 1-

175, 2020.

[24] Frank L. Lewis, Derong Liu, "Reinforcement

Learning Control with Time-Dependent Agent

Dynamics," in Reinforcement Learning and

Approximate Dynamic Programming for Feedback

Control, IEEE, pp.203-220, 2013.

[25] Frank L. Lewis, Derong Liu, "An Actor-Critic-

Identifier Architecture for Adaptive Approximate

Optimal Control", in Reinforcement Learning and

Approximate Dynamic Programming for Feedback

Control, IEEE, pp.258-280, 2013.

[26] T. Swain, M. Rath, J. Mishra, S. Banerjee and T.

Samant, "Deep Reinforcement Learning based Target

Detection for Unmanned Aerial Vehicle", IEEE India

Council International Subsections Conference

(INDISCON), pp. 1-5, 2022.

[27] S. Banerjee, T. Swain, J. Mishra, M. K. Rath and T.

Samant, "Surveillance using Unmanned Aerial

Vehicle for Triggered Activity Capturing," 1st IEEE

International Conference on Industrial Electronics:

Developments & Applications (ICIDeA), pp. 6-11,

2022.

[28] J. Luo, C. Paduraru, O. Voicu, Y. Chervonyi, S.

Munns, J. Li, ... & D. J. Mankowitz, "Controlling

commercial cooling systems using reinforcement

learning." arXiv preprint arXiv:2211.07357, 2022.

[29] R. S. Sutton, A. G. Barto, "Reinforcement learning:

An introduction", MIT press, 2018.

[30] R. Bellman, "The theory of dynamic programming",

Bulletin of the American Mathematical Society, 60(6),

pp. 503-515, 1954.

[31] D. J. White, "A survey of applications of Markov

decision processes", Journal of the operational

research society, 44(11), pp. 1073-1096, 1993.

[32] Martijn Van Otterlo, "Markov decision processes:

Concepts and algorithms." Course on Learning and

Reasoning, 2009.

[33] Richard S. Sutton, "Learning to predict by the

methods of temporal differences", Machine learning,

3(9-44),1988.

[34] T. Schaul, J. Quan, I. Antonoglou, D. Silver,

"Prioritized experience replay", arXiv preprint

arXiv:1511.05952, 2015.

[35] M. Tokic, "Adaptive ε-greedy exploration in

reinforcement learning based on value differences", In

Annual Conference on Artificial Intelligence, pp. 203-

210, 2010.

[36] M. Babaeizadeh, I. Frosio, S. Tyree, J. Clemons, & J.

Kautz, "Reinforcement Learning through

Asynchronous Advantage Actor-Critic on a GPU",

ArXiv. /abs/1611.06256, 2016.

[37] J. Schulman, P. Moritz, S. Levine, M. Jordan, & P.

Abbeel, "High-dimensional continuous control using

generalized advantage estimation", arXiv preprint

arXiv:1506.02438, 2015.

[38] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I.

Antonoglou, D. Wierstra, & M. Riedmiller, "Playing

Atari with Deep Reinforcement Learning", ArXiv.

/abs/1312.5602, 2013.

[39] R. J. Williams, & J. Peng, "Function optimization

using connectionist reinforcement learning

algorithms", Connection Science, 3(3), pp. 241-268,

1991.

[40] A. Verma, L. Pedrosa, M. Korupolu, D.

Oppenheimer, E. Tune, J. Wilkes, "Large-scale cluster

management at Google with Borg", In Proceedings of

the tenth european conference on computer systems,

pp. 1-17, 2015.

[41] M. Tirmazi, A. Barker, N. Deng, M. E. Haque, Z. G.

Qin, S. Hand, J. Wilkes, "Borg: the next generation",

In Proceedings of the fifteenth European conference

on computer systems, pp. 1-14, 2020.

[42] Victor Chudnovsky, Rasekh Rifaat, Joseph

Hellerstein, Bikash Sharma, Chita Das, “Modeling and

Synthesizing Task Placement Constraints in Google

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 12–24 | 24

Compute Clusters”, Symposium on Cloud Computing

(SoCC), 2011.

[43] M. Carvalho,W. Cirne, F. Brasileiro, J. Wilkes,

"Long-term SLOs for reclaimed cloud computing

resources", in Proceedings of the ACM Symposium on

Cloud Computing, pp. 1-13, 2014.

[44] A. Nair, P. Srinivasan, S.Blackwell, C. Alcicek, R.

Fearon, , A. De Maria, ..., D. Silver, "Massively

parallel methods for deep reinforcement learning",

arXiv preprint arXiv:1507.04296, 2015.

[45] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M.

Lanctot, N. Freitas, "Dueling network architectures for

deep reinforcement learning", in International

conference on machine learning, pp. 1995-2003, 2016.

