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Abstract: Audio source separation has been intensively explored by the research community. Deep learning algorithms aid in creating a 

neural network model to isolate the different sources present in a music mixture. In this paper, we propose an algorithm to separate the 

constituent sources present in a music signal mixture using a DenseUNet framework. The conversion of an audio signal into a 

spectrogram, akin to an image, accentuates the valuable attributes concealed in the time domain signal. Hence, a spectrogram-based 

model is chosen for the extraction of the target signal. The model incorporates a dense block into the layers of the U-Net structure. The 

proposed system is trained to extract individual source spectrograms from the mixture spectrogram. An ablation study was performed by 

replacing the dense block with convolution filters to study the effectiveness of the dense block. The proposed method proves to be more 

efficient in comparison with other state-of-the-art methods. The experiment results to separate vocals, bass, drums and others show an 

average SDR of 6.59 dB on the MUSDB database. 
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1. Introduction 

Audio signal processing is a research topic that 

concentrates on problems such as environmental sound 

classification [1], speech recognition [2], audio source 

separation, etc. Audio source separation involves 

automatically separating audio sources from a complex 

acoustic mixture. Complex musical signals are composed 

of vocals and instruments, which are usually polyphonic 

with 5-20 instruments. Musical instruments can be roughly 

classified into two groups, namely harmonic and 

inharmonic sounds. To recognize each sound, the features 

of music signals like pitch, duration and timbre are to be 

identified. Music heavily depends on its repetitions to 

cultivate an aesthetic feeling. Thus, effectively 

representing the repetitive patterns within the mixed signal 

could offer a better solution [3]. The application of music 

source separation includes instrument recognition, beat 

detection, polyphonic transcription from music signals, etc. 

[4]. 

The music separation methods can be classified into four 

variants:  

1. Source separation based on the principle of 

computational auditory scene analysis (CASA) [5]: It 

aims to replicate the human auditory experience by 

emulating the principles of human ear perception, 

enabling the model to separate the target signal from 

mixed music signals. 

2. Classical signal processing methods: They are principal 

component analysis (PCA) [6], independent component 

analysis (ICA) [7] and nonnegative matrix 

decomposition (NMF) [8]. NMF based approaches 

assume that mixture data is a linear combination of 

latent bases. It decomposes the music spectrum matrix 

into lower dimension matrices, which later help in 

identifying the sources for separation.  

3. REPET algorithm: This models the repetition structure 

based on the spectrum in music [9]. 

4. Neural network based methods [10]: These methods 

rely on data-driven approaches employing supervised 

learning. Both the mixed signals and the individual 

instruments contributing to the music signal are 

accessible for training purposes. The design of deep 

learning algorithms tries to decrypt the human 

capability to identify audio sources. 

Deep learning models for audio signal processing perform 

successive nonlinear mapping of the input mixture [10]. 

These models use 2D audio representations such as 

spectrograms and mel-frequency cepstrum coefficients 

(MFCC). In this study, a model based on spectrograms is 

favored. The merit of spectrogram representation is that the 

process of reconstruction is simpler compared to other 

feature representations, such as MFCC. To separate the 

sounds of various music components, features present in 

the spectrogram of the music mixture should be explored. 

Spectrogram-based models are trained using the time-

frequency (TF) representation of the music mixture. 

Generally, spectrogram-based models have fewer trainable 

network parameters [11].  

The main contributions of this paper are:  

1. The development of a dense block based U-Net 

structure replacing the convolutional filters in the 

existing U-Net. 
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2. Comparison study of the revised structure with 

the existing method for the separation of 

constituent components from complex music 

signal.  

The rest of this paper is structured as follows. A brief 

review of the spectrogram-based music signal separation 

techniques using neural networks is given in Section 2. 

The proposed music signal separation is unveiled in 

Section 3. The training and testing of the model are 

explained in Section 4. Section 5 showcases the findings 

and comparisons with other popular methods, offering 

insightful remarks. The summary and future directions are 

given in Section 6. 

2. Related Work 

The advent of the deep learning era has triggered interest 

in many signal processing techniques, like source 

separation. Several deep learning algorithms were 

developed to tackle audio source separation, especially 

speech and music [12-28]. The mapping between sources 

and mixture is a nonlinear relation. Hence, a deep learning 

network is a natural choice to address the problem of 

separation. Though few researchers performed the music 

source separation in the time-domain [12-14], 

spectrogram-domain is preferred because it provides more 

details. Deep learning models presented in the literature 

include fully connected neural network (FNN), 

convolutional neural network (CNN) [15], recurring neural 

network (RNN) [16] and combination of both CNN and 

RNN [17, 18].  

Another variant of neural network used for music 

separation is the convolutional autoencoder [19]. It is a 

special kind of neural network used to reconstruct the input 

at the output layer. It has an encoder and a decoder. Yet 

another deep neural network (DNN) is U-Net, which is 

composed of such an encoder-decoder. Skip connections 

are incorporated between layers of the encoder and 

decoder at corresponding levels to transmit more detailed 

information from the encoder to the decoder. Such a 

structure was initially used for biomedical segmentation 

[29-31]. The advantage of the U-Net design is its high 

modularity and adaptability [28]. Jansson et al. [20] 

adopted U-Net for singing voice separation.  

Dilated time-frequency denseNet was used for singing 

voice separation [22]. The denseNet expanded the 

receptive field more effectively by adding dilated 

convolution. Residual encoder decoder blocks are used in 

Deep ResU-Net [23] to improve music source separation 

by imparting 143 layers to U-Net. D3Net uses dilated 

convolutional blocks with dense connections. Densely 

connected convolutional blocks are used to allow the reuse 

of feature maps [25]. It allows maximum information flow 

while keeping the model size small [26]. 

Band-split RNN (BSRNN) was custom-tailored for 

processing high sample rate signals, offering precise 

partitioning and modeling of distinct frequency bands [27]. 

It incorporates prior knowledge about the source's 

characteristics to aid the selection of model 

hyperparameters. The music source separation employed in 

Generative Adversarial Networks (GAN) [28] utilized the 

U-Net model in the generator. The restoration of real-

world audio signals corrupted by artifacts was performed 

using 1D GAN [32]; however, the authors suggest that 

spectral domain processing would play a crucial role in 

recovering the high-frequency components of the audio.  

The drum source separation was performed in [33] to 

extract the drum signals from the mixture by introducing a 

single dense block at the bottleneck stage of the U-Net. 

Deploying the dense block in all the layers of the U-Net, 

culminated in a DenseU-Net. Vocal separation from the 

music mixture was performed using this DenseU-Net [34]. 

In this paper, all the constituent components of the 

complex music signal viz. the vocals, drums, bass and 

other instruments are separated.  

3. Proposed System 

We propose in this section, music source separation using 

DenseU-Net. Our goal is to develop a deep learning 

algorithm to extract multiple audio files, such as vocals, 

bass, drums and the rest of other instruments. The usual 

method involves constructing dedicated models for 

individual source separations. The suggested framework 

has four phases: pre-processing, training/testing, post 

processing, and performance assessment. The block 

diagram of the process of music signal separation from a 

polyphonic music mixture using a DNN is illustrated in 

Fig. 1.  

 

 
Fig.1. Block diagram of music source separation 
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The complex music signal intended for separation is 

derived from a standard audio database. In the 

preprocessing phase, the time-domain signal 𝑥(𝑡) 

undergoes conversion into the spectrogram domain. The 

DNN takes the magnitude spectrogram as its input, while 

preserving the phase spectra for subsequent synthesis. 

Employing the U-Net architecture, the DNN predicts the 

target spectrogram. This predicted spectrogram undergoes 

post-processing at a later stage to reconstruct the time-

domain source signal, denoted as 𝒙𝒕(𝑡). 

The DNN model facilitates the prediction of the individual 

spectrogram from the mixture spectrogram. Soft TF 

masking is utilized to enhance the quality of the predicted 

source. Once the TF mask is computed, it is integrated 

with the magnitude spectrogram of the mixture to estimate 

the source spectra. The phase spectrogram of the mixture is 

merged with the estimated magnitude spectrogram to 

restore the estimated source waveform using inverse STFT 

(ISTFT). In the following paragraph, a detailed description 

of the denseU-Net and the dataset used for the experiment 

are explained. The experimental procedure of audio 

preprocessing and the postprocessing performed later for 

audio restoration are also explained. 

3.1. Dataset 

The MUSDB dataset was used in this study. The MUSDB 

database is a professionally recorded music source, 

available in stereo format, with a sample rate of 44.1 kHz 

[35]. It contains 150 professionally recorded songs, of 

which 100 are used as the training set and the rest as the 

test set. Each song consists of a mixture 𝑥(𝑡) and its four 

sources, viz. the vocals(𝑥𝑣(𝑡)), the drum signal (𝑥𝑑(𝑡)), 

the bass (𝑥𝑏(𝑡)) and other instruments. The task is to 

separate the vocals , drums, bass and the rest of the other 

instruments from the mixture.  

3.2.  Data Preprocessing 

The preparation of the dataset for training the DNN is done 

at the preprocessing stage. The stereo wave songs were 

converted to mono by averaging both channels. The 

resultant audio signal was converted to the corresponding 

spectrogram using the STFT. A Hanning window of length 

2048 samples was chosen with a hop size of one-fourth the 

window length. 

In a spectrogram, time and frequency are represented on the 

horizontal and vertical axis respectively. Brightness in the 

spectrogram image attributes to the strength of a frequency 

component at each time frame. The magnitude spectrogram 

contains most of the information of the audio signal. Hence, 

only the magnitude spectra were fed as inputs to the DNN 

model. 

 

Fig.2. Architecture of DenseU-Net 

3.3. DNN Architecture 

The DNN with DenseU-Net is trained to predict the target 

spectrogram. It learns suitable spectral-temporal features of 

the vocal/drum/bass/other instruments that are hidden in 

the 2D array of the mixture spectrogram. The architecture 

of the DenseU-Net model used in the DNN model is 

shown in Fig. 2. The DenseU-Net comprises two 

components: namely, the encoder and the decoder.  

3.3.1 The Encoder  

This part receives the mixture spectrogram and the ground 

truth source spectrogram as input during the training phase. 

The target features present in the TF frames of the mixture 

spectrogram are extracted. The coarser details in the 

frames are captured by the encoder. It comprises of a dense 

block and a max-pooling layer at each step. Convolution 

layers with a 3×3 kernel size and a padding factor of 1 are 

utilized in each hierarchical layer. Thus, in every layer, the 
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spectrogram size is retained while the number of filters is 

increased. The rectified linear units (ReLU) activation 

function is applied due to the sparsity of magnitude 

spectrograms in audio signals. This is followed by batch 

normalization for network stability post-convolution [36]. 

Max-pooling ensures down-scaling to find the latent 

representation. Table 1 provides details on the filter 

configuration in the encoder. Conv2D (3×3) signifies 2D 

convolution with a 3×3 kernel size. The encoder 

progressively increases the number of filters to explore the 

depth of the feature space, facilitating the learning of 

diverse levels of global abstract structures. 

Table 1. Configuration of encoder using dense block  

Process Configuration  Output Size 

Conv2D(3×3) 

BatchNormalization_Activation 

Dense Block  

Max-Pooling2D(2,2) 

No. of filters = 

16 

 

k = 16/4 

1024 x 640 x  16 

  

1024 x 640 x  32 

  512 x 320 x  32 

Dense Block  

Max-Pooling2D(2,2) 

k = 32/4   512 x 320 x  64 

  256 x 160 x  64 

Dense Block  

Max-Pooling2D(2,2) 

k = 64/4   256 x 160 x 

128 

  128 x   80 x 

128 

Dense Block  

Max-Pooling2D(2,2) 

k = 128/4   128 x   80 x 

256 

    64 x   40 x 

256 

Dense Block  k = 256/4     64 x   40 x 

512 

 

3.3.2 Dense Block  

To enable the network to grasp a broader range of features, 

a sequence of convolutional layers is employed. However, 

this approach often leads to the learning of redundant 

features. To address this issue and optimize information 

flow within the network, densely connected convolutions 

are utilized. This strategy ensures the acquisition of a 

diverse set of features by leveraging the collective 

knowledge gained from previous layers, thus preventing 

redundancy. The configuration of the dense block, as 

illustrated in Fig. 3, comprises four blocks nested within a 

single block. At each layer, features from preceding blocks 

are concatenated with the subsequent block, facilitating the 

transfer of more information from the previous block to the 

succeeding one. The growth rate, denoted as ‘k’, 

determines the number of features added to the subsequent 

block in each layer. For instance, in layer 3, with a growth 

rate of 16, 16 feature maps are introduced to the 

subsequent block. The input features undergo convolution, 

batch normalization, and ReLU activation functions, as 

illustrated in Fig. 3. The feature maps from each layer in 

the encoder are linked with their corresponding 

counterparts in the decoder through concatenation.

 

 

Fig. 3.  Details of a Dense Block (layer 3) 
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3.3.3. The Decoder 

The decoder is responsible for computing local and high-

resolution features. In each step of the decoding path, a 

transpose convolution function is applied to the output of 

the preceding layer. Utilizing a 2 x 2 stride in the transpose 

convolution doubles the spectrogram size of the resulting 

array. Subsequently, this array is concatenated with 

features from the encoder path. This is followed by a dense 

block and a convolution layer. The incorporation of batch 

normalization expedites the convergence speed of the 

network. Post-concatenation, the convolution layer in the 

decoder maintains the spectrogram size through a 1 x 1 

kernel size. However, the number of channels is reduced. 

The features are then passed through a dense block to 

extract crucial information. This process is replicated for 

each hierarchical layer. In the final layer, a 1 x 1 

convolution is utilized to map the features and restore the 

original size of the spectrogram. The details of the filter 

configuration used in the decoder are listed in Table 2. 

Table 2. Configuration of decoder using dense block  

Process Configuration 
Output 

Size 

Conv2Dtranspose(3×3) 

Concatenate 

Conv2D(1×1) 

BatchNormalization_Activation 

Dense Block 

No. of filters = 

128 

 

No. of filters = 

128 

 

k  = 128/4 

  128 x 80 

x 128 

  128 x 80 

x 384 

  128 x 80 

x 128 

 

  128 x 80 

x 256 

Conv2Dtranspose(3×3) 

Concatenate 

Conv2D(1×1) 

BatchNormalization_Activation 

Dense Block 

No. of filters = 

64 

 

No. of filters = 

64 

 

k = 64/4 

  256 x 

160 x  64 

  256 x 

160 x 192 

  256 x 

160 x  64 

 

  256 x 

160 x 128 

Conv2Dtranspose(3×3) 

Concatenate 

Conv2D(1×1) 

BatchNormalization_Activation 

Dense Block 

No. of filters = 

32 

 

No. of filters = 

32 

 

k = 32/4 

  512 x 

320 x 32 

  512 x 

320 x 96 

  512 x 

320 x 32 

 

  512 x 

320 x 64 

Conv2Dtranspose(3×3) 

Concatenate 

Conv2D(1×1) 

BatchNormalization_Activation 

Dense Block 

No. of filters = 

16 

 

No. of filters = 

16 

 

k = 16/4 

1024 x 

640 x 16 

1024 x 

640 x 48 

1024 x 

640 x 16 

 

1024 x 

640 x 32 

Conv2D(1×1) No. of filters = 

1 

1024 x 

640 x  1 
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The U-Net's unique skip connections bridge information 

gaps between encoder and decoder layers. Skip 

connections ensures that the encoder features influence the 

learning process throughout the network. This allows the 

network to capture the essential features desired for 

extracting the target features from the music mixture. Skip 

connections also alleviate the vanishing gradient problem. 

Thus, by training with clean ground truth signal 

spectrograms, the DNN model learns to predict their 

magnitude spectrogram 𝐗𝒕̃. Later, the training process 

involves replacing clean target spectra with mixture 

spectrogram. This prompts the model to predict mixture 

spectrogram  𝐗̃  needed during post-processing.  

3.3.4 Postprocessing 

The DNN predicts the spectrogram of the target. The 

postprocessing stage follows the DNN framework. This 

stage ensures that the time-domain signal is retrieved from 

spectrogram. During post-processing, a soft mask is 

calculated to estimate the magnitude spectrogram for the 

target source. The soft mask enables us to determine the 

contribution of each target signal in the mixture. Thus a 

partial estimate of the magnitude of the target spectrogram 

is obtained. However, the sum of the estimated spectra 

may not match the original mixture signal, as the DNN 

does not ensure that the sum of the predicted masks is 

equal to the original mixture. To overcome the constraint, 

TF masking was performed. The soft mask 𝑴𝒕 for each 

target is calculated using (1) 

𝑴𝒕 =
𝐗𝒕̃

𝐗̃
              (1) 

The magnitude spectra 𝐗̂𝐭 of each target signal is computed 

using (2)   

 

                             Xt̂ = 𝑴𝒕⨀𝐗𝐌𝐚𝐠                     (2) 

where ⨀ stands for element-wise multiplication. In order 

to retrieve the time-domain signal of the target, the 

magnitude spectra obtained from (2) is combined with the 

phase spectra of the mixture spectrogram. The inverse 

STFT is applied to the resultant 2D array as given by (3). 

                    𝒙𝒕(𝑡) = 𝐈𝐒𝐓𝐅𝐓[𝐗̂𝐭⨀𝐗𝑷𝒉𝒂𝒔𝒆]               (3) 

The separated target 𝑥𝑡(𝑡) in the time domain are 

estimated and compared with the ground truth of the 

original signals.  

4. Training and Testing the DenseU-Net model 

The DenseU-Net model was trained with clean target 

spectra to identify the target features present in the music 

mixture. The binary cross entropy loss is used to determine 

the loss during the training phase. This loss function 

provides the average difference between the ground truth 

spectrogram and the predicted spectrogram. The optimizer 

chosen for the training was the Adam optimizer [37] with a 

learning rate of 1 × 10-4, executed for 300 epochs and a 

batch size of 4. The hyperparameters of the Adam 

optimizer, such as  β1 = 0.9, β2 = 0.999 and ∈ = 1 × 10−8 

were chosen for training the network. 20% of the training 

set was chosen to form the validation set.  

The progress of training was evaluated using the validation 

loss. During training, the weights of the kernel were 

initialized with a ‘He-Normal’ initializer [38]. After the 

training phase, the model was tested with the test dataset. 

During the testing process, only the mixture signal from 

the test dataset is fed to the separation system. The test set 

was preprocessed using the same method as the training 

dataset.  

The separation performance was analysed using a standard 

metric employed in the music source separation evaluation 

campaign [39]. It is the SDR, which provides a measure of 

distortion between the desired target and unwanted 

components and thus an overall assessment of the quality 

of the estimated sources [40]. The performance index is 

evaluated in terms of the SDR, computed using (4). 

               𝑆𝐷𝑅 = 10𝑙𝑜𝑔10
‖𝑠𝑡𝑎𝑟𝑔𝑒𝑡‖

2

‖𝑒𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒+𝑒𝑛𝑜𝑖𝑠𝑒+𝑒𝑎𝑟𝑡𝑖𝑓𝑎𝑐𝑡‖
2       

(4) 

While the vocal signal is the desired target, 𝑠𝑡𝑎𝑟𝑔𝑒𝑡, the 

drum, bass and accompanying instrument tones were 

considered as 𝑒𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒 . Similarly, while drum is 

targeted, other sources like bass, vocals etc. contribute to 

𝑒𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒 . The background noise is 𝑒𝑛𝑜𝑖𝑠𝑒 . 𝑒𝑎𝑟𝑡𝑖𝑓𝑎𝑐𝑡  is 

the forbidden distortion of  sources or burbling artifacts.  

4.1. Ablation study 

An ablation study was conducted to assess the contribution 

of the dense block. This involves replacing the dense block 

with a convolutional layer in the U-Net. Thus, a baseline 

model is the original U-Net structure, which uses 

convolutional filters throughout. The average SDR was 

found to be 5.16 dB. When the convolution filter was 

replaced by a dense block at the bottleneck of U-Net, there 

is a significant rise in SDR. The dense block improves the 

flow of information and gradients throughout the network. 

So it is easier to train the U-Net with dense blocks. Hence 

the convolutional filters in all layers were replaced by 

dense blocks. The inclusion of dense blocks in all layers 

enhanced the performance of the network resulting in a 

better prediction of the target mask. The SDR is found to 

be 6.59 dB. The denseU-Net shows a mettle by steady 

increase in SDR, as shown in Fig. 4. 
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Fig. 4. Performance comparison of U-Net 

5. Results and Discussions 

The performance of the proposed method for music signal 

separation was compared with other state-of-the-art 

methods in terms of the average SDR. A comparative 

study using the MUSDB dataset is presented in Table 3. 

An ablation study was conducted by removing the dense 

blocks in U-Net and replacing them with convolution 

filters. The SDR was found to be 5.16 dB. When a single 

dense block was introduced at the bottleneck stage of the 

U-Net, the SDR improved by 0.38 dB. When the DenseU-

Net model, i.e., U-Net with the dense block in all the layers 

is employed, the average SDR improved to 6.59 dB. The 

SDR measures of individual sources are presented in Fig. 

5. Thus, with a dense block, there is a better identification 

and extraction of target features immersed in the music 

mixture.

 

 

Fig. 5. Comparison of SDR with state-of-the-art methods 

Table 3. Performance comparison in terms of average SDR on MUSDB dataset 

Method Average 

Wave-U-Net* [12]    3.23 

Meta-TasNet *[13]    5.52 

Demucs *[14]          5.58 

Open-Unmix [24] 5.36 

MMDense LSTM [17] 5.58 

Sams-Net [28] 5.65 

D3Net [25] 6.01 

U-Net without dense block [34] 5.16 

U-Net with a single dense block [34] 5.54 

Proposed Method using DenseU-Net 6.59 

                * denotes the waveform-based model 

6. Conclusions 

This study has introduced a robust method for music 

source separation through the implementation of DenseU-

Net architecture. The utilization of this model, as 

demonstrated through comprehensive training and testing 

on the MUSDB datasets, has exhibited promising 

outcomes in complex music source separation, particularly 

in terms of SDR. However, the potential for further 

enhancement and fine-tuning exists. For instance, future 

research could explore the impact of adjusting the growth 

rate in each layer, providing an avenue for optimizing the 
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model's performance and potentially uncovering 

configurations that better suit a specific case. The attention 

mechanism can be introduced in the skip connection to 

improve feature propagation from encoder to decoder. 

Exploring and implementing these suggested 

improvements would undoubtedly contribute to the 

ongoing evolution of DenseU-Net for music source 

separation, paving the way for advancements in the field. 
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