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Abstract: Breath analysis for early-stage detection and monitoring of chronic illnesses, aiming to reduce medical costs and improve patient 

quality of life. Electronic sensors, functioning as diagnostic tools, can analyze body odors and detect pathological gases. This study focuses 

on tin oxide (SnO2) thick film gas sensors for detecting VOCs exhaled in breath, including acetone, ethanol, and benzene, which are 

indicators of diseases like diabetes, lung cancer, and fatty liver disease. A custom gas chamber equipped with a sensor array was 

constructed, and the sensors' responses to different gas concentrations were recorded. Using artificial neural networks (ANNs), specifically 

the Wavelet-Transformed ANN (WT-ANN) model, and the study demonstrated the precise detection of VOC concentrations. The WT-

ANN employs B-spline wavelet transfer functions for enhanced nonlinearity, allowing for accurate correlation of complex data. Initial 

results showed that the system could closely estimate acetone concentrations, with minimal error. The findings suggest that the WT-ANN 

model, combined with semiconductor-based gas sensors, might assist as a non-invasive instrument for diagnosis diseases like diabetes, 

lung cancer, and fatty liver disease by identifying specific VOC patterns in exhaled breath. The study underscores the potential of ANN-

based breath analysis systems in medical diagnostics and highlights the need for continued research to refine this innovative approach. 

Keywords: Gas sensor, Artificial Neural Network (ANN), Wavelet transform, Volatile Organic Compounds (VOC), Tin oxide, 

Concentration 

1. Introduction  

Gas sensors are widely used for the detection of hazardous, 

flammable, and explosive gases in commercial 

manufacturing environments. The safety of manufacture is 

directly impacted by the quality of these sensors [1]. 

Furthermore, gas sensors are essential for everyday tasks 

like air quality monitoring, environmental monitoring, and 

medical diagnosis [2]. The past few years have seen a great 

deal of research focused on various nanoscale gas sensors 

[3]. Based on how effectively it detect the environment, gas 

sensors are divided into different kinds, including 

electrochemical, semiconductor, and combustion catalytic 

sensors [4]. Because of their affordability, portability, ease 

of manufacturing, and high sensitivity, metal oxide 

semiconductors (MOS) like zinc oxide (ZnO), Indium oxide 

(In2O3), tin oxide (SnO2), tungsten oxide (WO3), and 

nickel oxide (NiO) are thought to be among the best 

constituents for creating resistive gas sensors [5]. 

In recent years, scientists have been working to develop 

robust and dependable MOS gas sensors. They have been 

focusing on enhancing the sensor's reaction quality aspect, 

temperature of operation, selectivity, stability over time, and 

response/recovery speed [6]. It has been demonstrated that 

modifying MOS with other MOS and noble metal is a 

successful way to boost the sensitivity and selectivity of the 

sensor. In order to identify H2 among other gases, A Pd 

functionalized SnO2 sensing film on a microscale was 

developed by Toan et al. that demonstrated ultra sensitivity 

and selectivity [7]. Nevertheless, it is still unable to resolve 

the issue of gas detection at ambient temperature, much like 

the majority of conventional MOS. High operating 

temperatures have been noted to limit the device's 

usefulness in many real-world applications and necessitate 

greater power and integration complexity [8]. Additionally, 

high temperatures make it inappropriate for the detection of 

explosive gases. Finally, humidity will have an impact on 

primarily MOS-based sensors' resistance and response [9]. 

Designing a dependable gas sensor that is not affected by 

humidity is vital because there are situations in which high 

humidity is present, such as identifying the exhaled ethanol 

gas of an intoxicated driver or the gas marker of exhaled 

acetone in a patient with diabetes [10]. Thus, the 

construction and design of synthetic MOS gas sensors at 

minimal temperatures of operation continues to be an 

intriguing and difficult research topic, particularly at room 

temperature [11]. 

At room temperature (RT), carbon materials can detect 

molecules at the trace level due to their larger surface area. 

However, they become fewer selective and exhibit a lower 
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recovery rate due to their high binding energy with the gas 

molecules [12].  However, with a comparatively quicker 

recovery rate, when it comes to detecting different gas 

molecules at higher concentration levels, metal oxides 

(MOx) are good possibilities. However, in order to produce 

advantageous (𝑂2
−,𝑂− and 𝑂2−) oxygen adsorbents on 

sensing substrates; higher operating temperatures (OT) are 

necessary for them. 

Selectivity and drift issues can be effectively addressed by 

smart device developers with the help of machine learning 

(ML). One of the main elements influencing the 

performance of a sensor is selectivity, which applies to 

environmental and medical monitoring applications alike 

[14]. To find a specific VOC trace in human breath among 

thousands of others, for example, medical professionals use 

breath analyzers in order to accurately diagnose diseases 

[15]. For a correct diagnosis, it is therefore highly 

recommended that a breathalyzer be able to identify the 

traces of a particular VOC concentrations with superior 

selectivity [16]. Even though detection at the trace level 

could fail necessary for environment monitoring, a gas 

sensor's excellent selectivity is still a crucial component of 

its overall efficiency [17]. 

In order to address drift compensation and selectivity issues, 

ML has been heavily utilized in electronic noses and smart 

gas sensors over the past few decades. Drift errors have been 

studied using various kinds of techniques, including ML, 

multivariate analysis, and univariate analysis [18]. ML is 

currently being applied to selectivity and drift 

compensation. Through data processing, reliable feature 

information that are able to identify those particular gas's 

"fingerprint" is extracted from the dynamic sensor response 

[19]. There have been reports on a several different 

techniques for signal and processing of data, such as 

frequency domain, transient, and steady-state models. 

Systems with maximum output accuracy are those built 

using techniques for extraction of features and data 

processing in the frequency and transient domains [20]. One 

method for reducing redundant information in high-

dimensional data that has been processed is dimensionality 

reduction. Principal component analysis (PCA), an 

unsupervised technique, is used to identify one main 

component with the most important data can be extracted 

from a signal that contains hundreds of features [21]. In 

order to assess the prediction accuracy of raw data, this 

creates distinct signatures against particular gases, which 

are subsequently trained and tested on [22]. Both linear 

classifiers based on statistical theory and nonlinear 

classifiers based on neural networks are used in the 

development of pattern recognition algorithms. k-nearest 

neighbours (KNN), classification and regression trees 

(CART), Gaussian naïve Bayes (NB), support vector 

machines (SVM), random forest (RF), and artificial neural 

networks (ANN) are examples of common classifiers [23]. 

Diverse well-known works have addressed the issue of 

distinguishing between different gases with a single sensor. 

However, because of the small sample size used in the 

testing, they have either shown limited accuracy or cannot 

be confidently generalized. Hence there is a novel network 

to recognize the patterns in the gas sensing array for medical 

field. 

The main contribution of the work is enumerated as 

• The development and application of a Wavelet-

Transformed ANN (WT-ANN) model combined with 

semiconductor-based gas sensors that can accurately 

identify VOCs in exhaled breath and identify conditions 

like fatty liver disease, diabetes, and lung cancer. 

• By employing B-spline wavelet transfer functions, 

the WT-ANN enhances nonlinearity, enabling accurate 

correlation of complex data and reliable gas concentration 

estimation.  

• This study demonstrates the potential of non-

invasive breath analysis as a diagnostic tool, with promising 

initial results and a pathway for further refinement and 

development. 

The remainder of the article is organized as follows: Section 

1 illustrates the introduction; Section 2 summarizes 

previous research; Section 3 interprets the suggested 

approach; Section 4 presents the suggested method's results; 

and Section 5 summarizes the paper. 

2. Literature Survey 

Chu et.al [24] detected 11 various combinations of carbon 

monoxide (CO) and nitrogen dioxide (NO2), with 

concentrations that vary from 0 to 50 ppm, a sensor array 

made up of four sensors has been used. Average resistance 

over time was introduced to guarantee high recognition 

accuracy while mitigating the impact of sensor noise. Then, 

from each sample, 12 features were extracted, that includes 

recovery time, response time, and response value. 

Following that, different gases were identified with 

accuracy in classification of 94.55% and 100%, 

respectively, C-means clustering and back propagation 

neural network (BPNN) are utilized. Additionally, the 

genetic algorithm (GA) was used to enhance the 

performance of BPNN. Additionally, the input sample 

feature that has the biggest impact on the BPNN model has 

been investigated using a random variable substitution 

technique. Dynamic curves have been converted into grey 

images via grey processing, and a 100% identification 

accuracy has been achieved by automatically extracting 

high-level features using a convolutional neural network 

(CNN) from these images. However, the system requires a 

long training time to converge and cannot achieve 

quantitative identification. 

Ma et.al [25] suggested to use a novel technique in 

conjunction with a deep learning model (DLM) and 
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dynamic response map to increase the sensor array module's 

capacity to identify various substances. The findings 

showed that the sensor array's multidimensional dynamic 

response signals could be thought of as an image form. 

Consequently, ten various types of VOCs and their mixtures 

were identified using image recognition processing and 

recognition techniques. To distinguish between various 

VOCs, Utilizing support vector machine (SVM) learners, 

the error-correcting output codes (ECOC) model was 

applied. The test findings demonstrated that the sensor array 

data-based model was able to classify the VOCs more 

precisely than the model with a single sensor. Additionally, 

a straightforward VOC classification was trained into the 

DLM network with a 92% accuracy rate. However, the 

training procedure for the basic DLM model appeared to be 

overfitting. As a result, the pre-trained VGG-19 model from 

transfer learning was further modified to enhance the DLM's 

generalization property, achieving 90% accuracy for test 

cases. In order to increase the variation across sensors, all 

sensor responses at a given time were normalized before the 

model was constructed. Nonetheless, there are still issues 

with identifying the constituents of a mixture. 

Iwata et.al [26] used a neural network-based regression and 

a ML algorithm to examine the gas through incorporated gas 

sensors of the TiO2 nanotube (NT) type. It was created an 

integrated TiO2-NT gas sensor featuring multiple sensing 

components, each of which had a distinct response 

characteristic. Next, each sensing element's output signals 

after being exposed to a gas mixture were measured. The 

gas mixture mostly contained nitrogen and oxygen with a 

small amount of carbon monoxide. It was used the ML 

technique to analyze the sensor elements' output signals and 

forecast the TiO2-NT sensors for gases were sensitive to 

concentrations of CO and O2. To collect sensor output data, 

seven sets of mixed gas concentrations with different 

concentrations of each component gas were examined. Four 

or five of the seven datasets were used as ML training data 

for the neural network technique, and the concentrations of 

CO and O2 in the final three or two datasets were predicted. 

As a result, it was verified that a larger gas concentration 

prediction accuracy was significantly improved by the 

quantity of sensor elements. For a carbon monoxide 

concentration of 0.02%, using the output signals from ten 

sensor elements, the gas concentration could be predicted 

with less than 0.001% accuracy. However, its accuracy may 

decrease with gas mixtures outside of the training range and 

is more complex and expensive due to the requirement for a 

large number of sensor elements and a large amount of 

training data.  

Li eta.al [27] suggested a cooperative approach based on 

ML algorithms and sensor integration to achieve accurate 

NO2 and NH3 gas detections in actual mining settings. A 

wearable sensing array based on the composite of graphene 

and polyaniline is established with the aim of achieving 

significant improvements in sensitivity and selectivity in 

mixed gas environments. With the introduction of partial 

least squares (PLS) and backpropagation neural network 

(BP-NN) algorithms, it is possible to achieve NH3 and NO2 

concentrations showed over 99% theoretical prediction 

level across a broad range of relative humidity, suggesting 

significant potential for real-world mining identification. 

Additionally, these algorithms can settle the inference of 

moisture and increase the precision of concentration 

forecasting and gas identification. An experimental 

wearable bracelet is designed to provide wireless real-time 

alerts in the event of potentially dangerous gas leaks in 

mines with different relative humidity. It incorporates 

sensing arrays and ML algorithms. Interfering gases rarely 

have an impact on the target gas's concentration prediction 

in hazardous environments due to the sensing materials' 

exceptionally high selectivity. 

Kwon et.al [28] Discussed for the purpose of swiftly and 

accurately identifying hazardous gases, Spiking neural 

networks (SNNs) and gas sensors modelled after field-effect 

transistors (FETs) are the foundation of a novel artificial 

olfactory system proposed. A FET-type gas sensor with a 

micro-heater was built using an In2O3 film as the material 

that senses to detect the gases NO2 and H2S. After the 

sensor was analyzed with the micro-heater bias, pre-bias, 

and gas concentration, 4.8 s of measured transient currents 

were used to generate an efficient data set for training a 

neural network. The backpropagation algorithm, the most 

popular pattern recognition algorithm, was then applied to 

the data set to train an ANN. In the hardware-based SNN, 

Conversion of the weights acquired by ANNs into synaptic 

device conductance. With just 12 sensors, the SNN predicts 

NO2 and H2S concentrations with a low error rate of 

roughly 3%. Furthermore, Due to its neuron's ability to 

directly convert sensor current into voltage spike rate, the 

SNN is able to predict gas concentration in real-time (within 

5 seconds). Unfortunately, obtaining multiple accurate 

readings of the sensor currents necessitates the use of an 

extra circuit to provide a mean current and a high-precision 

AD converter, which increases the system's power 

consumption. 

As a result measuring as a non-invasive and non-contact 

method of determining the concentration of gases in exhaled 

breath, offering potential benefits over traditional diagnostic 

methods for conditions like diabetes and asthma, which are 

costly, time-consuming, and complex. However, the 

proposed system faces challenges such as long training 

times, difficulty in achieving quantitative identification, and 

decreased accuracy with gas mixtures outside the training 

range. Moreover, the complexity and expense of the system 

are exacerbated by the need for a large number of sensor 

elements and extensive training data. Despite the high 

selectivity of the sensing materials, which minimizes the 

impact of interfering gases in hazardous environments, 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 130–137  |  133 

challenges remain in obtaining accurate readings of sensor 

currents, requiring additional circuitry and increasing power 

consumption. Overall, while the proposed method presents 

a promising alternative for diagnosing asthma and diabetes, 

it still requires further refinement to address its limitations 

and optimize its performance. 

3. Proposed Methodology  

Technological developments in the fields of electronics, 

biochemistry, artificial intelligence, and aroma-sensors 

have enabled the development of devices that are able to 

measure and characterize volatile aromas released from a 

wide range of sources. Such devices are referred to as 

electronic sensors. A multisensory array is the standard 

component of an electronic sensor system. The sensors that 

make up the cross-reactive sensor array are progressively 

different and have been selected to react to a broad range of 

chemical classes and distinguish between various mixtures 

of potential analytes. 

Biomedical applications of aroma sensor technology 

include the diagnosis of various diseases, including asthma, 

diabetes (blood sugar), tuberculosis, lung cancer, breast 

cancer, and others, using a sensor array. Inhaling oxygen 

and exhaling carbon dioxide is part of being human. Fewer 

than fifty VOCs, out of the hundreds present in human 

breath at low concentrations, are found in most healthy 

individuals under normal physiological conditions. On the 

other hand, patients with diseases typically have much 

fewer aberrant VOCs. As a result, the identification of 

particular volatile metabolites released from patients' 

expired breath not only offers markers of specific diseases 

but also reflects the overall physiological state as a useful 

index of disease and an indication of general health. Early 

indicators of disease of physiological disorders are thus 

provided by these volatile markers of disease, which are 

frequently released several hours to several days prior to the 

appearance of physically noticeable symptoms of disease. 

Novel molecular markers for distinct diseases—both 

infectious and non-infectious—that serve as indicators. 

Three distinct kinds of volatile species were used in this 

instance, each at varying concentrations. These three are 

benzoene, ethanol, and acetone. The samples that make up 

the data set for these volatile species are matched to the gas 

and auxiliary sensor outputs. An array of gas sensors that 

responds with an odour pattern is called an electronic 

sensor. The sensor array must be coupled with a variety of 

sensors that have varying selectivity patterns in order for a 

single sensor in the array to respond to a wide range of 

compounds rather than being extremely specific. The 

system is made up of six different kinds of FIGARO USA 

Inc. TGS class gas sensors that are all supplied with the 

same heater voltages. A semiconductor layer of tin dioxide 

(SnO2) serves as the sensing element. The following are 

TGS 2610, TGS 2611, TGS 2620, TGS 822, TGS 825, and 

TGS 816. Because of their high sensitivity, metal oxide 

sensors are among the most widely used technological 

options for sensor arrays. Their lack of selectivity is their 

primary drawback. Based on the change in conductivity of 

these sensors in the presence of reducing and oxidizing 

gases, their functioning is comprehended. The type of metal 

oxide and its concentration, as well as the gas's nature, 

determine how much of a reaction occurs. Figure 1 shows 

the flow chart of the work is given below.  

 

Figure 1: Flow chart of the proposed work 

An ANN is the most widely used ML technique. It is built 

by connecting several processing nodes, also known as 

neurons or nodes, in successively linked neuronic layers. 

One popular form of ANN is the multi-layered perceptron 

(MLP), which typically consists of Hidden and output are 

the two feedforward neuronic layers. It is always 

known because there are a similar number of variables that 

depend and nodes for output. Alternatively, the trial-and-

error method is typically used to find a sufficient number of 

concealed nodes. Mathematical processes that are both 

linear (L) and non-linear (NL) can be combined to create an 

artificial neuron. The node's entrance vector (X) multiplied 

by the weight coefficients (W) and bias (b) is combined in 

the linear portion (Eq. 1). 

𝐿 = ∑ 𝑊𝑋 + 𝑏       (1) 

The linear component result must be passed over a certain 

equation, the transfer function (g), by the non-linear part. 

Equation (2) describes the process by which the neuron's 

output (out) was attained. 
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𝑜𝑢𝑡 = 𝑔(𝐿𝑃)                (2) 

In fact, the transfer function facilitates the simulation of 

non-linear problems by neurons and artificial neural 

networks. The primary constraint of the MLP model is its 

limited capacity to include just a limited number of pre-

established transfer functions. Among the most widely used 

transfer functions, such as the radial basis, too little non-

linearity in the logarithm, sigmoid, and tangent allows for 

the accurate correlation of highly non-linear issues. 

To construct the WT-ANN model, researchers used the 

wavelet transformations included in the MLP body as a 

transfer function. Within the WT-ANN's hidden layer 

(𝑔ℎ𝑖𝑑), a function with configurable nonlinearity called the 

B-spline wavelet is frequently employed as a transfer 

function. The B-spline wavelet transfer function's (BSWTF) 

mathematical formula is displayed in equations (3) and (4). 

𝑔ℎ𝑖𝑑(𝑥) = √𝑎𝜙(𝑎𝑥 γ)⁄ γ
exp(2𝜋𝑖𝛽𝑥)              (3) 

𝜙(𝑘) = {
1        𝑘 = 0

sin (𝜋𝑘) 𝜋𝑘         𝑘 ≠ 0⁄
                   (4) 

where α, β, and γ are the BSWTF's nonlinearity and shape-

related parameters. Fig. 2 shows the wavelet transfer 

functions of the B-spline with various values of α, β, and γ. 

It is evident that even the most complicated occurrences 

may be correlated by this function due to its sufficient 

nonlinearity. Furthermore, by adjusting its characteristics 

linked to form, its shape may be engineered. 

The WT-ANN was used to calculate the acetone-detecting 

capacity of the tin oxide sensor in relation to the acetone, 

Ethanol & Benzene concentration, operating temperature, 

and chemistry of the nanocomposite. The neuronic layers 

hidden and output, as well as an input layer, make up the 

built WT-ANN. All of these levels are feed forwardly 

linked. A B-spline wavelet transfer function is used by the 

hidden layer, while a linear transfer function is employed by 

the output layer. 

 

Figure 2: B-spline wavelet transfers functions with 

various values of α, β, and γ 

Input layer 

(SnO2), 

Temperature, 

concentration  

Estimate the 
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Figure 3: Architecture of the WT-ANN 

In order to obtain the output vector (𝑂𝑢𝑡𝐻𝐿), certain 

numerical operations based on Eq. (5) applied to X's input 

vector in the hidden layer. This figure 3 shows that by using 

weighted linkages (𝑊𝐼→𝐻), the hidden layer's nodes are 

fully connected to the vector of independent variables (X).  

𝑂𝑢𝑡𝐻𝐿 = 𝑔ℎ𝑖𝑑{(∑ 𝑊𝐼→𝐻 × 𝑋 − 𝑏) 𝑎⁄ }       (5) 

The movable coefficients between the input and hidden 

layers are a and b. A B-spline wavelet transfer function in 

the hidden layer of the WT-ANN is validated by Equation 

(5). 

The anticipated sensor resistance ratio (𝑆𝑅𝑅𝑃𝑟𝑒𝑑) may be 

obtained by the weighted connections between the output 

and hidden layers (𝑊𝐻→𝑂) and the 𝑂𝑢𝑡𝐻𝐿 are multiplied 

because the output layer of the WT-ANN has a linear 

transfer function is given as equation (6)  

𝑆𝑅𝑅𝑃𝑟𝑒𝑑 = ∑ 𝑊𝐻→𝑂 × 𝑂𝑢𝑡𝐻𝐿                     (6) 

 The changeable coefficients among the output and hidden 

layers are displayed in the, as should be highlighted. During 

the cross-validation stage, all WT-ANN coefficients were 

adjusted using the proper optimization procedure.  

4. Result and Discussion  

A simulation model is developed using Neural Network 

toolbox of MATLAB® software. that there are 130 readings 

are taken, out of which 98 are used to trained the network 

and 25 are used for testing remaining are consider as a 

unknown samples. 

In this work two programs are formed one for the 

verification of gas and other for specifications. 

Maximum results shown at a time = 115 

Maximum number of iterations = 2472 

Maximum allowed mean square error = 0.0000017 

Number of training inputs  = 98; 

Number of testing inputs = 25 

The data which is given to input matrix. Out of 130 data 

only 98 samples are taken which are firstly scaled and then 

given to input matrix. 
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Figure 4: MSE through the WT-ANN's cross-validation 

learning algorithm. 

Figure 4 depicts the MSE for WT-ANN's. Optimizing the 

model's parameters increases the predictive accuracy and 

reduces the Mean Squared Error (MSE) produced by the 

learning algorithm in the WT-ANN cross-validation stage. 

Through the process of minimizing the error between 

predicted and actual values during validation, the WT-ANN 

is guaranteed to generalize well to new data. 

 

Figure 5: Relationship between the optimum WT-ANN's 

predicted SRRs and the corresponding real measurements. 

Figure 5 shows Relationship between WT-ANN's predicted 

SRRs and the corresponding real measurements. A high 

degree of accuracy and dependability in the model's 

predictive abilities is indicated by the correlation between 

the optimal WT-ANN model's predicted Signal-to-

Reference Ratios (SRRs) and their actual measurements. 

This illustrates the model's ability to accurately simulate 

real-world data. 

Table 1: The Output of unknown’s data 
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Table 1 indicates that the first sample of unknown gas is 3 

millilitres of acetone. The data set is tested, and the results 

show that the concentration of acetone is 2.652 millilitres, 

which is close to the 3 millilitres. The nearby value is also 

displayed in all other data. 

Therefore, it is possible to detect VOC traces using the 

existing experimental setup and an ANN tool. When such a 

compound is found in cases of diabetes, lung cancer, or 
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asthma, it indicates the existence of a disease. Considering 

that there is no chance to test on humans. It is expected that 

the system will function satisfactorily for non-invasively 

detecting such diseases. 

5. Conclusion  

In conclusion, the use of the WT-ANN model, which 

incorporates wavelet transformations as transfer functions 

within a multi-layered perceptron, demonstrates a 

significant advancement in detecting volatile organic 

compounds (VOCs) such as acetone with high precision. By 

employing the B-spline wavelet transfer function in the 

hidden layer, the WT-ANN model enhances the nonlinearity 

necessary for accurately correlating complex occurrences, 

surpassing the limitations of traditional MLP models with 

standard transfer functions. This innovative approach was 

effectively utilized to measure the acetone-detecting 

capacity of a tin oxide sensor, showing promising results 

with concentrations closely matching the actual values. The 

successful application of the WT-ANN model to detect 

acetone suggests its potential for broader applications, 

including the non-invasive detection of diseases such as 

diabetes, lung cancer, and asthma. Although direct testing 

on human subjects was not conducted in this study, the 

encouraging results obtained indicate that the system could 

reliably identify VOCs related to these conditions. 

Consequently, the WT-ANN model holds promise for future 

development in medical diagnostics, offering a novel tool 

for early and accurate disease detection through non-

invasive methods. 
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