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Abstract: Virtual machines (VMs) are extensively used these days as a substitute for physical machines. When the computation power 

requirement goes beyond that of the existing physical systems, based on client-specific memory requirements, their tools subscriptions, 

and services the appropriate number of VMs needs to be allocated dynamically. The aim is to minimize the resource cost and energy 

consumption for optimal usage and enhancement of savings. This is hence an optimization problem that needs to be addressed based on 

various parameters linked to the system. In this paper, we have worked towards the allocation or placement of VMs in a cloud system, 

where based on previous requirements we train a model by reinforcement using the A3C algorithm, considering the replays of experiences 

in various states of the environment to ensure optimal allocation of VMs and hence the real-time functionality of the cloud system. 
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1. Introduction 

Limitations of physical systems based on their 

computational power and memory availability are not a 

hidden thing these days. These issues are addressed using 

VMs through VDIs to acquire more resources based on 

requirements and perform the necessary tasks at hand. Also, 

at times when there are specific client-specific tools or 

subscribed services, we need to have a VM that will ensure 

delivery of the tasks regardless of the system being worked 

upon. 

Now based on the actual requirement, a certain number of 

systems need to be allocated to solve a particular task. This 

may change with respect to time which in turn makes their 

allocation a dynamic task during real-time operations. For 

instance, for a specific task, n number of machines can be 

allotted but during reduced load conditions, the memory 

allotted for the machines not in use may go in vain. This 

leads to unnecessary cost addition and also energy wastage. 

The other way also holds true where extra memory might be 

needed suddenly and the only way to allocate it is through 

manual monitoring and control. 

The organization of the paper is like this, after introducing 

the base concept in Section 1, we have performed a literature 

survey of similar works previously done in Section 2. The 

core concepts of reinforcement learning have been 

discussed in Section 3. The concepts of Q-learning and 

Deep Q-learning have been explained in Sections 4 and 5, 

Followed by which A3C algorithm and its uses have been 

explained in Section 6. Section 7 explains the dataset in 

hand, the training process followed by the results & 

discussion of the implementation. The work has been finally 

concluded in Section 8, where we have also discussed the 

possible future implications of it. The references cited in the 

literature survey have been sequentially mentioned after the 

Appendix. 

2. Literature Survey 

Previously authors have worked in this domain using static 

approaches, decision-based systems, optimization 

algorithms, etc. Authors in [1] have proposed a two-step 

cascaded model to optimize the dynamic resource allocation 

process using predictive analytics to predict the number of 

VMs required, followed by an ML-driven placement 

technique for Virtual Machine Allocation. Teaching-Based 

Learning Optimization (TBLO), a population-based meta-

heuristic has been used for cost optimization by the authors 

in [2] for VM Allocation. In [3] the authors have used a 

context-aware multi-objective genetic algorithm called 

AGAFF – Aware Genetic Algorithm First Fit to place VMs 

in a multi-data center cloud environment. The model 

proposed by authors in [4] improves the decision-making 

process in VM placement based on resource wastage, 

placement time, and power consumption using a fitness 

function that leverages three techniques – Particle Swarm 

Optimization with Levy Flight (PSOLF), Flower Pollination 

Optimization (FPO), and a hybrid of both (HPSOLF-FPO). 

Authors in [5] have surveyed VM Placement techniques and 

approaches based on network methodologies, energy and 

power algorithms, cost-optimization, multi-objective 

optimization, etc. in cloud environments. 

A detailed review of preference representations has been 

explained in [6] explaining their existing usage and adopted 
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solving approaches. The authors have also discussed the key 

challenges and research opportunities in VM Allocation. 

Authors in [7] have proposed a star topology-based model 

for initial VM fault tolerance placement for cloud data 

centers, based on power consumption rate, failure rate, fault 

tolerance, etc. The authors in [8] have proposed a Multi-

Objective Workflow Scheduling (MOWS) scheme 

addressing the issues of information leaks caused due to data 

alteration or intermediate data security in the environment. 

A comprehensive survey of challenges faced during the 

management of virtualized resources has been performed by 

the authors in [9]. This includes existing proposals and 

problem formulation along with the pros and cons of these 

reviewed papers. Authors in [10] have proposed a way for 

redundant VM placement optimization based on three 

algorithms. First, for selecting the appropriate set of servers 

for hosting the VM based on network topology. The second 

one finds the optimal strategy to allocate the primary and 

backup machines. The third algorithm is a heuristic that 

performs the task-to-VM reassignment optimization. 

In [11], the authors have determined the placement of 

machines in data centers using a multi-objective PSO 

algorithm. Authors in [12] have proposed an SDN Assistant 

Routing scheme with multiple servers, finite buffers & 

multiple vacations for the impatient behavior of clients 

where certain client retention policies have been used to 

retain impatient clients in a cloud system. The same authors 

in [13] have worked towards electricity consumption using 

an energy-efficient traffic management approach with two 

server modes – sleep and on, analyzed using a 2D Markov 

Chain. Authors in [14] have described an offloading system 

using M/M/c/K queueing model which predicts the number 

of VMs to be activated while in Fog computing to actively 

process the jobs. The queue time has also been reduced for 

the delay-sensitive tasks by performing the optimization 

through this system. In [15], the authors have also proposed 

an SDN-based offloading technique using the golden jackal 

algorithm that has been used to schedule tasks to VMs in the 

fog layer. The VM allocation problem has been formulated 

using SAW/WSW to allocate VMs asymmetrically based on 

CPU utilization and memory usage [16]. The proposed 

ServerCons algorithm minimizes the number of live 

migrations, nodes used, and hence the energy usage. The 

authors have proposed a VM schedule management system 

for smart grid applications based on panel size [17], to 

reduce the consumption of brown energy up to an optimized 

level. 

Authors in [18] have performed various experiments to 

explore the domain of deep reinforcement learning, where 

they have tried to answer various questions like acceleration 

of the learning processes, wrong learning by agents, etc. In 

[19], the authors have investigated Double Deep 

Reinforcement Learning where the trainer learns in parallel 

to the agent to eventually create an automatic learning plan 

for the agent. Here three reward functions – Friendly, 

Adversarial, and Dynamic have been compared based on the 

learner’s reward. The authors have proposed a segmented 

and recursive RL algorithm in [20] that reduces the training 

period and the latency of the systems, hence meeting the 

time and resource requirements of the AI systems. [21] 

shows us a framework guiding us regarding associated agent 

design decisions. Inspired by information theory, this 

provides us with insights regarding what information to 

seek, how to seek that & what things to retain from that.  

Authors in [22] have presented a survey and provided a 

broad conceptual overview of model-based RL, which is an 

integration of RL and planning. This consists of two steps 

namely dynamics model learning and planning learning 

integration. In the context of control engineering, [23] uses 

the principles of RL to design feedback policies for 

continuous time-dynamical systems hence combining the 

features of both adaptive and optimal control. Techniques 

such as Q-learning, Game-Theoretic Learning & 

intermittent RL have been described in detail, finally 

describing the details of application in autonomous vehicles. 

Q-learning, Sampled Data Q-learning followed by System 

Dynamics Approximation has been explained in [24]. The 

Actor-Critic Identifier Architecture for the Hamilton-

Jacobi-Bellman approximation has been discussed in [25] 

along with the actor-critic and identifier designs followed 

by the convergence and stability analysis and simulation 

results. These book chapters are a part of ‘Reinforcement 

Learning and Approximate Dynamic Programming for 

Feedback Control’. Authors in [26] have used the 

techniques of deep RL to create a target-based detection 

system for unmanned aerial vehicles, developing an 

integrated cam-based system to automate the landing of 

GPS-equipped quadcopters. The same authors in [27] have 

used the same concept for surveillance to capture triggered 

activities. 

State-of-the-art RL techniques are used by major firms 

today. Deepmind AI has been successfully able to reduce 

the cooling bill [28] for Google Data centers by 40%. 

Inspired by this and other similar ideas and techniques, we 

have tried to optimize the VM allocation process in Cloud-

based systems which will be discussed in the next section. 

3. Reinforcement Learning 

In this paper, we have leveraged the techniques of 

reinforcement learning to optimally allocate VMs in a 

dynamic cloud environment. First, we shall discuss the 

basics of the interaction of an agent with an environment, 

the reward system, and the whole concept of how we 

reinforce an agent to learn. Then we move on to the 

mathematical modeling of the system followed by its 

integration with deep learning. Finally, we discuss how not 

just a single agent, but several agents work asynchronously 

towards our optimization task. This theory is concluded with 
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the results obtained through our dataset followed by which 

we finally conclude the work by discussing its future 

prospects and scopes. 

The foundation of Artificial Intelligence [29] is created by 

training an agent to work and learn in a given environment 

to achieve its goal. This agent initially performs random 

actions with zero knowledge but is eventually trained in the 

environment by imposing a reward system to its actions. 

The actions lead the agent from one state in the environment 

to another. Thus, depending upon the state newly acquired, 

the agent is rewarded based on whether the state is close to 

the desired state or away from it. 

These systems are defined by the elements as shown below: 

s – State 

e - Environment 

a – Action 

R – Reward 

γ – Discount Factor 

Fig. 1 shows the visual representation of a generic AI 

Training system. 

Fig 1. AI Training System 

3.1. Bellman Equation 

If the agent starts from any general state and we let it explore 

the environment by taking its time to figure out its path to 

reach the desired state, it can trace its path back to the initial 

state by marking all the intermediary states by some flag 

variable, say V=1. Now if the starting position of the agent 

is changed, it won’t be able to trace its path to the goal state 

as the flagged values of a lot of states are marked as 1. 

Formulated by Richard Ernest Bellman [30], the Bellman 

equation gives us the direction to train our agent to move 

towards the desired state starting from any state, hence 

addressing the problem discussed above. The Bellman 

Equation is given in Equation 1 below. 

  

𝑉(𝑠) =  𝑚𝑎𝑥⏟
𝑎

(𝑅(𝑠, 𝑎) + γV(sˊ))  (1) 

Where, 

s – Current state 

a – Action 

sˊ – Next State after a 

R(s, a) – reward for being in s and performing a 

V – flagged value representation of the state. 

3.2. Markov Decision Process 

There are certain processes where there is a predefined path 

or set of actions to be taken by the agent to reach the 

destined state. There is a single takeable action at a given 

state that can be performed with 100% surety making it a 

deterministic process. On the other hand, the task in our 

hand is a non-deterministic process where there is no single 

takeable action at a given state. Hence there is always a 

probabilistic value for taking an action at a given state to 

transition to the other. This has been demonstrated in Figure 

2 below. 

Fig 2(a). Single server system 

 

Fig 2(b). Multi server system 

Considering Figure 2(a) above consisting of m number 

of VMs, when a certain VM is chosen for placement, it will 

obviously be placed in the server that is present. But in the 

case of Figure 2(b) with s number of servers, unless a rule-

based optimization system is installed for the VM 

Placement, there will be a probabilistic value for the 

placement of the selected VM corresponding to each server, 

hence making it a non-deterministic process. 

Secondly, in these cases, the requirement pattern can be 

statistically analyzed but precise prediction becomes 

difficult unless we reinforce the trend properly. These are 

stochastic processes and follow Markov’s Property. If the 

conditional probability distribution of future states of the 

process depends only upon the present state and not on the 
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sequence of events that preceded it, such a process with this 

property is called a Markov Process. Hence, we need to use 

Markov Decision Processes [31] (MDPs) which provide a 

mathematical framework for modeling the decision-making 

process in situations where outcomes are partly random and 

partly under the control of a decision-maker. Following this 

property, Equation (1) takes a form where the weighted sum 

of probabilities is used corresponding to each probable 

upcoming state. 

𝑉(𝑠) =  𝑚𝑎𝑥⏟
𝑎

(𝑅(𝑠, 𝑎) + γ ∑ 𝑃(𝑠, 𝑎, 𝑠ˊ)𝑠ˊ V(𝑠ˊ))  

 (2) 

Where, 

∑ 𝑃(𝑠, 𝑎, 𝑠ˊ)

𝑠ˊ

= 𝑃1(Server1) + 𝑃2(Server2)

+ 𝑃3(Server3) + ⋯ + 𝑃𝑠(Server𝑠) 

is the reward for being in s, performing a & moving to sˊ. 

3.3. Policies and Living Penalties 

To proceed through a sequence of states, we need a proper 

plan of execution. But it is important to note that a plan 

works only when we know exactly what steps to follow 

next. But in the real-time context, we face randomness and 

various other non-deterministic hindrances, and this is 

where a policy (π) comes into play, where the action is 

decided not based on a predefined set of rules and 

regulations, but by reinforcing the agent to learn from 

dynamic environments. Based on the randomness of each 

state, the probability values may change. We calculate the 

current state probability values and compare them to the 

previously calculated values for each state, according to 

which the agent decides its next action.  

Policies are made and imposed for each state by imposing a 

living penalty in our case. In this way the agent not just finds 

a way to the desired state but is also bound to optimize its 

path and reach the desired state quickly. The living penalty 

is basically a negative reward R(s) in each state. This value 

of R(s) in itself is a hyperparameter. If the negativity 

increases above a certain limit, the model tends to overfit. 

To minimize the penalty that can be incurred, the agent 

tends to take a path that doesn’t actually reach the desired 

state, but the overall penalty is less compared to taking other 

takeable paths and reaching the desired state. 

4. Q-Learning 

So far, we looked at the values of each state V(si). But to 

take this ahead from the perspective of the agent, we need 

to consider the value (or quality) of various actions that can 

be performed by it in a given state. We denote this quality 

as Q(s, a). Based on the action that the agent takes, it can 

end up at multiple states, and then the new values are 

calculated, and so on. This takes the form of a recursive 

event that we execute through a recursive function of V. But 

for that, we need to map our V(s) to Q(s, a) from Equation 

(2). 

For performing an action in a state, the agent certainly gets 

to have a reward regardless of whether it is negative, zero, 

or positive. Hence R(s, a) is a quantified metric that certainly 

adds up to the quality of action taken by the agent. The next 

thing that happens after the agent is rewarded is that the 

agent ends up in another state. There can be multiple such 

states and different probability values corresponding to 

them, but wherever the agent ends up there’s going to be a 

V value of that state V(sˊ). But since there are multiple such 

probable states, we will add the weighted probabilities 

corresponding to those states as we did earlier in Equation 

(2). Hence our quality is expressed mathematically [32] as 

shown in the equation below. 

𝑄(𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + γ ∑ 𝑃(𝑠, 𝑎, 𝑠ˊ)𝑠ˊ V(𝑠ˊ)  (3) 

 

From Equation (3) above, we see that the Q value is exactly 

similar to the value inside the max() in Equation (2) Or in 

simpler terms Equation (2) can also be written as: 

𝑉(𝑠) = 𝑚𝑎𝑥⏟
𝑎

(𝑄(𝑠, 𝑎))   (4) 

If we look at it, we see that in Equation (2) or Equation (4), 

we are looking at the maximum of the result we get across 

all possible actions, by taking each of those actions, and in 

Equation (3) we are looking at what would we get by 

taking a certain action, and hence the quality of a specific 

action. 

To entirely get rid of the recursive V(), we put Equation (4) 

in Equation (3) in terms of the new state or sˊ, as shown in 

the equation below. 

𝑄(𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + 𝛾 ∑ 𝑃(𝑠, 𝑎, 𝑠ˊ)𝑠ˊ 𝑚𝑎𝑥⏟
𝑎ˊ

𝑄(𝑠ˊ, 𝑎ˊ) (5) 

Equation (5) above, gives us the recursive formula in terms 

of the Q-value of an action. 

4.1. Temporal Difference 

In the case of a deterministic environment, it’s 

straightforward to calculate the V-values as a specific plan 

can be followed. But in cases where there is stochasticity or 

randomness in the environment, the computation of these 

values is not easy. Temporal differences simplify the task 

for the agent to compute these values. Temporal difference 

is the difference between quality between two subsequent 

states – sˊ and s.  

Since we are looking at the Q-values, we shall move ahead 

with Equation (5) . For the sake of simplicity, we write it in 

the format of the deterministic Bellman Equation similar to 

Equation (1), where we replace the whole summation term 

with simply the max() function corresponding to the new 

state. This notation has been used in various literatures and 
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we shall also proceed ahead the same way. Hence, Equation 

(5) takes the form as mentioned below: 

𝑄(𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + 𝛾 𝑚𝑎𝑥⏟
𝑎ˊ

(𝑄(𝑠ˊ, 𝑎ˊ))  

 (6) 

So earlier for a given state, the Q-value stored in the memory 

is denoted by Q(s, a). The same value after recalculations 

for the new state that we end up in, is given by Equation (6). 

Hence the temporal difference is the difference between 

these two mentioned in the equation below. 

𝑇𝐷(𝑎, 𝑠) = 𝑅(𝑠, 𝑎) + 𝛾 𝑚𝑎𝑥⏟
𝑎ˊ

(𝑄(𝑠ˊ, 𝑎ˊ)) − 𝑄(𝑠, 𝑎)  (7) 

We call it the temporal difference [33] because what we 

calculate over here is essentially the same thing but at 

different intervals of time or states. We can use this 

difference to our advantage if there’s a shift in time. One 

thing that we did earlier in Eq. 6 is to simply calculate the 

new Q-value by getting rid of the old one. But that’s not a 

smart act as our environment is subject to randomness. 

There might be cases where the old Q-values consistently 

happen say 90-95% of the time then all of a sudden, a 

random event is triggered causing the new event. In this way 

what we would do is simply discard the value that’s 

responsible for the bulk of the situation and move ahead 

with a value that happens only 5-10% of the time. This is 

why we don’t completely change our Q-values but rather 

change them step by step, bit by bit. 

 We would express this in terms of timestamps 

where Equation (7) takes the form as mentioned below. 

𝑇𝐷(𝑎, 𝑠) = 𝑅(𝑠, 𝑎) + 𝛾 𝑚𝑎𝑥⏟
𝑎ˊ

(𝑄(𝑠ˊ, 𝑎ˊ)) − 𝑄𝑡−1(𝑠, 𝑎)

 (8) 

Where, 

  

𝑄𝑡(𝑠, 𝑎) = 𝑄𝑡−1(𝑠, 𝑎) + 𝛼𝑇𝐷𝑡(𝑎, 𝑠)  

 (9) 

Putting Eq. 8 in Eq. 9, we get 

𝑄𝑡(𝑠, 𝑎) = 𝑄𝑡−1(𝑠, 𝑎) + 𝛼 (𝑅(𝑠, 𝑎) + 𝛾 𝑚𝑎𝑥⏟
𝑎ˊ

(𝑄(𝑠ˊ, 𝑎ˊ)) −

𝑄𝑡−1(𝑠, 𝑎))     (10) 

From Eq. 10 above, we can say that, 

If α = 0, 

  

𝑄𝑡(𝑠, 𝑎) = 𝑄𝑡−1(𝑠, 𝑎)   

 (11) 

If α = 1, 

  

𝑄𝑡(𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + 𝛾 𝑚𝑎𝑥⏟
𝑎ˊ

(𝑄(𝑠ˊ, 𝑎ˊ)) 

 (12) 

From Equation (11), we see that when α = 0, see that there’s 

no difference between the Q-values of the two subsequent 

states and the agent doesn’t learn anything.  From Equation 

(12), we see that when α = 1, we acquire back Equation (6) 

again, which is not the best approach as we discussed above. 

Hence, we see that the α value is a hyperparameter where 0 

< α < 1. After a certain number of iterations, when Equation 

(8) converges, we see that there’s no significant temporal 

difference between the Q-values of the subsequent states 

and with α ≠ 0 we get, 

  

𝑄𝑡(𝑠, 𝑎) ≈ 𝑄𝑡−1(𝑠, 𝑎)   

 (13) 

This means that the agent has sufficiently learnt, and we 

don’t need to run iterations to update the values anymore. 

However, in cases where our environments change with 

respect to time, (not just random and stochastic changes, but 

the whole environment changes) we need to keep these 

iterations running & update our Q-values so that we 

reinforce the agent to be adaptive to the changing 

environment and hence the optimal policy as well coz with 

changing environment the optimal policy also changes. 

5. Deep Q-Learning 

The concepts related to Q-learning have been explained in 

detail in the previous sections. In this section, we integrate 

deep learning with Q-learning and leverage the power of 

neural networks to predict the best takeable action to move 

from one state to the next. 

 Referring to Figure 2(b), we see that there are m number 

of machines that can be allocated to s number of servers at 

any time stamp t. In addition to this, there might be certain 

timestamps where no action needs to be taken, i.e., no VM 

needs to be allocated or deallocated to or from a server. 

Hence, we need to map the set of inputs and outputs to a 

neural network and design the architecture of it. For every 

given set of VM and Server, we need to identify two things 

–   

1. Whether do we need to allocate or deallocate the 

VM. 

2. If we need to allocate, whether the server can take the 

load of the machine to be allocated. 

Hence, our inputs to the architecture at any timestamp t are 

– 𝑉𝑀𝑖 & 𝑆𝑗. The deallocation of a machine can be performed 

by running a scan time to time across all servers, to identify 

the idle resources and deallocate them through a trigger. 

Hence, the prime challenge now is with allocation of these 
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VMs to our Servers. The input set at a timestamp t – {𝑉𝑀𝑖, 

𝑆𝑗} are fed to the network and the output leads to a range of 

Q values corresponding to the s servers i.e., {Q1, Q2, …, Qs}. 

These Q-values are passed through a SoftMax layer to 

acquire the probability values for each predicted quality 

corresponding to the s servers and perform the best 

allocation based on them. The NN architecture has been 

shown in Fig. 3 with the set of inputs and outputs as 

mentioned above. 

 

Fig. 3 Deep Q-Learning Architecture 

In Fig. 3 above, S(Q) is the SoftMax function defined as 

follows: 

𝑆(𝑄)𝑘 =
𝑒𝑄𝑘

∑ 𝑒𝑄𝑘𝑠
𝑘=1

    (14) 

 The output hence acquired from this is the maximum 

probabilistic values of the Q values, and the allocation of 

that VM corresponding to the server is performed. This acts 

as a policy to select the next action as discussed previously 

in Section-5.2. It’s also important to note here that SoftMax 

is just one of such action selection policies. Other policies 

may be ϵ-greedy [35], ϵ-soft(1 - ϵ), etc.  

 Like the training process of neural networks, after 

forward propagation, the value loss is calculated as per the 

following equation. 

𝐿𝑉 = ∑(𝑄𝑇𝑎𝑟𝑔𝑒𝑡 − 𝑄)2   (15) 

Then the control backpropagates the network to adjust the 

weights of the network. This whole sequence is called an 

epoch. This training sequence is repeated up to a certain 

number of epochs to acquire or reach the maxima. 

5.1. Experience Replay 

There are two things that happen on a broader level during 

the whole process – training and acting. During the training 

phase, the network learns with every new state and updates 

the weights by which it gets better and better at dealing with 

the environment. 

Now at times due to monotonicity in the environment where 

in each new state, there’s no significant change in the 

environment and a sequential nature of experiences, a bias 

might come up during the training phase due to 

interdependent and correlated consecutive states in the 

environments. As a solution to this, the neural network isn’t 

trained based on the whole set of experiences but on a batch 

of such uniformly distributed experiences. A batch can be a 

rolling window of experiences and can break the 

interdependence and correlation hence the pattern of the 

bias. In addition to this, sometimes there might be very 

valuable and rare experiences that might be difficult for the 

agent to learn if the experiences are not stored and saved in 

batches. This is called experience replay [34] where the 

experiences saved in batches are replayed and used to train 

the network enabling it to eradicate such biases and learn 

every aspect of the environment well. 

5.2. Action Selection Policies 

After analyzing the training aspect of the process in the 

previous section, we look at the acting part of it. As 

discussed in Section 7 about the significance of policies, we 

will look at the various ways to select the appropriate policy 

to act. 

 From Fig. 3, we can see that the SoftMax function has 

been used after the Q values corresponding to the various 

servers have been calculated. The question is, why don’t we 

directly use the Q-values to perform our next action using 

the value that is the best? This can be explained through 

some scenarios. Let’s say the best value at a time instant t is 

Q3, and the action corresponding to that is performed. But 

eventually, it turns out to be a bad action due to which the 

agent gets a negative reward. But since the policy says to 

perform the action corresponding to the best Q-value the 

agent is forced to explore the environment and learn by itself 

that Q3 is not a good action to be performed based on the 

negative rewards to be acquired. In such cases, the agent is 

forced to learn by itself and update the weights according to 

the rewards it gets. 

 On the other hand, there might be cases where the agent 

gets stuck in a local maximum. Through its initial 

exploration, the agent might think that it is taking the correct 

action based on the positive rewards but due to its limited 

perception it may get biased towards the actions it took so 

far and get reinforced by them. What if there are other local 

maximums or a global one that is not yet into the experience 

of the agent which might lead it to take better actions. This 

is where the action selection policies come into the picture 

where we can leverage the good actions discovered so far 

by the agent but also at the same time help it to not get stuck 

in a local maximum. 

6. A3C Algorithm 

Developed at Google Deepmind in 2016, stands for 

Asynchronous Advantage Actor Critic Algorithm [36]. The 

architecture used for this algorithm is faster compared to 

simple Deep Q-learning and takes less training time, 
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achieving better results. We shall look at each of the 

individual entities separately and finally club them together 

in an implementable way to carry our task ahead. 

6.1. Actor - Critic 

In Fig. 3 we saw that we get s number of outputs 

corresponding the s policies of VM placement to the s 

servers. Keeping those outputs intact, we separately take 

one output for the value of the state. In this way, we have 

two sets of outputs, one corresponding to the policy – π(s), 

which is taken care of by the actor network and the other 

corresponding to the value – V(s), which is taken care of by 

the critic network. The segregation of the output layer into 

actor and critic networks after slightly modifying Fig. 3 has 

been shown in Fig. 4. From here onwards, for simplification 

we shall use a vector representation as input to the neural 

network, square boxes to represent a layer of neurons and a 

single arrow to represent the fully connected layers. 

 

Fig. 4  Actor Critic Architecture 

6.2. Asynchronous 

To make the actor critic network asynchronous [37], instead 

of having just a single agent, we deploy a set of agents, 

initialized differently to attack the environment. This 

initialization is performed by setting different seeds 

randomly for each agent. In this way, for n agents we get to 

have n-times the experience compared to the experience 

otherwise acquired by a single agent. In this way, we reduce 

the chance of the agents getting stuck at a local maximum. 

The likelihood of several agents getting stuck at a local 

maximum decrease with an increase in the number of 

agents, as long as agents interact with each other & share 

their experience. In this way, getting towards the desired 

state becomes comparatively fast. This experience is shared 

through the critic – V(s). The actors might be different, but 

the critic neuron must be the same for all agents.  

 Initially, each agent used to have its own environment to 

explore. But the creator of PyTorch adjusted the code 

available in GitHub where all the networks were reduced to 

one single network, i.e., all the agents will now have just one 

environment to learn from or we can say that all the agents 

will asynchronously attack one environment to find the 

maximum 

6.3. Advantage 

Since the output has been segregated into two sets of 

neurons, we have two different losses over here. One is the 

value loss as mentioned in Equation (15) in Section 5. The 

other one is the policy loss for the calculation of which we 

need to consider the advantage [38] given by 

𝐴 = 𝑄(𝑠, 𝑎) − 𝑉(𝑠)   

 (16) 

The critic shares a V-value which is common for all the 

agents. Hence it knows how much better our selected Q-

value is when compared to the known V-value. The policy 

loss is then similarly backpropagated through the network. 

The weights are adjusted such that the advantage is 

maximized. In this way, the critic neuron through the known 

value – V(s), observes the policies made by the agents, 

enabling them to cooperate. The practicability of the actions 

of an agent is determined by its entropy, given by Equation 

(17) [39]. The representation of the Asynchronous 

Advantage Actor-Critic Network is shown in Fig. 5. 

  

𝐻(𝑥) = − ∑ 𝑃(𝑥) 𝑙𝑛(𝑃(𝑥𝑖))𝑛
𝑖=1    (17) 

The entropy loss for the SoftMax Policy output is calculated 

and summed over all states. The final adjusted loss is 

calculated by Eq. 18 mentioned below. 

𝐿 = 𝐿𝑉 + 𝐿𝜋 − 𝛽𝐿𝐻    (18) 

Where, 

LV is the value loss. 

Lπ is the policy loss. 

LH is entropy loss. 

β [40] is the momentum or influence of entropy loss. 

 

Fig. 5 A3C Architecture 

7. Results and Discussion 

Most of the codes publicly available have been written in 

TensorFlow, but for the sake of simplicity, we have used 

PyTorch for our implementation. For experimentation 

purposes, we used the Google Cluster Usage Traces dataset 

[42 – 43] which consists of job events and resource 

consumption from the data centers in Google, managed by 
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Borg cluster management software. 

7.1. The Dataset 

This dataset is a collection of data that describes the 

workloads running on Google’s compute clusters. It gives 

us information about the clusters such as jobs (submission, 

scheduling and completion), tasks placement, migration and 

eviction), machines (attributes, availability and failures) and 

requests and usage of CPU, memory, network and disk. 

These things have been used to study the patterns 

characteristics of workloads, evaluate and improve the 

policies, model and simulate the behavior and hence the 

performance of the cluster. The granular aspects have been 

explained in detail in [44 – 45]. 

The dataset consists of 405894 data points corresponding to 

33 features, which act as an input to our model. The data is 

labelled, i.e., there is a clear indication corresponding to 

each datapoint, whether the job, collection or task instance 

failed or not. Out of these, there are 313216 datapoints 

where the allocation was performed successfully. All these 

33 attributes are not of use to us, hence we group the 

relevant attributes together under VM and S, to feed out 

architecture with inputs. The relevant attributes as per their 

category have been segregated below in Table 1. 

Table 1 – VM, S and Policy Mappings 

VM S Π 

Collection ID Alloc Collection ID Enable 

Scheduling Class Resource Request Evict 

Priority Constraint Fail 

Instance Index Vertical Scaling Finish 

Machine ID Assigned Memory Kill 

Start After Collection IDs Page Cache Memory Lost 

 Cluster Queue 

  Schedule 

  Update Pending 

  Update Running 

These attributes were stacked and used as inputs to the 

model. The output attribute corresponding to policies (π) is 

the event attribute, based on which the system decides an 

action to take out of 10 different actions and move to the 

next state. The list of actions is also mentioned in the third 

column of Table 1. The rest of the attributes are intrinsic to 

the event, whose work is single handedly taken care of by 

the critic network. Based on the values of these attributes, 

the agent is trained and set to explore the global optimal path 

to reach the desired state. 

7.2.  Model Training 

Deploying a single agent in the environment and training is 

a very tedious task and needs high computational power. 

This has been demonstrated in Figure 6. 

 

Fig. 6 Single Agent Training 

In addition to this, from the trend line in Figure 6 we can see 

that even after 10k epochs, there is still scope for the agent 

to learn with a gradual increase in the slope. Hence, instead 

of wasting time to find the maxima, we leveraged the power 

of A3C algorithm as explained in Section 6 above. Instead 

of deploying a single agent, we’ve deployed three agents to 

attack the environment simultaneously. In this way, the 

agents cooperate and hence, learn  

faster to find the optimal position. This saved us days of time 

and we could train the model within a duration of 8½ hours.  

We achieved the maximum at somewhere around 950 

epochs, followed by which there is a decreasing trend. The 

training graph for A3C model up to 1000 epochs is shown 

in Figure 7. This shows that in this way the agents cooperate 

and learn quickly in the environment. 

Fig. 7 Three Agent Training 
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7.3. 1.2. Model Output 

We studied three types of allocations – random, static and 

our A3C based allocations. Based on these we have 

compared several metrics through which we can check the 

efficacy of the system. 

 

 

Table 2 – Average Resource, CPU and Memory Utilizations 

Allocation 

Strategy 
Average Resource Utilization Average CPU Utilization Average Memory Utilization 

Random Allocation 68.7% 63.5% 72.4% 

Static Allocation 65.2% 60.2% 70.8% 

A3C Allocation 85.6% 79.8% 75.5% 

    

 

Table 3 – Cost Savings and Energy Efficiency 

Allocation 

Strategy 
Cost Savings Energy Efficiency 

Random Allocation 8.2% 63.5% 

Static Allocation 12.6% 60.2% 

A3C Allocation 34.8% 79.8% 

 

Table 4 – Average Response Time and Throughput across Batch and Interactive Workloads 

Workload Type Allocation Strategy Average Response Time Throughput 

 

Batch 

 

Random Allocation 290 ms 210 Tasks/min 

Static Allocation 320 ms 180 Tasks/min 

A3C Allocation 190 ms 320 Tasks/min 

 Random Allocation 210 ms 350 Tasks/min 

Interactive Static Allocation 180 ms 400 Tasks/min 

 A3C Allocation 140 ms 510 Tasks/min 

 

Values in Table 2 show that the A3C allocation outperforms 

both static and random allocations, & hence is more 

effective in adapting to workload changes and utilizing 

allocated resources. The static allocation is unable to 

accommodate dynamic workload patterns, hence resulting 

in lower utilization. Random placement while slightly 

better, still lacks the intelligence provided by A3C decision 

which leads to suboptimal resource allocation. The values in 

Table 2 also show that the proposed A3C approach 

consistently outperforms the rest of the two approaches 

justifying the A3C approach’s capability to optimize the 

allocations of both CPU and memory resources. Static 

allocation falls short in allocating resources efficiently, 

resulting in lower utilization. Random allocation, while 

slightly better again lacks the intelligence of the A3C 

approach leading to suboptimal resource allocation, again 

justifying the resource utilization. Figure 8 shows the 

Average utilizations of resource, CPU and memory across 

the three modes of allocations, namely – Static, Random and 

A3C. 
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Fig. 8 – Average Utilizations 

 

Fig. 9 – Cost and Energy Savings 

 

Fig. 10 – Throughput 

Table 3 shows the ability to allocate resources efficiently 

according to workload demands. Random and static 

allocations exhibit lower cost savings due to their lack of 

adaptability to dynamic situations. Hence, we see that the 

proposed A3C approach not only optimizes resource 

utilization but also minimizes unnecessary expenditure 

which makes it a cost-effective solution for cloud resource 

allocation. Table 3 also presents a comprehensive analysis 

of energy efficiency achieved by different allocation 

strategies. In correlation with cost savings, the proposed 

approach significantly contributes to energy efficiency 

compared to static allocation. This approach’s ability to 

allocate resources dynamically according to workload 

demands minimizes resource wastage, hence causing both 

environmental and financial benefits. Random and static 

allocation exhibit lower energy efficiency due to a lack of 

adaptability. Figure 9 shows the graphical representation of 

the cost savings and energy efficiency across the three 

allocation modes. 

From Table 4 above, we see that for both batch and 

interactive workloads the A3C technique yields improved 

response time and throughput compared to static and 

random strategies. This shows its adaptability to various 

workload characteristics. The lower response times and 

higher throughputs enhance the efficiency of the A3C model 

ensuring optimal performance for diverse workloads. Figure 

10 graphically represents the throughput across batch and 

interactive workloads for the three allocation modes being 

discussed. Figure 11 graphically represents the average 

response time across batch and interactive workloads for the 

three allocation modes being discussed.  

 

 

Fig.11 – Average Response Time 

8. Conclusion and Future Scope 

After looking at the outputs obtained after using the 

proposed A3C approach in the traces dataset, we acquired 

satisfactory results compared to the rest allocation strategies 

in all aspects whether be it in terms of energy saving, cost 

cutting, utilization, throughput, or response time. Practically 

it is impossible to meet the ideal conditions, but one always 

aims to optimize the model as much as possible. 

There are various other methods such as the massively 

distributed General RL Architecture (Gorila) [46], dueling 

[47] for model-free RL, LSTM-based A3C architectures, 

etc. which have outperformed other conventional algorithms 

in gaming environments. These can be tweaked and 

implemented as per the optimization requirement in hand in 

the future to see if the values can be optimized further. 

Appendix 

The publicly downloadable version of the dataset can be 
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obtained at: 

https://www.kaggle.com/datasets/derrickmwiti/google-

2019-cluster-sample. 
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