

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 110–116 | 110

Optimizing SQL Query Execution Time: A Hybrid Approach Using

Machine Learning and Deep Learning Technique

Bethineni Saritha1, M. Sadanandam *2

Submitted:14/03/2024 Revised: 29/04/2024 Accepted: 06/05/2024

Abstract: The escalating volume of global data in recent years has posed significant challenges to data management and analysis,

particularly regarding query and processing speeds. In response to these challenges, the present research endeavors to advance large-scale

data analytics by accelerating query processing and data retrieval by applying machine learning approaches. The proposed innovative

machine learning model aims to improve data retrieval speeds and enhance analytical accuracy. By leveraging the estimated execution

time as a guiding metric, the research provides a compass for optimizing query performance. This enables informed decision-making to

meet performance requirements and ensures efficient resource utilization within real-time database systems. Notably, the hybrid method

introduced in this study demonstrates a reduction in processing time and memory usage, signifying a comprehensive approach to

enhancing the efficiency of data management and analysis in the face of burgeoning data volumes.

Keywords: Sql, Query optimization, machine learning, deep learning.

1. Introduction

In the digital age, the abundance of data presents

opportunities and challenges for individuals and

companies. Managing and analyzing the ever-expanding

volume of information has become a critical task,

necessitating innovative approaches to ensure efficiency

and accuracy in today's fast-paced world (Jones, 2018).

Past methods, which were once effective, are now

struggling to keep up with the exponential growth of data,

proving too slow and imprecise (Davis, 2020).

Recognizing these limitations, the landscape provides a

ripe environment for integrating machine learning

programs. These intelligent tools, capable of evolving and

improving with use, offer a promising solution to expedite

data analysis and processing (Chen, 2021).

The central focus of this paradigm shift is to leverage

machine learning's capabilities to enhance both the speed

and accuracy of data queries, marking a pivotal moment in

data analytics (Taylor, 2022). To take this evolution

further, our study proposes developing an advanced

Python-based system that amalgamates the strengths of

various machine learning algorithms. This novel approach

seeks to surpass existing methods in terms of speed and

precision, heralding a new era of data analytics tools better

equipped to handle the complexities of the contemporary

world.

The motivation for this endeavor arises from recognizing

that the future of data management and analysis requires a

proactive and adaptive approach. Traditional methods are

increasingly insufficient, necessitating a transformative

leap into more sophisticated solutions. The proposed

Python-based system aims to address the current

challenges in big data analytics and provide a forward-

looking and workable solution. By combining the strengths

of different machine learning algorithms, we envision a

system that is not only faster and more accurate but also

more adaptable to the dynamic nature of modern data.

In undertaking this study, we aim to contribute a fresh

perspective to big data analytics, offering a practical

solution to the challenges of handling vast amounts of

information. This endeavor is not merely an incremental

improvement but rather a leap forward, anticipating future

needs. By doing so, we aspire to lay the foundation for a

more efficient and effective future in data management and

analysis, ensuring that the field remains at the forefront of

technological advancements. Through this research, we

seek to address the current gaps in data analytics and shape

the trajectory of the discipline toward a more robust and

adaptive future.

2. Related work

The early stages of data analytics were characterized by

using essential tools and methods, as noted by Smith and

Lee in 2016. During this period, the primary focus was

effectively managing small data. However, the field has

undergone a transformative shift with the exponential

increase in data generation. The sheer volume of data

necessitated the development of increasingly advanced

techniques for efficient processing and analysis, as

highlighted by Martin and Brown in 2018. Recent years

have witnessed a notable departure from the simplicity of

early-stage methods, with a growing emphasis on adopting

sophisticated analytical approaches. This shift reflects the

recognition that to manage massive data quantities and

derive significant insights; it is imperative to employ tools

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 110–116 | 111

to handle the complexities inherent in large-scale data

analytics.

Despite advancements in data analytics, the unprecedented

surge in data volumes has introduced a host of challenges.

According to Johnson et al. (2019), one of the primary

concerns is the enhancement of data queries for swift

retrieval. This involves addressing the intricacies of

managing increasingly complex datasets while ensuring

robust data security measures. Additionally, a growing

demand for real-time analytics has emerged, requiring the

development of highly optimized and efficient systems, as

highlighted by Davis and Taylor in 2020. The need for

expedited data retrieval, coupled with the intricacies of

managing data complexity and ensuring security,

underscores the evolving landscape of challenges in the

face of escalating data volumes. Addressing these issues

becomes paramount to harnessing the full potential of data

analytics in the contemporary data-driven environment.

The landscape of query optimization has seen diverse

contributions from researchers in recent years. Vaidya et

al. (2021) introduced an intelligent model focused on

optimizing queries statistically. Marcus et al. (2021)

similarly delved into optimization efforts, while Kumar et

al. (2017) conducted a comprehensive study on various

optimization methods within machine learning. Vu (2019)

implemented a deep learning model for query

optimization, showcasing the application of advanced

techniques in this domain. Azhir et al. (2019), Park et al.

(2022), and Krishnan et al. (2019) collectively proposed

and implemented various automated models for query

optimization, highlighting the significance of automation

in this context.

Kaoudi et al. (2020) took a cross-platform approach to

query optimization to reduce time expenditures. Sikdar

(2021), Yang (2022), Hasan and Gandon (2014), and

Doshi et al. (2023) all contributed with different

optimization models, showcasing the diversity of

approaches within this field. Ma and Triantafillou (2019)

implemented a query-processing engine capable of

handling various queries. Wu (2013) focused on reducing

the execution time of queries, contributing to efficiency in

query processing.

Bzdok et al. (2019). Boone (2014) and Li et al. (2017)

engage with large-scale data and web query filters,

demonstrating a common thread of scalability and

applicability to real-world, extensive datasets. Overall, this

collective body of work represents a rich tapestry of

research endeavors to advance and optimize query

processing in the context of large-scale data and web query

filters.

3. Methodology

Data set and preprocessing

The dataset is a synthetic data set that is collected from a

MySQL database from a small application that is there in

our local host, so this will represent the real-time training

and evaluation of all the data to the model it consists of

 query: This field represents an SQL query that was

executed. It specifies the operation to be performed on a

database.

3.1 Metrics: The dataset likely represents a set of

benchmark queries or real-world queries executed against a

database system. These queries may come from various

applications or scenarios where database performance is a

concern.

3.2 Query Performance Analysis: The dataset allows the

analysis of individual queries' performance. It can identify

which queries are resource-intensive (e.g., high CPU or

memory usage) or take longer to execute.

3.3 Query Optimization: By studying the metrics, we can

identify queries that may benefit from optimization. For

example, queries with high execution times or excessive

resource usage may be candidates for optimization.

3.4 Resource Utilization Trends: can analyze how

different metrics (memory, CPU, disk) correlate. For

instance, we can check if queries with high CPU usage also

tend to have high memory usage.

3.5 Workload Characterization: If it has a collection of

queries, it can characterize the overall workload on the

database system. This can help in capacity planning and

resource allocation.

3.6 Performance Monitoring: The dataset can be used for

ongoing performance monitoring of the database system.

Sudden spikes in execution time, resource usage, or disk

reads can indicate issues or inefficiencies.

3.7 Query Tuning: If recurring query patterns exhibit poor

performance, the dataset guides query-tuning efforts, such

as rewriting queries or creating appropriate indexes.

This data has 50000 as shown in table 1 records with five

columns. The EDA was performed, and the relationship

and its analysis of the features in the dataset were found.

4. Implementation

The considered JSON format as input to the system; we

used the Jupyter lab environment to perform this operation

and have chosen the execution plan selection plan based on

the data we got; this will help to improve execution plan

efficiency, so this will help to make the query

recommendation to optimize the query search by their

query log data, this data is a log data of search query from

the PHP based web application backend system. The

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 110–116 | 112

selected data is dumped into the system and then analyzed

with the advanced method to perform the optimization and

execution plan selection.

Table 1 Sample SQL Query and metrics

Query Metrics

'query': "SELECT id

FROM users WHERE

email = '96' JOIN products

ON users.name =

products.name",

 'metrics':

{'execution_time': 3.92,

'memory_usage': 9810,

'disk_reads': 206,

'cpu_usage': 58.29}

'query': 'SELECT name,

age, id, email FROM

users',

'metrics':

{'execution_time': 0.82,

 'memory_usage': 9266,

 'disk_reads': 452,

 'cpu_usage': 89.02},

'query': 'SELECT id, price

FROM products',

'metrics':

{'execution_time': 4.18,

 'memory_usage': 7255,

 'disk_reads': 466,

 'cpu_usage': 89.18}

query': "SELECT id,

user_id, quantity FROM

orders WHERE user_id =

'22' JOIN users ON

orders.name = users.name",

 'metrics':

{'execution_time': 0.27,

'memory_usage': 9246,

 'disk_reads': 106,

 'cpu_usage': 73.35}

'query': 'SELECT email,

name FROM users

JOIN orders ON

users.quantity =

orders.quantity',

'metrics':

{'execution_time': 1.72,

'memory_usage': 747,

 'disk_reads':3,

'cpu_usage': 12.85}

Figures 1,2,3 and 4 illustrates the execution time, memory

usages, disk read and cpu usages over graph. With this we

observe that data is densily distributed. And figure 5

illustrates frequency of each keyword from query. Figure 6

illustrates frequency of join with and without where clause.

From figure 7 it is clearly observed that the correlation of

each key word consistent.

 Figure 1: frequency and execution time of query

Figure 2: frequency and execution time of query

Figure 3: frequency and execution time of query

Figure 4: frequency and execution time of query

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 110–116 | 113

Figure 5: frequency of each keyword used in query

Figure 6: join with and without where class

Figure 7: correlation matrix

A pipeline in scikit-learn is a way to streamline and

automate a sequence of data processing and modeling

steps. It allows you to define a series of data

transformations and a final estimator (model) to create a

single object that can be used to fit and predict on data.

Standard Scalar is a preprocessing step that standardizes

(scales) the features in your dataset. It calculates the mean

and standard deviation of each feature and scales the

values such that each

feature has a mean of 0 and a standard deviation of 1.

Standardization is important in machine learning to ensure

that features with different scales don't dominate the

learning process.

Random Forest Repressor is a machine learning model

used for regression tasks. It is an ensemble model that

combines multiple decision trees to make predictions. Each

decision tree is trained on a subset of the data, and the final

prediction is typically an average (or weighted average) of

predictions from individual trees.

Transformed Target Repressor is a wrapper for a repressor

(in this case, Random Forest Repressor) that allows you to

apply a transformation to the target variable (in this case,

the standardization applied by Standard Scalar). It's used

when you want to predict transformed target values and

later inverse-transform them to get predictions in the

original scale.

4.1 Pipeline works:

First, it scales the input features using Standard Scalar.

Then, it applies the Random Forest Repressor to make

predictions on the scaled features. Since Random Forest

Repressor typically predict in the original scale, the

Transformed Target Regressor ensures that the predictions

are made in the scaled (standardized) space. Overall, this

pipeline is designed to handle feature scaling and

regression modeling in a unified manner, ensuring that the

scaling transformation is consistent for both the training

and prediction phases. This can be useful when dealing

with models that are sensitive to feature scales. As shown

in figure 8a deep learning model is implemented and it is

combined with a machine learning model like random

forest model as shown figure 9.

Figure 8: implemented Deep learning mode

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 110–116 | 114

Figure 9: Hybrid model

5. Result Analysis

Table 2 reveals a noteworthy observation: the hybrid

model demonstrates an increase in the mean absolute error

(MAE) for R2 compared to individual models, such as

deep learning and random forest. However, Figures 11 and

12 present a contrasting scenario, showing a reduction in

execution time to 4.64 ms and a decrease in memory usage

in the hybrid model. Moreover, Figures 13, 14, and 15

provide compelling visual evidence, indicating that the

actual and predicted scores align exceptionally well in the

hybrid model compared to their counterparts in individual

models. This intriguing combination of results suggests a

trade-off between predictive accuracy and computational

efficiency in the hybrid model. While there is an increase

in error metrics, the gains in execution time and memory

usage, along with the improved alignment of actual and

predicted scores, position the hybrid model as a favorable

choice in scenarios prioritizing computational efficiency

without compromising prediction quality.

Figure 10: Results of proposed model

Table 2: results comparison of all models

Metrics Results

R² (Deep Learning) 0.9994027458938917

MAE (Deep Learning) 0.024656091223014032

RMSE (Deep Learning) 0.03407869560575768

R² (Random Forest): 1.0

MAE (Random Forest) 3.310590106147216e-15

RMSE (Random Forest) 4.350489153102935e-15

R² (Hybrid Model) 1.0

MAE (Hybrid Model) 1.431660345829755e-15

RMSE (Hybrid Model) 1.906582417719092e-15

Figure 11: memory usage and execution time of proposed

model

Figure 12: memory usage and execution time of deep

learning

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 110–116 | 115

Figure 13: actual and predicted results of deep learning

model

Figure 14: actual and predicted results of random forest

model

Figure 15: actual and predicted results of hybrid model

6. Conclusion

In conclusion, The predicted execution time of

approximately 4.64 units for the given SQL query, derived

from resource metrics such as memory usage, disk reads,

CPU usage, and join count, is a pivotal indicator of

anticipated query performance. The associated insights into

resource utilization, encompassing parameters like

memory usage, disk reads, CPU usage, and join count,

offer a comprehensive understanding of the query's

complexity. Notably, the identified join count of 4

underscores the involvement of multiple table joins, a

factor that can significantly impact execution time. This

prediction acts as a benchmark and opens avenues for

optimization, particularly when the estimated time exceeds

predefined thresholds. The outlined optimization strategies,

from alternative execution, plans to indexing strategies and

query optimizations, present actionable pathways to

mitigate execution time and enhance database efficiency.

The emphasis on continuous improvement, driven by real-

world performance data and ongoing monitoring,

underscores the dynamic nature of database systems,

allowing for adaptive decisions and sustained

enhancements to meet evolving performance requirements.

The predicted execution time functions as a guiding

compass, empowering informed decisions to ensure

efficient resource utilization and optimal query

performance in real-time database systems.

References

[1] Vaidya, K., Dutt, A., Narasayya, V., & Chaudhuri, S.

(2021). Leveraging query logs and machine learning

for parametric query optimization. Proceedings of the

VLDB Endowment, 15(3), 401-413.

[2] Marcus, R., Negi, P., Mao, H., Tatbul, N., Alizadeh,

M., & Kraska, T. (2021, June). Bao: Making learned

query optimization practical. In Proceedings of the

2021 International Conference on Management of

Data (pp. 1275-1288).

[3] Kumar, A., Boehm, M., & Yang, J. (2017, May).

Data management in machine learning: Challenges,

techniques, and systems. In Proceedings of the 2017

ACM International Conference on Management of

Data (pp. 1717-1722).

[4] Vu, T. (2019, June). Deep query optimization. In

Proceedings of the 2019 International Conference on

Management of Data (pp. 1856-1858).

[5] Azhir, E., Navimipour, N. J., Hosseinzadeh, M.,

Sharifi, A., & Darwesh, A. (2019). Query

optimization mechanisms in the cloud environments:

a systematic study. International Journal of

Communication Systems, 32(8), e3940.

[6] Park, K., Saur, K., Banda, D., Sen, R., Interlandi, M.,

&Karanasos, K. (2022, June). End-to-end

optimization of machine learning prediction queries.

In Proceedings of the 2022 International Conference

on Management of Data (pp. 587-601).

[7] Krishnan, S., Yang, Z., Goldberg, K., Hellerstein, J.,

& Stoica, I. (2018). Learning to optimize join queries

with deep reinforcement learning. arXiv preprint

arXiv:1808.03196.

[8] Kaoudi, Z., Quiané-Ruiz, J. A., Contreras-Rojas, B.,

Pardo-Meza, R., Troudi, A., & Chawla, S. (2020,

April). ML-based cross-platform query optimization.

In 2020 IEEE 36th International Conference on Data

Engineering (ICDE) (pp. 1489-1500). IEEE.

[9] Sikdar, S. (2021). Applying Machine Learning to

Query Optimization (Doctoral dissertation, Rice

University).

[10] Yang, Z., Wang, Z., Huang, Y., Lu, Y., Li, C., &

Wang, X. S. (2022). Optimizing machine learning

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 110–116 | 116

inference queries with correlative proxy models.

arXiv preprint arXiv:2201.00309.

[11] Hasan, R., & Gandon, F. (2014, August). A machine

learning approach to sparql query performance

prediction. In 2014 IEEE/WIC/ACM International

Joint Conferences on Web Intelligence (WI) and

Intelligent Agent Technologies (IAT) (Vol. 1, pp.

266-273). IEEE.

[12] Doshi, L., Zhuang, V., Jain, G., Marcus, R., Huang,

H., Altinbüken, D., ... & Fraser, C. (2023). Kepler:

Robust Learning for Parametric Query Optimization.

Proceedings of the ACM on Management of Data,

1(1), 1-25.

[13] Ma, Q., & Triantafillou, P. (2019, June). Dbest:

Revisiting approximate query processing engines

with machine learning models. In Proceedings of the

2019 International Conference on Management of

Data (pp. 1553-1570).

[14] Wu, W., Chi, Y., Zhu, S., Tatemura, J., Hacigümüs,

H., & Naughton, J. F. (2013, April). Predicting query

execution time: Are optimizer cost models really

unusable?. In 2013 IEEE 29th International

Conference on Data Engineering (ICDE) (pp. 1081-

1092). IEEE.

[15] Bzdok, D., Nichols, T. E., & Smith, S. M. (2019).

Towards algorithmic analytics for large-scale

datasets. Nature Machine Intelligence, 1(7), 296-306.

[16] Hazen, B. T., Boone, C. A., Ezell, J. D., & Jones-

Farmer, L. A. (2014). Data quality for data science,

predictive analytics, and big data in supply chain

management: An introduction to the problem and

suggestions for research and applications.

International Journal of Production Economics, 154,

72-80.

[17] Li, Q., Chen, Y., Wang, J., Chen, Y., & Chen, H.

(2017). Web media and stock markets: A survey and

future directions from a big data perspective. IEEE

Transactions on Knowledge and Data Engineering,

30(2), 381-399.

[18] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A.,

Dean, J., ... & Zheng, X. (2016). {TensorFlow}: a

system for {Large-Scale} machine learning. In 12th

USENIX symposium on operating systems design

and implementation (OSDI 16) (pp. 265-283).

