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Abstract: The escalating volume of global data in recent years has posed significant challenges to data management and analysis, 

particularly regarding query and processing speeds. In response to these challenges, the present research endeavors to advance large-scale 

data analytics by accelerating query processing and data retrieval by applying machine learning approaches. The proposed innovative 

machine learning model aims to improve data retrieval speeds and enhance analytical accuracy. By leveraging the estimated execution 

time as a guiding metric, the research provides a compass for optimizing query performance. This enables informed decision-making to 

meet performance requirements and ensures efficient resource utilization within real-time database systems. Notably, the hybrid method 

introduced in this study demonstrates a reduction in processing time and memory usage, signifying a comprehensive approach to 

enhancing the efficiency of data management and analysis in the face of burgeoning data volumes. 
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1. Introduction 

In the digital age, the abundance of data presents 

opportunities and challenges for individuals and 

companies. Managing and analyzing the ever-expanding 

volume of information has become a critical task, 

necessitating innovative approaches to ensure efficiency 

and accuracy in today's fast-paced world (Jones, 2018). 

Past methods, which were once effective, are now 

struggling to keep up with the exponential growth of data, 

proving too slow and imprecise (Davis, 2020). 

Recognizing these limitations, the landscape provides a 

ripe environment for integrating machine learning 

programs. These intelligent tools, capable of evolving and 

improving with use, offer a promising solution to expedite 

data analysis and processing (Chen, 2021). 

The central focus of this paradigm shift is to leverage 

machine learning's capabilities to enhance both the speed 

and accuracy of data queries, marking a pivotal moment in 

data analytics (Taylor, 2022). To take this evolution 

further, our study proposes developing an advanced 

Python-based system that amalgamates the strengths of 

various machine learning algorithms. This novel approach 

seeks to surpass existing methods in terms of speed and 

precision, heralding a new era of data analytics tools better 

equipped to handle the complexities of the contemporary 

world. 

The motivation for this endeavor arises from recognizing 

that the future of data management and analysis requires a 

proactive and adaptive approach. Traditional methods are 

increasingly insufficient, necessitating a transformative 

leap into more sophisticated solutions. The proposed 

Python-based system aims to address the current 

challenges in big data analytics and provide a forward-

looking and workable solution. By combining the strengths 

of different machine learning algorithms, we envision a 

system that is not only faster and more accurate but also 

more adaptable to the dynamic nature of modern data. 

In undertaking this study, we aim to contribute a fresh 

perspective to big data analytics, offering a practical 

solution to the challenges of handling vast amounts of 

information. This endeavor is not merely an incremental 

improvement but rather a leap forward, anticipating future 

needs. By doing so, we aspire to lay the foundation for a 

more efficient and effective future in data management and 

analysis, ensuring that the field remains at the forefront of 

technological advancements. Through this research, we 

seek to address the current gaps in data analytics and shape 

the trajectory of the discipline toward a more robust and 

adaptive future. 

2. Related work 

The early stages of data analytics were characterized by 

using essential tools and methods, as noted by Smith and 

Lee in 2016. During this period, the primary focus was 

effectively managing small data. However, the field has 

undergone a transformative shift with the exponential 

increase in data generation. The sheer volume of data 

necessitated the development of increasingly advanced 

techniques for efficient processing and analysis, as 

highlighted by Martin and Brown in 2018. Recent years 

have witnessed a notable departure from the simplicity of 

early-stage methods, with a growing emphasis on adopting 

sophisticated analytical approaches. This shift reflects the 

recognition that to manage massive data quantities and 

derive significant insights; it is imperative to employ tools 
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to handle the complexities inherent in large-scale data 

analytics. 

Despite advancements in data analytics, the unprecedented 

surge in data volumes has introduced a host of challenges. 

According to Johnson et al. (2019), one of the primary 

concerns is the enhancement of data queries for swift 

retrieval. This involves addressing the intricacies of 

managing increasingly complex datasets while ensuring 

robust data security measures. Additionally, a growing 

demand for real-time analytics has emerged, requiring the 

development of highly optimized and efficient systems, as 

highlighted by Davis and Taylor in 2020. The need for 

expedited data retrieval, coupled with the intricacies of 

managing data complexity and ensuring security, 

underscores the evolving landscape of challenges in the 

face of escalating data volumes. Addressing these issues 

becomes paramount to harnessing the full potential of data 

analytics in the contemporary data-driven environment. 

The landscape of query optimization has seen diverse 

contributions from researchers in recent years. Vaidya et 

al. (2021) introduced an intelligent model focused on 

optimizing queries statistically. Marcus et al. (2021) 

similarly delved into optimization efforts, while Kumar et 

al. (2017) conducted a comprehensive study on various 

optimization methods within machine learning. Vu (2019) 

implemented a deep learning model for query 

optimization, showcasing the application of advanced 

techniques in this domain. Azhir et al. (2019), Park et al. 

(2022), and Krishnan et al. (2019) collectively proposed 

and implemented various automated models for query 

optimization, highlighting the significance of automation 

in this context. 

Kaoudi et al. (2020) took a cross-platform approach to 

query optimization to reduce time expenditures. Sikdar 

(2021), Yang (2022), Hasan and Gandon (2014), and 

Doshi et al. (2023) all contributed with different 

optimization models, showcasing the diversity of 

approaches within this field. Ma and Triantafillou (2019) 

implemented a query-processing engine capable of 

handling various queries. Wu (2013) focused on reducing 

the execution time of queries, contributing to efficiency in 

query processing. 

Bzdok et al. (2019). Boone (2014) and Li et al. (2017) 

engage with large-scale data and web query filters, 

demonstrating a common thread of scalability and 

applicability to real-world, extensive datasets. Overall, this 

collective body of work represents a rich tapestry of 

research endeavors to advance and optimize query 

processing in the context of large-scale data and web query 

filters. 

 

 

3. Methodology 

Data set and preprocessing 

The dataset is a synthetic data set that is collected from a 

MySQL database from a small application that is there in 

our local host, so this will represent the real-time training 

and evaluation of all the data to the model it consists of  

 query: This field represents an SQL query that was 

executed. It specifies the operation to be performed on a 

database. 

3.1 Metrics: The dataset likely represents a set of 

benchmark queries or real-world queries executed against a 

database system. These queries may come from various 

applications or scenarios where database performance is a 

concern. 

3.2 Query Performance Analysis: The dataset allows the 

analysis of individual queries' performance. It can identify 

which queries are resource-intensive (e.g., high CPU or 

memory usage) or take longer to execute. 

3.3 Query Optimization: By studying the metrics, we can 

identify queries that may benefit from optimization. For 

example, queries with high execution times or excessive 

resource usage may be candidates for optimization. 

3.4 Resource Utilization Trends:  can analyze how 

different metrics (memory, CPU, disk) correlate. For 

instance, we can check if queries with high CPU usage also 

tend to have high memory usage. 

3.5 Workload Characterization: If it has a collection of 

queries, it can characterize the overall workload on the 

database system. This can help in capacity planning and 

resource allocation. 

3.6 Performance Monitoring: The dataset can be used for 

ongoing performance monitoring of the database system. 

Sudden spikes in execution time, resource usage, or disk 

reads can indicate issues or inefficiencies. 

3.7 Query Tuning: If recurring query patterns exhibit poor 

performance, the dataset guides query-tuning efforts, such 

as rewriting queries or creating appropriate indexes. 

This data has 50000 as shown in table 1 records with five 

columns. The EDA was performed, and the relationship 

and its analysis of the features in the dataset were found. 

4. Implementation 

The considered JSON format as input to the system; we 

used the Jupyter lab environment to perform this operation 

and have chosen the execution plan selection plan based on 

the data we got; this will help to improve execution plan 

efficiency, so this will help to make the query 

recommendation to optimize the query search by their 

query log data, this data is a log data of search query from 

the PHP based web application backend system. The 
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selected data is dumped into the system and then analyzed 

with the advanced method to perform the optimization and 

execution plan selection. 

Table 1 Sample SQL Query and metrics 

Query Metrics 

'query': "SELECT id 

FROM users WHERE 

email = '96' JOIN products 

ON users.name = 

products.name", 

 

  'metrics': 

{'execution_time': 3.92, 

'memory_usage': 9810,  

'disk_reads': 206,   

'cpu_usage': 58.29} 

'query': 'SELECT name, 

age, id, email FROM 

users', 

 

'metrics': 

{'execution_time': 0.82,  

   'memory_usage': 9266, 

   'disk_reads': 452,  

   'cpu_usage': 89.02}, 

'query': 'SELECT id, price 

FROM products', 

'metrics': 

{'execution_time': 4.18, 

   'memory_usage': 7255, 

   'disk_reads': 466, 

   'cpu_usage': 89.18} 

query': "SELECT id, 

user_id, quantity FROM 

orders WHERE user_id = 

'22' JOIN users ON 

orders.name = users.name", 

  'metrics': 

{'execution_time': 0.27,   

'memory_usage': 9246, 

   'disk_reads': 106, 

   'cpu_usage': 73.35} 

 

'query': 'SELECT email, 

name FROM users 

JOIN orders ON 

users.quantity = 

orders.quantity', 

'metrics': 

{'execution_time': 1.72,   

'memory_usage': 747, 

   'disk_reads':3,   

'cpu_usage': 12.85} 

 

Figures 1,2,3 and 4 illustrates the execution time, memory 

usages, disk read and cpu usages over graph. With this we 

observe that data is densily distributed. And figure 5 

illustrates frequency of each keyword from query. Figure 6 

illustrates frequency of join with and without where clause.  

From figure 7 it is clearly observed that the correlation of 

each key word consistent. 

 

             Figure 1: frequency and execution time of query 

 

Figure 2: frequency and execution time of query 

 

Figure 3: frequency and execution time of query 

 

Figure 4: frequency and execution time of query 
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Figure 5: frequency of each keyword used in query 

 

Figure 6: join with and without where class 

 

Figure 7: correlation matrix 

A pipeline in scikit-learn is a way to streamline and 

automate a sequence of data processing and modeling 

steps. It allows you to define a series of data 

transformations and a final estimator (model) to create a 

single object that can be used to fit and predict on data. 

Standard Scalar is a preprocessing step that standardizes 

(scales) the features in your dataset. It calculates the mean 

and standard deviation of each feature and scales the 

values such that each  

feature has a mean of 0 and a standard deviation of 1. 

Standardization is important in machine learning to ensure 

that features with different scales don't dominate the 

learning process. 

Random Forest Repressor is a machine learning model 

used for regression tasks. It is an ensemble model that 

combines multiple decision trees to make predictions. Each 

decision tree is trained on a subset of the data, and the final 

prediction is typically an average (or weighted average) of 

predictions from individual trees. 

Transformed Target Repressor is a wrapper for a repressor 

(in this case, Random Forest Repressor) that allows you to 

apply a transformation to the target variable (in this case, 

the standardization applied by Standard Scalar). It's used 

when you want to predict transformed target values and 

later inverse-transform them to get predictions in the 

original scale. 

4.1 Pipeline works: 

First, it scales the input features using Standard Scalar. 

Then, it applies the Random Forest Repressor to make 

predictions on the scaled features. Since Random Forest 

Repressor typically predict in the original scale, the 

Transformed Target Regressor ensures that the predictions 

are made in the scaled (standardized) space. Overall, this 

pipeline is designed to handle feature scaling and 

regression modeling in a unified manner, ensuring that the 

scaling transformation is consistent for both the training 

and prediction phases. This can be useful when dealing 

with models that are sensitive to feature scales. As shown 

in figure 8a deep learning model is implemented and it is 

combined with a machine learning model like random 

forest model as shown figure 9. 

 

Figure 8: implemented Deep learning mode 
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Figure 9: Hybrid model 

5. Result Analysis 

Table 2 reveals a noteworthy observation: the hybrid 

model demonstrates an increase in the mean absolute error 

(MAE) for R2 compared to individual models, such as 

deep learning and random forest. However, Figures 11 and 

12 present a contrasting scenario, showing a reduction in 

execution time to 4.64 ms and a decrease in memory usage 

in the hybrid model. Moreover, Figures 13, 14, and 15 

provide compelling visual evidence, indicating that the 

actual and predicted scores align exceptionally well in the 

hybrid model compared to their counterparts in individual 

models. This intriguing combination of results suggests a 

trade-off between predictive accuracy and computational 

efficiency in the hybrid model. While there is an increase 

in error metrics, the gains in execution time and memory 

usage, along with the improved alignment of actual and 

predicted scores, position the hybrid model as a favorable 

choice in scenarios prioritizing computational efficiency 

without compromising prediction quality. 

 

Figure 10: Results of proposed model 

Table 2: results comparison of all models 

Metrics Results 

R² (Deep Learning) 0.9994027458938917 

MAE (Deep Learning) 0.024656091223014032 

RMSE (Deep Learning) 0.03407869560575768 

R² (Random Forest):  1.0 

MAE (Random Forest) 3.310590106147216e-15 

RMSE (Random Forest) 4.350489153102935e-15 

R² (Hybrid Model) 1.0 

MAE (Hybrid Model) 1.431660345829755e-15 

RMSE (Hybrid Model) 1.906582417719092e-15 

 

Figure 11: memory usage and execution time of proposed 

model 

 

Figure 12: memory usage and execution time of deep 

learning 
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Figure 13: actual and predicted results of deep learning 

model 

 

Figure 14: actual and predicted results of random forest 

model 

 

Figure 15: actual and predicted results of hybrid model 

6. Conclusion 

In conclusion, The predicted execution time of 

approximately 4.64 units for the given SQL query, derived 

from resource metrics such as memory usage, disk reads, 

CPU usage, and join count, is a pivotal indicator of 

anticipated query performance. The associated insights into 

resource utilization, encompassing parameters like 

memory usage, disk reads, CPU usage, and join count, 

offer a comprehensive understanding of the query's 

complexity. Notably, the identified join count of 4 

underscores the involvement of multiple table joins, a 

factor that can significantly impact execution time. This 

prediction acts as a benchmark and opens avenues for 

optimization, particularly when the estimated time exceeds 

predefined thresholds. The outlined optimization strategies, 

from alternative execution, plans to indexing strategies and 

query optimizations, present actionable pathways to 

mitigate execution time and enhance database efficiency. 

The emphasis on continuous improvement, driven by real-

world performance data and ongoing monitoring, 

underscores the dynamic nature of database systems, 

allowing for adaptive decisions and sustained 

enhancements to meet evolving performance requirements. 

The predicted execution time functions as a guiding 

compass, empowering informed decisions to ensure 

efficient resource utilization and optimal query 

performance in real-time database systems. 
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