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Abstract: In recent years, the advent of 5th Generation (5G) wireless communication technologies has led to a boom in network service 

usage and access of high-quality multimedia services. In order to maintain acceptable Quality-of-Service (QoS), high-frequency 5G 

communication at frequencies such as 12 GHz have become commonplace. Consequently, in order to account for signal attenuation, 

accurate estimation of path loss considering both Line-of-Sight (LOS) and Non-Line-of-Sight (NLOS) propagation, is critical for successful 

implementation of such wireless communication systems. The present work therefore outlines a multi-model approach to path loss 

modelling and estimation using standard path loss models such as Close In (CI) and Floating Intercept (FI) models, in conjunction with 

machine learning (ML) models implementing Random Forest, Decision Tree and Gradient Boosting regression to accurately estimate path 

loss. The machine learning models employed allow for generation of accurate estimation even in case of significantly varying and noisy 

datasets. Of the ML models implemented for generation of path loss estimates, the Random Forest Regressor model is illustrated to offer 

the most accurate and stable results for the given scenario. The results obtained by the multi-model approach are appreciably close to the 

real-world experimental results, establishing the efficacy of the proposed methods. 
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1. Introduction 

The research on attenuation models for Ku, K, Ka and V 

band signals has increased its importance in recent years, 

with the advent of 5G technologies which are expected to 

exploit these bands for successful implementation of 5G 

communication networks [1]-[3]. Due to the limited channel 

bandwidth in a 5G network, service providers are compelled 

to adopt a much higher frequency spectrum. The user 

experience and overall performance of present generation 

mobile technologies are improved by using 5G technology. 

Higher data speeds, less end-to-end delays, and minimum 

energy usage are some of the most promising features [4]. 

In order to achieve a common objective, different 

technologies must be deployed in a way that allows the total 

network to perform as a single entity. To work together, 

however, sophisticated technology and communication 

strategies are required. The increase in requirements for 

such an effective system is predicted to more users utilizing 

resources at the same time, necessitating both spectrum 

acquisition and utilization. Microwave, millimeter wave, 

multiple radio access technology, massive MIMO, 

cooperative heterogeneous network and device-to-device 

(D2D) communication are just a few examples of 

outstanding technologies that will allow 5G to more 

efficiently support a huge number of users in a resource-

limited environment [5–10]. 

The present work consequently seeks to focus on effective 

application of 5G technologies for indoor connectivity by 

examination of the path loss metric in such environments. 

Two of the major approaches to mitigate the challenges to 

accurate estimation of path loss in indoor environments, 

which have gained importance in recent years due to their 

applicability to a number of diverse use cases and complex 

network scenarios, are presented. 

First, mathematical model-based approaches are presented 

and compared with experimental data collected in suitable 

indoor environments. 

Second, machine learning-based estimates are generated 

using multiple models for accurate prediction of path loss 

and the results obtained are examined from the perspectives 

of accuracy as well as root mean square error (RMSE) to 

determine the stability of the proposed solution. 

Findings utilizing both approaches are compared with 

experimental data gathered from a real-world indoor 

environment. Since the formulations presented in this paper 

are based on real-world evidence, it is evident that the 

results showcased in this work are applicable to a host of 

real-world scenarios, which other researchers may also 

utilize in the near future to expand the scope, breadth and 

general applicability of this particular focus of research 

concentrated on the accurate estimation of path loss for 

diverse network scenarios.  

The paper is organized in the following manner. A survey 

of recent relevant literature in presented in Section 2, which 

follows. The experimental setup utilized in the present work 

is illustrated in detail in Section 3. Section 4 presents 

multiple mathematical models employed for estimation of 
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path loss. The results obtained through hardware-based 

experiments as well as simulations are presented in Section 

5, inclusive of results obtained through application of 

machine learning models for analysis of the data and 

generation of predictions. The obtained results are also 

discussed in detail in this section. Finally, Section 6 

concludes the work, summing up the results achieved as 

well as methods to engineer further improvement in this 

domain in the near future. 

2. Literature Survey 

The possibility of widespread commercial wireless 

communication in the millimeter wave bands has been 

explored some years back in a seminal work [1]. Moreover, 

it is critical to emphasize that, for optimal configuration of 

such millimeter wave wireless systems involving multiple 

technologies, the complete frequency spectrum would not 

be utilized. Initially, a typical user would require 

microwaves operating between 3 and 30 GHz, or would 

access a millimeter wave frequency spectrum running 

generally between 30 and 40 GHz (which could extend up 

to 300 GHz) [11]. For mission critical services, including 

those for self-driving cars, healthcare, smart city 

infrastructure, and many more applications and use cases, 

there is also spectrum sharing in the frequency spectrum 

ranging from 60 to 70 GHz [12]. Moreover, these services 

require a constant high-speed data connection with low 

latency, consequently shared spectrum technology is an 

essential enabler that keeps all of these gadgets linked at all 

times [13].  

2.1. Wireless Network Optimization for LOS and NLOS 

Allowing microwave/millimeter wave systems in an 

extremely dense network may be able to resolve issues with 

propagation range and channel limitations. However, 

various problems must be resolved before practical 

implementations of such systems can be effectively 

realized. For example, microwave/millimeter wave has 

considerable penetration losses, resulting in a reduced 

transmission range [14]. It must also be noted that 

microwave/millimeter waves are easily absorbed by the 

atmospheric rain, water vapour, fog and many atmospheric 

gases, as a result of which meteorological events and 

concrete structures effectuate significant signal diffusion 

and absorption. This necessitates the predominance of 

configuration of line-of- sight (LOS) communication 

systems for such scenarios [15][16]. The 5G 

microwave/millimeter wave deployment is predicted to 

need the use of a huge number of small cells, necessitating 

the use of highly compact, directional, and high gain 

antennas. Additionally, because of the small signal 

wavelength, free-space propagation losses are extremely 

large [17]. The creation of steerable, high gain, compact 

antennas in 5G devices is another challenge for 

microwave/millimeter wave communication. Optimization 

of the magnitude and orientation of the Poynting vector is 

therefore found to be crucial for achieving the maximum 

quality of service performance in non-line-of-sight (NLOS) 

communication. [18, 19]. 

The performance characteristics of 5G networks are 

compatible with these goals of achieving optimal high-

quality data transmission for diverse use cases. A 

conventional 5G communication network includes two data 

rate benchmarks: 1 Gbps at the cell-edge, which is the area 

with the lowest performance, and 10 Gbps in the cellular 

region. [20, 21]. Also, in order to achieve 10 bits per second 

per Hertz, the spectral efficiency must be improved [22]. 

Additionally, 5G networks are required to support millions 

of devices in order to attain higher capacity inside a one-

square-kilometer region, including smartphones, wearable 

devices, smart devices, and vehicles equipped with IoT 

devices/systems for vehicular mobile connectivity [23]. A 

system with high mobility and extremely low latency, for 

instance, must provide end to end service in response to a 

data request, which needs delivered within five milliseconds 

(ms), however there should be less than one millisecond of 

propagation delay between the access point and the device 

[24]. The Third Generation Partnership Project (3GPP) and 

the International Telecommunication Union (ITU) were 

anticipated to establish 5G standards in order to do this; the 

3GPP Release-16 were not anticipated until 2020 [25][26]. 

The major technologies for the 3GPP releases appear to be 

unique waveform design, multiple radio access technologies 

and frequency ranges beyond 6 GHz, massive MIMO 

antenna arrangement, enhanced D2D communication, and 

flat network hierarchy [24]. 

In an ideal channel environment, the received signal must 

ensure an optimum signal to noise ratio (SNR). This is 

feasible if transmitted signal is received without attenuation 

beyond a minimal estimated limit.   However, when the 

propagation signal is continually fluctuating, the signaling 

overhead presents a number of major problems owing to the 

erratic nature of a channel. The multipath propagation 

effect, however, offers increased spectral efficiency with a 

substantial capacity gain when we propagate the signal over 

large no of antennas. [27]. 

2.2. Model Based Approaches for Path Loss 

Optimization 

Perfect Channel State Information (CSI) is often considered 

to be present among transmitter and receiver in order to 

achieve optimum detection (Rx). However, in reality, the 

channel's impulse response fluctuates because of the 

communication environment's mobility, necessitating the 

need for channel estimation. Additionally, the predicted CSI 

at the transmitter must be signaled through continuous 

feedback, which consumes a lot of time slots and lowers the 

system's bandwidth efficiency. In real-world cellular 

networks, where the majority of users connect to base 
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stations (BSs) through non-LOS channels, exact geometric 

information on the relative positioning of the BSs and users 

delivers tremendous spectrum efficiency [28]. As a result, 

the channel's propagation behavior is critical in this 

circumstance, because the propagation signal’s response can 

be anticipated [29]. Understanding the propagation channel 

and its behavior is thus vital for critically analyzing the 

future generation 5G microwave/millimeter wave wireless 

network's performance [30]. The purpose of any reliable 

communication is to provide an excellent noise-

compensated transmission link between the transmitter and 

the receiver [31], which includes compensation for path 

loss, an essential factor to consider while analyzing various 

network scenarios [32]. The source and user distance, the 

frequency of operation, the fading influences, the ambient 

surface, and the climatic conditions are all elements that 

influence route loss [33, 34]. Because of the randomness in 

wireless communication channels, researchers have used a 

variety of probabilistic approaches to estimate various route 

losses for noise and interference-limited situations. 

Experiments and detailed results have provided a variety of 

datasets, and researchers have built a number of route loss 

models to anticipate signal attenuation in propagation 

channels using those studies. Radio channels such as 12 

GHz are now being investigated by researchers. Some of the 

most recent advances in propagation channel research for 

the 5G wireless network domain are consequently discussed 

below. 

The propagation channel parameters were calculated in this 

article by calculating the path loss exponents (PLEs) for the 

12 GHz frequency range. The simulation results were 

generated to explore the viability of microwave propagation 

path loss models such as FI and CI [35]. All LOS and NLOS 

measurements were taken in an indoor microcell setting 

with a standard gain horn and an Omni directional antenna. 

It becomes important to construct models allowing the 

estimation of 5G signal attenuation in Ku band as well as in 

K and Ka band signals, for outdoor as well as indoor 

environments [27]-[29]. The literature surveyed therefore 

indicates that a research gap exists in terms of validation of 

a unified attenuation prediction model for Ku, K and Ka 

band signals for 5G communications. Further, a review of 

some of the most recent relevant literature indicates the 

absence of a flexible adaptive machine-learning model for 

prediction of signal attenuation at the abovementioned 

frequencies, due to meteorological phenomena such as rain 

in outdoor environments, and human bodies, obstacles and 

building materials such as concrete, in indoor environments 

[30]-[37]. For such environments, mathematical model-

based estimation of path loss has proved to be effective for 

some scenarios [38]. 

Consequently, the present article outlines an investigation 

of signal attenuation for 5G scenarios, focusing on indoor 

environments, to complement similar investigations of rain 

attenuation in outdoor environments for both slant path as 

well as LOS scenarios, for 5G signals in the Ku, K and Ka 

bands, and possibly the V band as well. The studies on Ku 

band signal attenuation are expected to enable the modelling 

of rain attenuation for not only the Ku band, but also for K 

and Ka band microwave and millimeter wave signals 

respectively. Formulation and implementation of an 

accurate machine learning model-based approach for 

prediction of 5G signal attenuation in indoor environments 

is presented in this work, which may be suitably and easily 

modified for application to 5G signal propagation in outdoor 

environments as well. 

3. Method 

The present work outlines a twofold approach where a 

hardware-based scheme for real-world 5G signal data 

collection is used to validate mathematical models for 

indoor propagation 5G signals, for estimation of path loss. 

3.1. Hardware Setup for Indoor Measurement 

The radio signal is propagated between a transmitter and a 

receiver in a waveguide-like corridor structure on the third 

floor of the ECE department at Techno International New 

Town college, in order to assess the characteristics of the 

transmitted signal. In this experiment, a microwave signal 

with a frequency of 11.96 GHz is transmitted over a wireless 

channel using a directional (horn) antenna. Here microwave 

test bench setup has been used to transmit the signal from 

the transmitter (Tx) end, whereas horn/Omni directional 

antenna along with Low noise block converter (LNBC) and 

Gw-Instek spectrum analyzer (model: GSP-830, frequency 

range: upto 3 GHz) is used at the receiver (Rx) end, which 

is utilized to capture the received signal. The channel 

specifications used in this experiment are displayed in Table 

1. Figures 1 and 2 illustrate the schematic diagram and 

photographs of the experimental setup inclusive of the 

hardware employed, respectively. 

 

 

Table 1. Specification of the measurement channel 

Parameter (units) Value 

Operating frequency (GHz) 11.96 

Transmitted signal Power (dBm) 10 

Transmitter– Receiver configuration Horn-Horn/Omni 

Beam width of the Horn Antenna 180 

Mode of propagation LOS and NLOS 
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Fig. 1.  Experimental Setup Schematics 

 

 (a)   (b)  (c) 

Fig. 2.  Hardware Setup Employed for Experiments 

The experiment was carried out in the Electronics and 

Communication Engineering department (Techno 

International New Town). Figure 1 is showing the schematic 

diagram of the experimental set-up. Transmitter (Tx) and 

Receiver (Rx) are placed at two sides of the corridor for 

Line-of-Sight (LOS) measurement. Similarly for Non-Line-

of-Sight (NLOS), keeping the Tx position fixed, Rx is 

moved to labs on both sides of the corridor. All data were 

recorded at separation distances of 2.5 meters. Figures 

2(a,b.c) show the hardware set-up of the LOS and NLOS 

measurement where Tx and Rx heights are 1.5 m. The Rx is 

moved 40 m in step sizes of 2.5 m each. It is valid to point 

out at this juncture that the ECE-TINT building consists of 

a structure with concrete column beams along with wooden 

doors and glass window frame structures. With respect to 

Line-of-Sight and Non-Line-of-Sight measurements, the 

propagation distances are 5–40 m and 20–40 m, 

respectively. Humans were not present in the direct signal 

path (LOS path) during the testing and consequently, no 

human movement was detected during the experiments. 

3.2. Mathematical Models for Path Loss Estimation 

The wireless channel's propagation characteristics may be 

thoroughly examined with the help of the path loss models. 

Here, the physical separation between source and 

destination as well as the signal frequency have been used 

to calculate the signal reduction. To achieve its goals, this 

study employs Free Space Path Loss (FSPL) propagation 

models such as the Close In (CI) and Floating Intercept (FI) 

models [39].  

A frequency-dependent path loss model, the CI propagation 

model, focuses on free space propagation loss, FSPLCI 

(f,d_0), which is related to the frequency of the carrier signal 

(f, measured in GHz) and the physical separation (d) 

between transmitter and receiver, with d_0 functioning as a 

reference distance. With only one parameter, it is simply 

dependent on Path Loss Estimate PLE(𝜼𝑪𝑰), which is 

calculated in decibels. The following equation is used to 

calculate the path loss values for this model [40]: 

𝑃𝐿𝐶𝐼(𝑓, 𝑑)[𝑑𝐵] = 𝐹𝑆𝑃𝐿𝐶𝐼(𝑓, 𝑑_0) + 10𝑛𝑙𝑜𝑔10(
𝑑

𝑑_0
) + 𝜒_𝜎

𝐶𝐼

 (1) 

where, 𝜒_𝜎
𝐶𝐼 is a Gaussian random variable with zero-mean 

value. 

FSPLCI (f, d_0), the Free Space Path Loss is defined as 

𝐹𝑆𝑃𝐿𝐶𝐼(𝑓, 𝑑_0) = 20𝑙𝑜𝑔10(
4𝜋𝑓𝑑_0

𝐶
)   (2) 

The 𝜒_𝜎
𝐶𝐼 is the variation of signal at the receiver end which 

can be written as: 

𝜒_𝜎
𝐶𝐼 = 𝐹𝑆𝑃𝐿𝐶𝐼(𝑓, 𝑑_0) = 20𝑙𝑜𝑔10(

4𝜋𝑓𝑑_0

𝐶
)  (3) 

where, σCI , the standard deviation, is defined as: 

𝜎𝐶𝐼 = √𝛴(𝜒_𝜎
𝐹𝐼)2

𝑁
     (4) 

N represents the collected path loss data points, and the 

𝜂𝐶𝐼 and minimum 𝜎𝐶𝐼 are determined as: 

𝜂𝐶𝐼 =
𝛴[𝑃𝐿𝐶𝐼(𝑓,𝑑) [𝑑𝐵]−𝐹𝑆𝑃𝐿𝐶𝐼(𝑓,𝑑_0)]{10𝑙𝑜𝑔10(

𝑑

𝑑_0
)}

{10𝑙𝑜𝑔10(
𝑑

𝑑_0
)}2

 

 (5) 

𝜎𝐶𝐼 = √
[𝑃𝐿𝐶𝐼(𝑓,𝑑) [𝑑𝐵]−𝑃𝐿𝐶𝐼(𝑓,𝑑_0)−10𝑙𝑜𝑔10(

𝑑

𝑑_0
)]2

𝑁
 

 (6) 

The FI propagation model is used to get the optimum lowest 

error fit value using the floating intercept (α) and line slope 

(β) data [41, 42]. The FI model is computed using the 

following equation: 

𝑃𝐿𝐹𝐼(𝑑)[𝑑𝐵] = 𝛼 + 10𝛽𝑙𝑜𝑔10(𝑑) + 𝜒_𝜎
𝐹𝐼  (7) 

The 𝜒_𝜎
𝐹𝐼 is the variation of signal at the receiver end which 

can be written as: 

𝜒_𝜎
𝐹𝐼 = 𝑃𝐿𝐹𝐼(𝑑)[𝑑𝐵] − 𝛼 − 10𝛽𝑙𝑜𝑔10(𝑑)  (8) 

where, σFI , the standard deviation, is defined as:  

𝜎𝐹𝐼 = √
𝛴[𝑃𝐿𝐹𝐼(𝑑)[𝑑𝐵]−𝛼−10𝛽𝑙𝑜𝑔10(𝑑)]2

𝑁
  

 (9) 

The measured path loss data points are represented by N, 

and the standard deviation, 𝜎𝐹𝐼  is reduced using the 

Minimum Mean Squared Error (MMSE) approach. 

Consequently, the equations below may be used to compute 

the following parameters, α and β. 
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𝛼 =
𝛴10𝑙𝑜𝑔10(𝑑)𝛴10𝑙𝑜𝑔10(𝑑)𝑃𝐿𝐹𝐼(𝑑)[𝑑𝐵]−𝛴{10𝑙𝑜𝑔10(𝑑)}2𝑃𝐿𝐹𝐼(𝑑)[𝑑𝐵]

𝛴{10𝑙𝑜𝑔10(𝑑)}2−𝑁𝛴{10𝑙𝑜𝑔10(𝑑)}2 (10) 

𝛽 =
𝛴10𝑙𝑜𝑔10(𝑑)𝛴𝑃𝐿𝐹𝐼(𝑑)[𝑑𝐵]−𝑁𝛴10𝑙𝑜𝑔10(𝑑)𝑃𝐿𝐹𝐼(𝑑)[𝑑𝐵]

𝛴{10𝑙𝑜𝑔10(𝑑)}2−𝑁𝛴{10𝑙𝑜𝑔10(𝑑)}2   

 (11) 

4. Results and Discussion 

The radio wave propagation channel modelling parameters 

are essential for designing more effective next-generation 

wireless communication systems. These parameters are able 

to estimate signal attenuation as an electromagnetic signal 

travels a given distance.  The shape and conductivity of the 

building materials in the corridor scenario controls how the 

wave travels from transmitter to the receiver side. Multipath 

reflection, diffraction, refraction, shadowing effects, and 

penetration loss occurs in the interior corridor propagation 

environment due to all of which have a significant impact 

on received signal strength [43]. The received signal is 

considered to be the total of the reflected and direct waves 

from the transmitter side due to waveguide effects and 

multipath refraction. If ray tracing approach is considered 

within a short distance, a number of existing path loss 

models are based on scattering refraction as well as free 

space [44], [45]. In recent times, other researchers have also 

proposed reinforcement learning-based beam selection 

techniques for 5G networks considering similar path loss 

models, for both unmanned aerial vehicles and terrestrial 

vehicular networks [46][47]. In this experiment, signal 

transmission and reception at 11.96 GHz has been 

effectuated, with extensive research and analysis carried out 

on the obtained results in order to provide findings and make 

comparisons between line-of-site (LOS) and non-line-of-

site (NLOS) environments using various propagation 

models. The LOS propagation results are illustrated in the 

following Figure 3. 

 

 

(a) 

 

(b) 

Fig. 3.  11.96 GHz LOS large scale path loss on (a) 

16/08/2022 and (b) 23/08/2022 for ECE-TINT building 

corridor with transmitter receiver both side horn antenna 

In case of LOS propagation environment, 17 data points are 

used, distributed over the total range of 1-40 m. On the other 

hand, for NLOS, 13 data points are used. However, the 

reference distance (1 m) is the same in both environments. 

These data show how signal propagation changes when the 

Tx-Rx spacing varies. The corresponding results for NLOS 

experiments are illustrated in Figure 4, which follows. 

 

(a) 

 

 

(b) 

Fig. 4.  11.96 GHz NLOS large scale path loss on (a) 

23/08/2022 and (b) 20/12/2022 for ECE-TINT building 

corridor with horn antenna at the transmitter and Omni 

directional antenna at the receiver side 
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4.1. LOS and NLOS Path Loss Models 

The LOS path loss model’s results are shown in Fig. 3 (a, 

b). It is clear from figure that the path loss values are very 

close to FI model predictions on both the experimental days 

but CI model-based value estimates differ from measured 

data. Both the models offer divergent estimates when the 

separation between transmitters to receiver is increased. Fig. 

3a & 3b show the 11.96 GHz results, where the day 2 

(23/08/2022) LOS case produces more uniform results than 

day 1(16/08/2022) in this scenario. The PLE (η_CI) values 

for 16/08/2022 and 23/08/2022 at the said frequency are 

found out to be 0.268 and 0.613 for LOS environment, 

respectively. However, the shadowing factors are 7.63 dB 

and 6.37 dB for the respective days of experiment. 

Similarly, in the case of NLOS study, for day 1 (23/08/2022) 

the measured results exactly follow the trend predicted by 

CI and FI models for all separation distances, as depicted in 

Fig. 4(a). However, the path loss shows a huge deviation at 

lower separation distances for day 2 (20/12/2022) but at 

higher separation distances the measured results are again 

found to follow the CI and FI model trends as shown in Fig. 

4(b). The η_CI values are 1.15 and 0.751 for both the days 

of measurement, respectively. However, the shadowing 

factor decreases slightly to 2.875 dB in the case of the NLOS 

scenario for day 1 (23/08/2022), but increases slightly to 

9.36 dB for day 2 (20/12/2022). The signal clearly 

deteriorates more in the LOS region as compared to the 

NLOS region for day 1 but the trend is reversed for day 2. 

In order to illustrate the propagation effect, the results of the 

FI path loss model have been presented in Figures 3 and 4. 

For LOS measurement, the signal rapidly deteriorates on 

day 1 for both the lower and higher separation distances, as 

shown in Fig. 3(a). However, on day 2, measured results are 

found to closely follow the FI model estimate curve over all 

distances as shown in Fig. 3(b).  In LOS environment, the α 

values are 19.26 & 27.39 and the β values are 0.351 & 0.45 

respectively, on the other hand in case of NLOS, the α 

attains its value to 31.268 & 27.76 and β are 0.714 & 0.388 

as shown in Fig. 4(a, b). 

These numbers indicate that the signal's performance in 

terms of LOS measurement is significantly better and is also 

dependent on surrounding environmental conditions, which 

inference is expected to hold for a number of diverse indoor 

microenvironments similar to the present experimental 

setup, which makes such an use case extremely relevant for 

high-speed indoor communication. In comparison, the 

penetration losses are found to continuously rise as the 

transmitter and receiver separation increases. The results are 

summarized in Table 2, which follows. 

Table 2: Summary of the CI and FI Path Loss Models 

Frequency 

(GHz) 

Measured 

parameters 

LOS Scenario NLOS 

Scenario 

16/08/ 

2022 

23/08/ 

2022 

23/08/ 

2022 

20/12/ 

2022 

 

 

11.96 

𝜂𝐶𝐼 0.268 0.613 1.15 0.7512 

𝛼 19.26 27.39 31.268 27.76 

𝛽 0.351 0.45 0.714 0.388 

𝜎𝐶𝐼 (dB) 7.63 6.37 2.875 9.36 

𝜎𝐹𝐼 (dB) 7.52 58.68 11.94 11.83 

 

4.2. Discussion of Model Based Estimation Results 

Table 2 summarizes the comparison of significant variables 

based on multiple days of experiments in LOS and NLOS 

conditions for the FI and CI models. In case of LOS study, 

the 𝜂𝐶𝐼 are 0.268 & 0.613 for the respective days of 

experiment. On the other hand, for NLOS case, the 𝜂𝐶𝐼 

values are 1.15 & 0.7512 respectively. It is clear from the 

above table (Table 2) that, the highest PLE value of 1.15 is 

observed for NLOS study on 23/08/2022 however the 

lowest value, 0.268 has been found in the case of LOS study 

on 16/08/2022. These values indicate that when the 

separation between transmitter and receiver increases, 

signal degradation is found to increase correspondingly, and 

vice versa. Due to interference from a variety of irregular 

items, such as the iron structures above the corridor railings, 

column beams, and several wooden doors and glass 

windows, which make this results frequency dependent. 

Furthermore, the shadow fading standard deviation 

 𝜎𝐶𝐼(dB) in LOS scenarios are 7.63 & 6.37 respectively, 

however the 𝜎𝐶𝐼(dB) values in case of NLOS scenarios are 

2.875 & 9.36 respectively. It is observed in the NLOS 

scenario that the lowest and highest values of 𝜎𝐶𝐼(dB) are 

2.875 and 9.36 dB, however no such significant difference 

is observed in the LOS scenario. The different results 

observed in the context of NLOS suggest that the significant 

changes in received signal intensity from various concrete 

column structures, wooden doors, and iron railings are 

directly proportional to the power received. Table 2 

summarizes the FI model results as well. Here, the 𝜎𝐹𝐼(dB) 

values for LOS are 19.26 & 27.39 respectively at 11.96 

GHz, however in case of NLOS, the 𝜎𝐹𝐼(dB) values are 

31.26 & 27.76 respectively at the same frequency. It is to be 

noted here that the minimum αFI value is obtained for LOS 

study but is maximum for NLOS. This reveals that the FI 

model estimates are less accurate for scenarios where the 

signal undergoes significant attenuation with path loss, 

which is observable from the NLOS study. Furthermore, in 

the LOS case, the line slope (β) values are 0.351 and 0.45, 

respectively. In contrast, the βFI values are 0.714 & 0.388 in 

the NLOS case. Like the α values, here, it is also seen that 

the minimum β value obtained for LOS case, however the 

maximum β can be found for NLOS case scenario, which 

corresponds to the results observed for α value. Moreover, 
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the σFI values for the LOS case study are 7.52 & 58.68 

respectively, whereas the σFI values are 11.94 & 11.83 in the 

NLOS case at 11.96 GHz. Here, the maximum σFI value of 

58.68 is achieved in the LOS scenario and the minimum σFI 

value of 7.52 is measured in the same LOS case scenario but 

the NLOS values are approximate same, 11.94 and 11.83. 

4.3. Discussion of Machine Learning Results 

In order to account for the significant difference of actual 

values with estimates for significant path loss, machine 

learning models were employed to generate more accurate 

path loss estimates in order to model the channel more 

accurately than otherwise possible. In the present scenario, 

three separate regression algorithms were employed, 

namely Random Forest Regressor, Decision Tree Regressor 

and Gradient Boosting Regressor. The models were used to 

estimate path loss for LOS scenarios (Figure 5). 

 

(a) 

 

(b) 

Fig. 5.  Machine learning analysis of LOS results on 

(a) 16/08/2022 and (b) 23/08/2022 

Corresponding results for NLOS scenarios could also be 

estimated using the same methods. The corresponding 

results obtained for NLOS scenarios are consequently 

presented in Figure 6, which provides the illustration for 

comparative results using mathematical modelling-based 

approaches as well as machine learning based estimate 

generation, with the actual experimentally obtained value 

set acting as the set of true values, against which the 

machine learning model-generated estimates are compared 

to obtain the different metrics focusing on the accuracy and 

stability of the models generating such estimates. For the 

present scenarios, the parameters deemed to be important 

are accuracy and root mean square error (RMSE), since the 

machine learning problem can be thought of as a regression 

problem where the path loss estimates are generated using 

the set of available feature variables and historical data. 

 

(a) 

 

(b) 

Fig. 6  Machine learning analysis of NLOS results on 

(a) 20/12/2022 and (b) 23/08/2022 

It was observed that the Random Forest Regressor model 

generated the most accurate predictions in almost all of the 

scenarios (Figures 5a, 5b and 6a) with suitably low root 

mean square error (RMSE) indicating stability of the results, 

even in Figure 6b, the RMSE and accuracy of the Random 

Forest Regressor model is found to be comparable to the 

Decision Tree and Gradient Boosting models. Another 

feature of interest is the fact that the Decision Tree and 

Gradient Boosting models have very similar prediction 

performances, which can however be attributed to the 

comparatively small test sample sets examined in this work. 

However, the Random Forest model is expected to give 

largely stable performance for other similar scenarios due to 

its consensus-based estimation method being less prone to 

inherent data bias present in such sample sets. 

5. Conclusion 

Modelling of a 5G wireless communication link has been 

performed in an indoor environment with employment of 

standard propagation model-based estimation to accurately 

capture the variation in path loss characteristics. The 

experimental results obtained are found to largely agree 

with simulation estimates for LOS propagation scenarios, 
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however there can be significant deviation from expected 

estimates for NLOS propagation. 

To tackle this issue, machine learning-based estimation 

models have been effectively employed to generate accurate 

estimates for all scenarios, with excellent results (accuracy 

of approximately 98 % with approximate RMSE less than 

or equal to 1.4) achieved especially for NLOS propagation 

of the 5G signal. In future, multi-model estimation, or the 

employment of neural networks may further improve the 

estimation performance of the proposed models and allow 

further improvements in accuracy for estimation of channel 

and signal parameters for wireless 5G communication. 

Acknowledgements 

The authors remain grateful to Techno International New 

Town and Aliah University for providing the means and 

encouragement for carrying on this research. 

Author contributions 

Md Anoarul Islam: Conceptualization, Methodology, 

Field study, Investigation, Writing-Original draft 

preparation Manabendra Maiti: Conceptualization, 

Methodology, Software, Validation., Field study, Writing-

Reviewing and Editing Ardhendu Shekhar Biswas: 

Methodology, Software, Field study, Visualization, 

Investigation, Writing-Original draft preparation 

Vivekananda Mukherjee: Conceptualization, 

Methodology, Software, Data curation, Field study, 

Writing-Original draft preparation Judhajit Sanyal: Data 

curation, Writing-Original draft preparation, Software, 

Quazi Md Alfred: Conceptualization, Methodology, 

Visualization, Writing-Reviewing and Editing. 

Conflicts of interest 

The authors declare no conflicts of interest. 

References and Footnotes 

[1] S. Huang, J. Cai, H. Chen and H. Zhang, "Transmit 

Power Optimization for Amplify-and-Forward Relay 

Networks With Reduced Overheads," in IEEE 

Transactions on Vehicular Technology, vol. 65, no. 7, 

pp. 5033-5044, July 2016, doi: 

10.1109/TVT.2015.2453405. 

[2] Qilian Liang, Tariq S. Durrani, Jing Liang, Xin Wang, 

"Enabling Technologies for 5G Mobile Systems," in 

Mobile Information Systems, Volume 2016, 

https://doi.org/10.1155/2016/1945783. 

[3] E. Hossain and M. Hasan, "5G cellular: key enabling 

technologies and research challenges," in IEEE 

Instrumentation & Measurement Magazine, vol. 18, 

no. 3, pp. 11-21, June 2015, doi: 

10.1109/MIM.2015.7108393. 

[4] Ian F. Akyildiz, Shuai Nie, Shih-Chun Lin, Manoj 

Chandrasekaran, "5G roadmap: 10 key enabling 

technologies," in Computer Networks, vol. 106, pp. 

17-48, 2016, 

https://doi.org/10.1016/j.comnet.2016.06.010. 

[5] Kinda Khawam, Samer Lahoud, Marc Ibrahim, 

Mohamad Yassin, Steven Martin, Melhem El Helou, 

Farah Moety, "Radio access technology selection in 

heterogeneous networks", in Physical 

Communication, vol. 18 part 2, pp. 125-139, 

https://doi.org/10.1016/j.phycom.2015.10.004. 

[6] Anand Gachhadar, MHD Nour Hindia, Faizan Qamar, 

M. Hassam Shakil Siddiqui, Kamarul Ariffin Noordin, 

Iraj S Amiri, "Modified genetic algorithm based power 

allocation scheme for amplify-and-forward 

cooperative relay network," in Computers & Electrical 

Engineering, vol. 69, pp. 628-641, 2018, 

https://doi.org/10.1016/j.compeleceng.2018.04.022. 

[7] Kamarul Ariffin Bin Noordin, Mhd Nour Hindia, 

Faizan Qamar & Kaharudin Dimyati, "Power 

Allocation Scheme Using PSO for Amplify and 

Forward Cooperative Relaying Network," in 

Advances in Intelligent Systems and Computing, vol. 

857, 2018, https://doi.org/10.1007/978-3-030-01177-

2_47. 

[8] P. Mogensen et al., "Centimeter-Wave Concept for 5G 

Ultra-Dense Small Cells," 2014 IEEE 79th Vehicular 

Technology Conference (VTC Spring), Seoul, Korea 

(South), 2014, pp. 1-6, doi: 

10.1109/VTCSpring.2014.7023157. 

[9] Rappaport, Theodore S., Shu Sun, and Mansoor Shafi, 

"5G channel model with improved accuracy and 

efficiency in mmWave bands," in IEEE 5G Tech 

Focus vol. 1, no. 1, pp. 1-6, 2017. 

[10] T. S. Rappaport, S. Sun and M. Shafi, "Investigation 

and Comparison of 3GPP and NYUSIM Channel 

Models for 5G Wireless Communications," 2017 IEEE 

86th Vehicular Technology Conference (VTC-Fall), 

Toronto, ON, Canada, 2017, pp. 1-5, doi: 

10.1109/VTCFall.2017.8287877. 

[11] T.S. Rappaport, "5G Millimeter Wave Wireless: 

Trials, Testimonies, and Target Rollouts," in 

Proceedings of the IEEE International Conference on 

Computer Communications, Honolulu, HI, USA, 

2018. 

[12] Tan Wang, Gen Li, Biao Huang, Qingyu Miao, Jian 

Fang, Pengpeng Li, Haifeng Tan, Wei Li, Jiaxin Ding, 

Jingchun Li & Ying Wang, "Spectrum Analysis and 

Regulations for 5G," in 5G Mobile Communications, 

pp. 27-50, 2017, https://doi.org/10.1007/978-3-319-

34208-5_2. 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 86–95  |  94 

[13] D. Udeshi, Faisan Qamar, "Quality Analysis Of Epon 

Network For Uplink and Downlink Design," in Asian 

Journal of Engineering, Sciences and Technology, vol. 

4, issue 2, pp. 78-83, 2014. 

[14] MHD Nour Hindia, Faizan Qamar, Tharek Abd 

Rahman, Iraj S Amiri, "," in Ad Hoc Networks, vol.54, 

no. 15, pp. 34-46, 2018, 

https://doi.org/10.1016/j.adhoc.2018.03.005. 

[15] Yong Niu, Yong Li, Depeng Jin, Li Su & Athanasios 

V. Vasilakos, "A survey of millimeter wave 

communications (mmWave) for 5G: opportunities and 

challenges," in Wireless Networks, vol. 21, pp. 2657-

2676, 2015, https://doi.org/10.1007/s11276-015-

0942-z. 

[16] Nisha Panwar, Shantanu Sharma, Awadhesh Kumar 

Singh, "A survey on 5G: The next generation of mobile 

communication," in Physical Communication, vol. 18, 

part 2, pp. 64-84, 2016, 

https://doi.org/10.1016/j.phycom.2015.10.006. 

[17] T. Abbas, F. Qamar, I. Ahmed, K. Dimyati and M. B. 

Majed, "Propagation channel characterization for 28 

and 73 GHz millimeter-wave 5G frequency band," 

2017 IEEE 15th Student Conference on Research and 

Development (SCOReD), Wilayah Persekutuan 

Putrajaya, Malaysia, 2017, pp. 297-302, doi: 

10.1109/SCORED.2017.8305375. 

[18] W. Hong, K. Baek and Y. Lee, "Quantitative analysis 

of the effects of polarization and pattern 

reconfiguration for mmWave 5G mobile antenna 

prototypes," 2017 IEEE Radio and Wireless 

Symposium (RWS), Phoenix, AZ, USA, 2017, pp. 68-

71, doi: 10.1109/RWS.2017.7885948. 

[19] W. Hong, "Solving the 5G Mobile Antenna Puzzle: 

Assessing Future Directions for the 5G Mobile 

Antenna Paradigm Shift," in IEEE Microwave 

Magazine, vol. 18, no. 7, pp. 86-102, Nov.-Dec. 2017, 

doi: 10.1109/MMM.2017.2740538. 

[20] B. McClean, "Worldwide Cellphone Subscriptions 

Forecast to Exceed Worldwide Population in 2015," in 

IC Insights, INC.: Scottsdale, AZ, USA, 2014. 

[21] Faizan Qamar, Kaharudin Bin Dimyati, MHD Nour 

Hindia, Kamarul Ariffin Bin Noordin, Ahmed M. Al-

Samman, "A comprehensive review on coordinated 

multi-point operation for LTE-A," in Computer 

Networks, vol. 123, pp. 19-37, 2017, 

https://doi.org/10.1016/j.comnet.2017.05.003. 

A. Gupta and R. K. Jha, "A Survey of 5G Network: 

Architecture and Emerging Technologies," in IEEE 

Access, vol. 3, pp. 1206-1232, 2015, doi: 

10.1109/ACCESS.2015.2461602. 

[22] J. G. Andrews et al., "What Will 5G Be?," in IEEE 

Journal on Selected Areas in Communications, vol. 32, 

no. 6, pp. 1065-1082, June 2014, doi: 

10.1109/JSAC.2014.2328098. 

A. Gohil, H. Modi and S. K. Patel, "5G technology of 

mobile communication: A survey," 2013 International 

Conference on Intelligent Systems and Signal 

Processing (ISSP), Vallabh Vidyanagar, India, 2013, 

pp. 288-292, doi: 10.1109/ISSP.2013.6526920. 

[23] "The Start of Something, 3rd Generation Partnership 

Project (3GPP)," Phoenix, Arizona, USA, 19 

September 2015. Available online: 

https://www.3gpp.org/news-events/1734-ran_5g 

(accessed on 1 April 2019). 

[24] R.F. Adler, M. Charles, "Preparing for a 5G World," 

in The Aspen Institute: Washington, DC, USA, 2016; 

Available online: 

http://csreports.aspeninstitute.org/documents/Preparin

gFor5G.pdf (accessed on 1 April 2019). 

[25] K. Mittal, S. Pathania, P. Reddy and D. Rawal, 

"Channel State Information feedback overhead 

reduction using Arithmetic coding in massive MIMO 

systems," 2016 3rd International Conference on Signal 

Processing and Integrated Networks (SPIN), Noida, 

India, 2016, pp. 328-331, doi: 

10.1109/SPIN.2016.7566713. 

[26] S. Navabi, C. Wang, O. Y. Bursalioglu and H. 

Papadopoulos, "Predicting Wireless Channel Features 

Using Neural Networks," 2018 IEEE International 

Conference on Communications (ICC), Kansas City, 

MO, USA, 2018, pp. 1-6, doi: 

10.1109/ICC.2018.8422221. 

[27] Hao Chen, Lingjia Liu, John D. Matyjas, Michael J. 

Medley, "Optimal resource allocation for sensing-

based spectrum sharing D2D networks," in Computers 

& Electrical Engineering, vol. 44, pp. 107-121, 

https://doi.org/10.1016/j.compeleceng.2014.12.013. 

[28] F. Qamar, T. Abbas, M. N. Hindia, K. B. Dimyati, K. 

A. Bin Noordin and I. Ahmed, "Characterization of 

MIMO propagation channel at 15 GHz for the 5G 

spectrum," 2017 IEEE 13th Malaysia International 

Conference on Communications (MICC), Johor 

Bahru, Malaysia, 2017, pp. 265-270, doi: 

10.1109/MICC.2017.8311770. 

[29] T. S. Rappaport, "Wireless communications - 

principles and practice," Prentice Hall, p. I–XVI, 1-

641, 1996. 

[30] F. Qamar, M. H. S. Siddiqui, K. Dimyati, K. A. B. 

Noordin and M. B. Majed, "Channel characterization 

of 28 and 38 GHz MM-wave frequency band spectrum 

for the future 5G network," 2017 IEEE 15th Student 

https://doi.org/10.1016/j.phycom.2015.10.006


International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 86–95  |  95 

Conference on Research and Development 

(SCOReD), Wilayah Persekutuan Putrajaya, Malaysia, 

2017, pp. 291-296, doi: 

10.1109/SCORED.2017.8305376. 

[31] M. M. Ahamed and S. Faruque, "Propagation factors 

affecting the performance of 5G millimeter wave radio 

channel," 2016 IEEE International Conference on 

Electro Information Technology (EIT), Grand Forks, 

ND, USA, 2016, pp. 0728-0733, doi: 

10.1109/EIT.2016.7535329. 

[32] MHD Nour Hindia, Faizan Qamar, Mohammad B. 

Majed, Tharek Abd Rahman & Iraj S. Amiri, 

"Enabling remote-control for the power sub-stations 

over LTE-A networks," in Telecommunication 

Systems, vol. 70, pp. 37-53, 2019, 

https://doi.org/10.1007/s11235-018-0465-x. 

[33] T. S. Rappaport, G. R. MacCartney, M. K. Samimi and 

S. Sun, "Wideband Millimeter-Wave Propagation 

Measurements and Channel Models for Future 

Wireless Communication System Design," in IEEE 

Transactions on Communications, vol. 63, no. 9, pp. 

3029-3056, Sept. 2015, doi: 

10.1109/TCOMM.2015.2434384. 

[34] Ahmed M. Al-Samman, Tharek Abd Rahman, MHD 

Nour Hindia, Abdusalama Daho and Effariza Hanafi, 

"Path Loss Model for Outdoor Parking Environments 

at 28 GHz and 38 GHz for 5G Wireless Networks," in 

Symmetry, vol. 10, no. 12, art. 672, 2018, 

https://doi.org/10.3390/sym10120672. 

[35] Ferdous Hossain, Tan Kim Geok, Tharek Abd 

Rahman, Mohammad Nour Hindia, Kaharudin 

Dimyati, Sharif Ahmed, Chih P. Tso, Noor Ziela Abd 

Rahman, "An Efficient 3-D Ray Tracing Method: 

Prediction of Indoor Radio Propagation at 28 GHz in 

5G Network," in Electronics, vol. 8, issue 3, art. 286, 

2019, https://doi.org/10.3390/electronics8030286. 

[36] S. Sun et al., "Propagation Path Loss Models for 5G 

Urban Micro- and Macro-Cellular Scenarios," 2016 

IEEE 83rd Vehicular Technology Conference (VTC 

Spring), Nanjing, China, 2016, pp. 1-6, doi: 

10.1109/VTCSpring.2016.7504435. 

[37] Q. Faizan, “Enhancing QOS performance of the 5G 

network by characterizing mm-wave channel and 

optimizing interference cancellation scheme,” Ph.D. 

dissertation, University of Malaya, Malaysia, 2019; 

Available online: 

http://studentsrepo.um.edu.my/11128 (accessed on 1 

April 2023). 

[38] S. Sun et al., "Investigation of Prediction Accuracy, 

Sensitivity, and Parameter Stability of Large-Scale 

Propagation Path Loss Models for 5G Wireless 

Communications," in IEEE Transactions on Vehicular 

Technology, vol. 65, no. 5, pp. 2843-2860, May 2016, 

doi: 10.1109/TVT.2016.2543139. 

[39] T. S. Rappaport, G. R. MacCartney, M. K. Samimi and 

S. Sun, "Wideband Millimeter-Wave Propagation 

Measurements and Channel Models for Future 

Wireless Communication System Design," in IEEE 

Transactions on Communications, vol. 63, no. 9, pp. 

3029-3056, Sept. 2015, doi: 

10.1109/TCOMM.2015.2434384. 

[40] S. Sun, G. R. MacCartney and T. S. Rappaport, 

"Millimeter-wave distance-dependent large-scale 

propagation measurements and path loss models for 

outdoor and indoor 5G systems," 2016 10th European 

Conference on Antennas and Propagation (EuCAP), 

Davos, Switzerland, 2016, pp. 1-5, doi: 

10.1109/EuCAP.2016.7481506. 

A. Hrovat, G. Kandus, and T. Javornik, "Path loss 

analyses in tunnels and underground corridors," Int. J. 

Commun., vol. 6, no. 3, pp. 136-144, 2012. [Online]. 

Available: 

https://naun.org/main/NAUN/communications/17-

875.pdf. 

[41] Emslie, R. Lagace and P. Strong, "Theory of the 

propagation of UHF radio waves in coal mine tunnels," 

in IEEE Transactions on Antennas and Propagation, 

vol. 23, no. 2, pp. 192-205, March 1975, doi: 

10.1109/TAP.1975.1141041. 

[42] Y. P. Zhang, Y. Hwang and J. D. Parsons, "UHF radio 

propagation characteristics in straight open-groove 

structures," in IEEE Transactions on Vehicular 

Technology, vol. 48, no. 1, pp. 249-254, Jan. 1999, 

doi: 10.1109/25.740100. 

[43] Wasswa Shafik, Mohammad Ghasemzadeh and S. 

Mojtaba Matinkhah, “A Fast Machine Learning for 5G 

Beam Selection for Unmanned Aerial Vehicle 

Applications,” in Journal of Information Systems and 

Telecommunication, vol. 7, no. 28, pp. 262-277, 2019, 

doi: 10.7508/jist.2019.04.003. 

[44] Ahmad Sarlak and Yousef Darmani, “An Approach to 

Improve the Quality of Service in DTN and Non-DTN 

based VANET,” in Journal of Information Systems 

and Telecommunication, vol. 8, no. 32, pp. 240-248, 

2020, doi: 10.29252/jist.8.32.240. 

 

 


