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Abstract: This research presents a comprehensive framework for the processing and classification of multi-modal colorectal images, 

leveraging an extensive array of data augmentation, neural network models, and advanced techniques. The multi-level classification 

pipeline commences with a Sequential Convolutional Neural Network (SCNN) and progresses to the subsequent stage, featuring an 

abnormal tissue detection module incorporating excess object removal and transformers. The architecture further integrates a hybrid 

Convolutional Neural Network (HCNN), encompassing a Vision Transformer (ViT), a custom cross-modality transformer, a traditional 

CNN, a Multilayer Perception (MLP), and a combined model. The apex of this approach materializes in a final multi-modal classifier, 

validating testing images and executing classification tasks. This framework not only showcases a sophisticated and effective strategy for 

multi-modal colorectal image processing but also exhibits the potential to augment the precision and generalization of Colorectal Cancer 

(CRC) risk assessments. The incorporation of diverse imaging modalities and advanced neural network architectures positions this 

method as a robust tool for refining the accuracy of CRC risk predictions in clinical applications. 

Keywords: Colorectal Cancer, HCNN, Multilayer Perception, MLP, SCNN. 

1. Introduction 

This method explores the intersection of computer science 

and medicine, presenting a dynamic fusion that holds 

immense potential for revolutionizing healthcare practices. 

The initial discourse focuses on the role of Machine 

Learning (ML), a standout in computer science, in 

addressing medical challenges. It unfolds the versatility of 

ML applications in pathology, from disease identification 

to the creation of intelligent systems capable of 

recommending traditional medications based on patient 

symptoms [8].Shifting to the realm of cancer risk, the 

research explores a strong birth cohort effect, signaling 

population-level changes in behavioral factors influencing 

cancer susceptibility. Despite coverage by major insurers, 

the slow implementation of screening in community 

settings is highlighted. Moreover, it accentuates the 

untapped potential of identifying high-risk families, even 

in the absence of a genetic syndrome, as a strategic 

approach to mitigating the cancer burden through early 

screening. 

The narrative then transitions to recent discussions 

surrounding CRC diagnosis, emphasizing challenges faced 

in conventional diagnostic methods and innovative 

solutions on the horizon. The traditional gold standard of 

CRC diagnosis via electronic colonoscopy is examined, 

with an acknowledgment of the challenges of endoscopic 

disinfection standards [3]. Lifestyle factors, dietary 

patterns, and the westernization of lifestyle are recognized 

as influencers of CRC morbidity, pointing toward the need 

for novel diagnostic approaches [15].Expanding the scope, 

the proposal incorporates discussions on microbiome-

based approaches for CRC screening, underscoring the 

impact of biomarker selection identification algorithms on 

massive gut microbiome data [9]. Furthermore, it touches 

upon the challenges faced in developing Deep Learning 

(DL) algorithms for medical image analysis, emphasizing 

the need for well-organized and labeled training data and 

defined rules for algorithm comparison [13]. 

Our approach integrates an SCNN with an abnormal tissue 

detection module, leveraging transformers. The 

architecture extends to an HCNN, encompassing a ViT, a 

cross-modality transformer, a traditional CNN, MLP, and a 

combined model. The final multi-modal classifier enhances 

precision and generalization in CRC risk assessments, 

showcasing the efficacy of advanced neural network 

architectures and diverse imaging modalities as shown in 

Figure1. 

 

Figure 1.Diverse imaging modalities employed in the 

proposed 

The structure of the document unfolds in the following 

manner: Section 2 probes into related works, providing an 

overview of previous studies related to the proposed 

method. Section 3 comprehensively explores the proposed 
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method and its development flows. Moving forward, 

Section 4 examines the results and discussions on both 

existing and proposed methods. The concluding section 

summarizes the proposed method, highlights its 

implications, and outlines avenues for future research in 

Section 5. 

2. Related works 

The realm of medical imaging has undergone a 

transformative evolution, propelled by the advancements in 

ML methodologies. DL strategies have enabled machines 

to decipher high-dimensional data, encompassing diverse 

formats such as images, multimodal pathology scans, and 

video files. Particularly adept in handling biological 

images, numerous supervised machine-learning techniques 

have been developed [5]. In Low- and Middle-Income 

Countries (LMICs), where achieving optimal cancer care 

requires cost-effective interventions, leveraging ML in 

healthcare planning becomes pivotal. This ensures an 

equitable distribution of healthcare resources, addressing 

health disparities on a global scale. Employing a health 

continuum approach becomes imperative, guiding public 

awareness campaigns about the benefits of screening 

programs and the significance of recognizing early signs of 

cancer [1]. 

In the quest for advancing early cancer diagnosis, we 

underscore the importance of innovative liquid biopsy-

based tests. Our comprehensive review delves into the 

current landscape of liquid biopsy modalities, exploring 

their role in early cancer diagnosis and monitoring. 

Emphasizing both technical and clinical challenges 

intrinsic to the development of clinically relevant liquid 

biopsy assays, we underscore the necessity for adopting 

best practices. Establishing these practices becomes 

instrumental in navigating the biomarker discovery 

pipeline, ultimately enhancing the translational potential of 

liquid biopsy findings [7]. This holistic approach seeks to 

propel the integration of cutting-edge technologies into 

clinical practice, fostering a new era of precision medicine 

in cancer care. 

Addressing the intricate differences in healthcare 

organization, delivery, resources, infrastructure, and social 

norms between LMICs and High-Income Countries (HICs) 

demands a systematic, system-strengthening approach. 

This approach is essential not only to bridge the gaps but 

also to engage eligible screening populations effectively. 

The design and delivery of screening interventions must 

intricately consider the complex implementation 

considerations inherent in diverse global healthcare 

landscapes [2]. 

The integration of genomic data has empowered physicians 

and healthcare decision-makers to delve deeper into 

understanding patients and their responses to therapy. This 

integration has spurred the application of ML and DL to 

tackle complex challenges in cancer research. Tasks 

include the creation of cancer risk-prediction models aimed 

at identifying individuals at a heightened risk of 

developing cancer and studying the disease's progression 

[16]. 

CRC, largely preventable through the avoidance of 

modifiable risk factors and early detection, has witnessed a 

surge in early-onset cases (EOCRC). While it was 

traditionally linked to hereditary syndromes, the 

contemporary rise is attributed to widespread inactive 

lifestyles and unhealthy eating habits globally [6]. The 

expansion of screening colonoscopy programs holds the 

potential to increase early CRC diagnoses. Consequently, 

the development of additional reporting categories that 

offer nuanced prognosis stratification for these patients 

becomes imperative. This review delves into novel 

concepts and challenges associated with the pathological 

assessment and reporting of CRC [4].  

This comprehensive exploration aims to pave the way for 

innovative strategies in the diagnosis, prevention, and 

management of CRC on a global scale. In recent times, 

ML has emerged as a powerful tool for cancer prognosis 

and prediction, aligning seamlessly with the evolving 

paradigm of personalized and predictive medicine. This 

transformative strategy has influenced the landscape of 

cancer development and therapy, steering them toward 

more tailored and effective approaches. A crucial aspect of 

this application is the ability of ML algorithms to discern 

significant patterns within vast datasets. This capability is 

harnessed to develop prediction models that anticipate the 

onset and potential cure of cancer [10]. 

The proposed methodology Automated Gastrointestinal 

Feature Classification (AGFC) involves the creation of a 

robust machine-learning classification model. It integrates 

feature extraction methods, explores multi-view medical 

image registration, employs fusion algorithms, and 

evaluates performance using well-defined indicators. The 

overarching goal of this research is to make a meaningful 

contribution to the field by presenting a reliable and 

accurate solution for the detection of lung cancer. Such 

advancements are poised to significantly enhance patient 

outcomes, marking a substantial stride in the realm of 

medical applications within this domain [11].  

This innovative approach holds the promise of not only 

improving the accuracy of cancer detection but also 

revolutionizing the landscape of medical practices in 

cancer care. The conventional gold standard for diagnosing 

CRC involves obtaining materials through electronic 

colonoscopy for pathological confirmation. Additionally, 

endoscopy emerges as an effective method for treating 

patients experiencing gastrointestinal hemorrhage or ileus 

without peritonitis. However, challenges arise as the 
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previous endoscopic disinfection standard may not ensure 

the inactivation of new coronavirus, posing risks of doctor-

patient and patient-patient cross infections [3]. 

The surge in CRC morbidity is intricately linked to 

lifestyle choices, body fatness, and dietary patterns. 

Convincing evidence suggests that physical activity offers 

protective benefits, while increased consumption of red 

and processed meat, as well as alcoholic drinks, escalates 

the risk of developing the disease. Societal progress and 

economic development, while improving socioeconomic 

conditions, also trigger a shift in dietary patterns, often 

referred to as the Westernization of lifestyle [15]. 

The mini-review explores the impact of the biomarker 

selection identification algorithm on extensive gut 

microbiome data in altering the performance of CRC 

diagnosis. It provides a comprehensive summary of current 

microbiome-based approaches for CRC screening, 

encompassing experimental design, markers selection, and 

identification methods. The review also proposes potential 

solutions to enhance CRC detection and prediction [9]. 

Despite the promise of DL algorithms in medical image 

analysis, significant challenges persist, including the 

scarcity of well-organized and labeled training data, a lack 

of benchmark and test data, and a need for clearly defined 

rules for comparing algorithms. This becomes crucial as 

systems with high false-positive rates may diminish 

radiologist sensitivity. Moreover, limited access to 

previously developed algorithms for comparison adds to 

the complexity [13]. 

The effectiveness and efficiency of ML solutions hinge on 

the nature and characteristics of data and the performance 

of learning algorithms. Within the realm of ML algorithms, 

various techniques such as classification analysis, 

regression, data clustering, feature engineering, 

dimensionality reduction, association rule learning, and 

reinforcement learning play a vital role in constructing 

data-driven systems [12].  

This comprehensive exploration illuminates the 

multifaceted landscape of CRC diagnosis, addressing 

challenges and offering potential breakthroughs in the 

ongoing quest for improved cancer detection and 

prediction. A potential resolution to the challenges faced in 

medicine and healthcare has emerged from an unexpected 

source – the realm of computer science. Remarkably 

progressive in comparison to other scientific and 

technological fields, computer science has provided a 

unique perspective. The strides made in ML, a subset of 

computer science, offer a wide range of applications in 

pathology, spanning from disease identification to the 

development of intelligent systems capable of 

recommending traditional medications based on a patient's 

symptoms [8]. 

Within the context of cancer risk, a robust birth cohort 

effect points toward population-level changes in behavioral 

factors. Despite being covered by major public and private 

insurers, the implementation of screening has been 

sluggish in community settings. However, identifying 

high-risk families, even in the absence of a genetic 

syndrome, presents a significant opportunity to alleviate 

the burden of cancer through early screening initiatives 

[14]. This innovative convergence of medicine and 

computer science holds promise for advancing healthcare 

practices, introducing intelligent solutions, and redefining 

approaches to cancer prevention and identification. 

3. Proposed Methodology 

3.1. Categorization of Images 

Colorectal input images have been squarely collected and 

organized into seven distinct classes, each housed in its 

dedicated folder. These classes encompass Tumor, Stroma, 

Complex, Lympho, Debris, Mucosa, and Adipose, 

providing a comprehensive representation of the diverse 

elements present in colorectal samples. This thorough 

categorization enhances the efficiency of image analysis 

and facilitates a nuanced understanding of the various 

components within colorectal tissues, contributing to 

advancements in research, diagnostics, and medical 

interventions related to colorectal health. 

The ImageDataGenerator is employed for performing data 

augmentation on training images. This tool in ML and 

computer vision enhances the robustness of the training 

dataset by applying various transformations to the images, 

such as rotation, scaling, and horizontal flipping. Data 

augmentation is instrumental in preventing overfitting and 

improving the model's generalization capabilities, enabling 

it to better handle diverse and real-world scenarios. By 

introducing variations in the training data through the 

ImageDataGenerator, the model becomes more adept at 

recognizing patterns and features, ultimately leading to 

more effective and accurate predictions during the training 

process as shown in Figure2. 

 

       

Figure 2.Training dataset 

The ImageDataGenerator plays a significant role in 

augmenting training images by incorporating multiple 

transformations. This includes rescaling pixel values to a 

standardized range, applying shear transformations as 

shown in Figure 3to introduce deformation, implementing 

zooming to simulate variations in perspective, and 

incorporating random horizontal flipping for added 
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diversity. 

 

 

 

 

 

Figure 3.Shear transformation 

These augmentation techniques contribute to a more robust 

and versatile training dataset, enabling ML models to 

better adapt to real-world scenarios and enhancing their 

ability to generalize effectively during the training process. 

The shear transformations introduce deformation by 

altering the angles of the image. The formula for shear 

transformations in a 2D image space involves transforming 

the coordinates (x, y) as follows Eq. (1) and Eq. (2): 

𝑥′ = 𝑥 + 𝑦𝑆𝑅         (1) 

𝑦′ = 𝑦                   (2) 

Here, x' and y' represent the transformed coordinates and 

shear range SR is the parameter controlling the amount of 

shear applied. The shear transformation is applied along 

the x-axis. Adjustments can be made based on specific 

requirements and the characteristics of the dataset. 

Incorporating operations such as rescaling pixel values as 

shown in Figure4, shear transformations, zooming, and 

random horizontal flipping during data augmentation serve 

to enrich the diversity of the training dataset. 

 

 

 

 

 

Figure 4.Image pixel 

These augmentations collectively contribute to refining the 

neural network's ability to generalize effectively. By 

exposing the model to a varied set of augmented images, it 

becomes more adept at recognizing patterns and features 

across a spectrum of conditions, ultimately improving its 

robustness and performance on new, unseen data. Batches 

of augmented image data are generated from the 

designated training directoryas shown in Figure 5. 

 

Figure 5.Flow of augmented image data 

The images undergo resizing to a specific dimension and 

are organized into batches according to the defined batch 

size. Concurrently, the labels associated with these images 

are encoded in categorical format. This process ensures 

uniformity in image dimensions and facilitates the 

preparation of structured data batches for training, where 

categorical encoding enables the model to effectively 

interpret and learn from the labeled information.The 

classification process involves a multi-neural network 

model. Initially, a SCNN is employed.  

The sequential CNN begins with the application of 

convolutional layers to the input images and denotes the 

input image as I, and the weights and biases of the 

convolutional layer as w1 and b1 respectively. The output 

feature map C1 is computed for convolution (Eq. (3)): 

𝐶1= 𝑅(𝑤1∗I+𝑏1)                                (3) 

Here, ∗ denotes the convolution operation, and 𝑅 is the 

Rectified Linear Unit (ReLU) activation function, 

introducing non-linearity to the model. Subsequent max-

pooling𝑀𝑃 is performed with a pool size 𝑃𝑆of (2, 2) (Eq. 

(4)): 

𝑃1= 𝑀𝑃(𝐶1, 𝑃𝑆 = (2, 2))                      (4) 

This process is repeated for two additional convolutional 

layers, resulting in feature maps 𝐶2 and 𝐶3 and 

corresponding max-pooled outputs 𝑃2 and 𝑃3.The flattened 

output F is then obtained by reshaping the last max-pooled 

feature map (Eq. (5)): 

F=𝐹(𝑃3)                                           (5) 

The flattened features are subsequently processed through 

dense layers. Denoting the weights and biases of the first 

dense layer as 𝑤2 and 𝑤3, the output of the first dense 

layer 𝐷1 is calculated as per Eq. (6): 

𝐷1= 𝑅(𝑤2⋅F+𝑏2)                              (6) 

Finally, the output layer employs the 

SoftMax(𝑆𝑀 ) activation function for binary classification, 

where 𝑤3 and 𝑏3 are the weights and biases (Eq. (7)): 

Output=𝑆𝑀(𝑤3⋅𝐷1+𝑏3)                       (7) 

This sequential CNN architecture is trained using the 

Adamoptimizer, categorical cross-entropy loss function, 

and accuracy metric. The convolutional and dense layers, 

along with their associated activation functions, 

collectively contribute to the model's ability to extract 

hierarchical features and make accurate binary 

classifications.Subsequently, in the next level, abnormal 

tissue growth detectionis applied, leveraging excess object 

extraction techniques and transformers. abnormal tissue 

growth involves a multi-step process, incorporating excess 

object extraction techniques followed by the application of 

Training Directory 

Image Data Generator Augmented Image Batches 

Neural Network Model Training 

Pixel 
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transformers as shown in Table1. 

Table 1.Abnormal tissue growth 

Protocol 
Experiment 

1 

Experiment 

1 

Experiment 

1 

VDCN 0.756 0.854 0.823 

KNN 0.801 0.878 0.845 

SVM 0.782 0.924 0.876 

Linear 

Regression 
0.732 0.934 0.891 

AGFC 0.892 0.952 0.899 

3.2. Excess Object Discovery Techniques 

The expression image smoothISmooth represents a 

convolution operation applied to a grayscale image 

Igraywith a blurring filter Gaussian kernelG(I,j). This 

operation is commonly used in image processing for tasks 

such as image smoothing or noise reduction. The 

expression ∇Ismooth represents the squared magnitude of 

the gradient of a smoothed image Ismooth operation is 

commonly used to compute the magnitude of the image 

gradient, providing information about the rate of intensity 

change across the image. 

Converted the input image I to Igray to simplify further 

processing. 𝐼𝑅 , 𝐼𝐺 , 𝐼𝐵 indicates the intensity of the red image 

channel, green image channel, and blue image channel in 

order (Eq. (8)). 

       Igray=0.299⋅𝐼𝑅+0.587⋅𝐼𝐺+0.114⋅𝐼𝐵               (8) 

Smoothed the grayscale image using a Gaussian filter to 

reduce noise (Eq. (9)). 

Ismooth(x,y)=∑𝑖=−𝑘
𝑘∑𝑗=−𝑘

𝑘
G(i,j)⋅Igray(x−i,y−j) (9) 

Computed the gradient of the smoothed image to identify 

regions with abrupt intensity changes (Eq. (10)). 

∇𝐼smooth = √𝐼smooth, 𝑥2 + 𝐼smooth, 𝑦2            (10) 

Utilize the intensity gradient to generate anexcess map 

highlighting the area of interest (Eq. (11)). 

S(x,y)=∣Ismooth,x∣+∣Ismooth,y∣                   (11) 

3.3. Application for Abnormal Tissue Growth Detection 

▪ Identify regions of interest based on the excess 

map, creating initial proposals for potential 

abnormal tissue growth. 

▪ Extract features from each region using a region-

specific transformer model. 

▪ Aggregate the features from all proposed regions 

to obtain a comprehensive representation of the 

entire image. 

▪ Employ a classification layer to predict whether 

each region contains abnormal tissue growth or 

not. 

The grayscale conversion ensures uniform treatment of 

color information, followed by Gaussian smoothing to 

reduce noise. The intensity gradient helps detect edges, and 

the excess map emphasizes regions with prominent 

intensity changes. Regions proposed based on the excess 

map are individually processed by a transformer model, 

capturing spatial relationships within each region. 

Extracted features are then aggregated to provide a holistic 

understanding of the image. Classification of the 

aggregated features determines the presence of abnormal 

tissue growth. 

This approach enhances the model's capability to discern 

and classify features, contributing to more accurate and 

nuanced classification results in the context of abnormal 

tissue detection. 

Sequential CNN: 

Utilizes a SCNN model for feature extraction from 

input images. 

Consists of convolutional layers for spatial feature 

learning and pooling layers for down-sampling. 

Flattening and dense layers for capturing high-level 

features and performing classification. 

Compiled using the Adam optimizer, categorical 

cross-entropy loss, and accuracy metric. 

Abnormal Tissue Growth Detection: 

Stage 1 (Excess Object Extraction): 

Involves the extraction of excess maps 

highlighting potential regions of interest 

(abnormal tissue growth). 

DL- a method employed for standard 

operating environments. 

Stage 2 (Transformer Model): 

Applied a ViT to the regions identified by the 

excess map. 

The transformer model processes the input 

regions and identifies abnormal tissue growth 

based on learned representations 

 

The SCNN model is structured with three convolutional 

layers, each succeeded by max pooling layers. Within the 

first level, the flattened output from these layers is linked 

to a dense layer comprising 128 neurons. The ultimate 

layer employs SoftMax activation to facilitate multiclass 

classification, ensuring a robust and effective classification 
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Convoluti

onal 

Layer 

Image Height X 

Width X Image 

Channels RGB 

Instantiate 

Sequential 

CNN 

Mode  

Flatten 

Layer 
Dense 

Layer 
Compile 

the Model 

process for the given model architecture.The model is 

compiled using the Adam optimizer, categorical cross-

entropy loss function, and accuracy metric for evaluation. 

3.4. Adam Optimizer 

The Adam optimizer combines ideas from RMSprop and 

Momentum optimizationtechniques. The update rule for 

the parameters θ is given by (Eq. (12) and Eq. (13)): 

𝑚𝑡= 𝛽1⋅𝑚𝑡−1+(1−𝛽1)⋅∇J(𝜃𝑡)                      (12) 

𝑣𝑡=𝛽2⋅𝑣𝑡−1+(1−𝛽2)⋅(∇J(𝜃𝑡))2                  (13) 

Here, mt and vt are the first and second moments of the 

gradients, 𝛽1 and 𝛽2⋅𝑣𝑡 are the decay rates (close to 1) 

∇J(𝜃𝑡) is the gradient of the loss function J(𝜃𝑡)to the 

parameters 𝑚𝑡. The parameters are updated as follows (Eq. 

(14)): 

𝜃𝑡 − 1 = 𝜃𝑡 −
𝛼

√𝑣𝑡+𝜖
− 𝑚𝑡                      (14) 

Where α is the learning rate and ϵ is a small constant to 

avoid division by zero. 

3.5. Categorical Cross-Entropy Loss Function 

For multi-class classification problems, the categorical 

cross-entropy loss for a single training example is given by 

(Eq. (15)): 

J(y,y)=−∑iyi⋅log(yi)                           (15) 

Here, y is the true distribution y is the predicted 

distribution, and the sum is over all classes.The overall 

categorical cross-entropy loss for a batch of examples is 

the average of individual losses (Eq. (16)): 

Jcategorical=
1

𝑁
∑𝑘=1

𝑁
J(yk,y_k)                     (16) 

Where N is the batch size. 

3.6. Accuracy Metric 

Accuracy (𝐴)measures the fraction of correctly classified 

examples in the entire dataset. For a multi-class 

classification problem, it is defined as per Eq. (17): 

𝐴 =
𝑇𝐶𝑃

𝑇𝑃
                     (17) 

Where,  𝑇𝑃  is the total number of predictions, and 𝑇𝐶𝑃  is a 

total number of correct predictions.In mathematical terms 

(Eq. (18)): 

𝐴 =
1

𝑁
∑𝑘=1

𝑁𝛿(argmax(𝑦^𝑘), argmax(𝑦𝑘))  (18) 

Here,δ(a,b) is the Kronecker delta, equal to 1 if a=b and 0 

otherwise. 

It incorporates three convolutional layers characterized by 

escalating filter sizes and employs ReLU R activation to 

enhance feature extraction. Max pooling layers are 

subsequently applied to further refine the extracted 

features, contributing to the overall effectiveness of the 

model in capturing relevant patterns in the input data. 

The flattened output, derived from the initial convolutional 

layers and max pooling in the initial level, is linked to a 

subsequent dense layer featuring 128 neurons, each 

activated by the ReLU activation function. Following this, 

the final dense layer is configured with the same number of 

neurons as classes within the classification task, utilizing 

the SoftMax activation function for precise class 

assignments. During the compilation phase, the model is 

equipped with the Adam optimizer, categorical cross-

entropy loss function, and accuracy metric to optimize its 

performance during training. To ensure compatibility with 

the model's architecture, the input shape is specifically set 

to a predefined size, aligning with the dimensions expected 

by the model for processing input images. Notably, in the 

next level, a hybrid CNN processing architecture is 

employed, enhancing the model's capacity for extracting 

intricate features and improving its overall classification 

capabilities. The flattened output, denoted as F, is derived 

by reshaping the output tensor from the last max-pooling 

layeras shown in Figure 6. 

 

 

 

 

 

 

Figure 6.Image processed methodology 

If the output tensor shape is (H,W,C) (height, width, 

channels), the flattened output F can be expressed as per 

Eq. (19): 

F=Reshape(H×W×C)                   (19) 

The output D1 from the dense layer with ReLU activation 

can be expressed as per Eq. (20): 

𝐷1=𝑅(𝑤2⋅F+𝑏2)                          (20) 

Where, 𝑤2 is the weight matrix for the dense layer and 𝑏2 

is the bias vector for the dense layer.The final dense layer, 

producing the model's output, can be expressed as per Eq. 

(21): 

Output=SoftMax(𝑤3⋅𝐷1+𝑏3)       (21) 

Here, 𝑤3  is the weight matrix for the final dense layer and 

𝑏3 is the bias vector for the final dense layer. During the 

compilation phase, the model is configured with the Adam 

optimizer, categorical cross-entropy loss function, and 

accuracy metric: 

text{Model.compile(optimizer=Adam(),loss='categoricalc

ross-entropy, metrics=['accuracy']} 
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VT and MLP Individual Output  Concatenation Layer 

 

Output Layer 

 

Hybrid Processing Layer Final Layer 

 

Image input and Non Image Input 

The Adam optimizer parameters (learning rate, beta_1, 

beta_2, and epsilon) are set to default values unless 

specified otherwise.The categorical cross-entropy loss is 

used for multi-class classification.Accuracy is chosen as 

the evaluation metric.The input shape is set to a predefined 

size (input_shape=(H,W,C)), ensuring compatibility with 

the model's architecture. This is typically done when 

creating the first layer of the model: 

text{model.add(Conv2D(32, (3, 3), input_shape=(H, W, 

C), activation='relu'))} 

The ultimate neural network model is crafted by 

amalgamating various architectures to proficiently process 

multi-modal data. This comprehensive ensemble includes 

the ViT, renowned for its effectiveness in handling image 

data through self-attention mechanismsas shown in Figure 

7. 

 

 

Figure 7.Self-attention image handling 

Additionally, a custom cross-modality transformer is 

incorporated, designed to seamlessly integrate information 

from diverse data modalities. The self-attention mechanism 

in transformers calculates attention scores by comparing 

each element in a sequence against every other element, 

capturing relationships and dependencies. Given an input 

sequence X, the self-attention output Y is calculated as 

follows (Eq. (22)): 

𝑦 = S𝑀
XW𝑄(XW𝑘)𝑇

d𝑘
XW𝑉           (22) 

Where, W𝑄, W𝐾 , and W𝑉 are learnable weight matrices for 

queries, keys, and values and d𝑘 is the dimension of the 

key vectors. 

For the custom cross-modality transformer, let's consider 

two modalities, images (I) and text (T). We project each 

modality into a shared latent space through modality-

specific projection layers (Eq. (23) and Eq. (24)): 

P𝐼=Projection(I,W𝐼)                 (24) 

P𝑇=Projection(T,W𝑇)               (25) 

Where, P𝐼 and P𝑇 are the projected representations of 

images and text and W𝐼  and W𝑇 are the respective weight 

matrices.The multi-head cross-modality attention combines 

information from both modalities. Given the projected 

representations P𝐼 and P𝑇, the cross-modality attention 

output C is calculated as follows (Eq. (26)): 

(𝐶 = 𝐶𝑜𝑛𝑐𝑎𝑡(M𝐻𝐴)P𝐼,P𝐼))             (26) 

Here, MHAttentionM𝐻𝐴 is a multi-head cross-modality 

attention mechanism and 𝐶𝑜𝑛𝑐𝑎𝑡 concatenates the results 

from different attention heads. 

3.7. Modality-Specific Transformation 

After cross-modality attention, modality-specific 

transformations are applied to the combined representation 

(Eq. (27) and Eq. (28)): 

O𝐼=Transformation(C, WO𝐼)        (27) 

O𝑇=Transformation(C, WO𝑇)      (28) 

Where, O𝐼  and O𝑇 are the final output representations for 

images and text and WO𝐼  and WO𝐼are the respective output 

transformation weight matrices (Eq. (29)). 

Ensemble Output =

Fusion(ViT(𝐼), CrossModalityTransformer(P𝐼 , P𝑇)    (29) 

Where, fusion combines the outputs from different 

components. 

The CNN augments the model's capability to capture 

spatial hierarchies and intricate patterns within image data. 

A sequential model is created to stack layers sequentially. 

A convolutional layer is added to the model with 32 filters 

of size (3, 3) and ReLU activation. The input shape is 

specified as (256, 256, 3), assuming the input images are 

256x256 pixels with 3 color channels (RGB). The ReLU 

activation function introduces non-linearity to the model, 

allowing it to capture complex patterns in the data 

Simultaneously, MLP contributes its strengths in 

processing non-image modalities, facilitating a well-

rounded approach to multi-modal information. The output 

(O) from the dense layer can be calculated as follows (Eq. 

(30)): 

O = text{R}(W X+b)       (30)  

Where, W is the weight matrix for the dense layer, X is the 

input vector with a size of 512 and b is the bias vector. 

This dense layer transforms the input from non-image 

modalities using a set of weights and biases and applies the 

ReLU activation, providing a non-linear mapping of the 

input data. In a complete multi-modal model, concatenate 

the outputs from both the CNN and MLP layers and add 

additional layers for further processing, creating a holistic 

approach to handling multi-modal information. Lastly, a 

combined model harmoniously merges these individual 

architectures, harnessing their synergies to create a robust 

and versatile neural network capable of effectively 

processing and interpreting multi-modal data for various 

applications.  

This integration ensures that the model can harness the 

unique strengths of each architecture, providing a holistic 
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and powerful solution for complex multi-modal data 

processing tasks. 

The architectural design encompasses a cross-modality 

transformer model, specifically tailored for processing both 

image and text data concurrently. This intricate model 

commences by receiving input from both modalities and 

skilfully projecting them into a shared latent space, 

facilitating a cohesive representation of the information 

from both sources. The integration of multi-head attention 

mechanisms within the model is instrumental in capturing 

nuanced cross-modality relationships, allowing the model 

to discern intricate connections and dependencies between 

the image and text data. Subsequently, this cross-modality 

transformer crafts a joint representation that encapsulates 

the synergies and correlations between the image and text 

modalities. This comprehensive joint representation serves 

as the foundation for subsequent binary classification 

tasks, providing a holistic and unified perspective that 

optimally exploits the complementary nature of image and 

text data in the context of the intended classification 

objectives. 

For each class-specific input image, a thresholding process 

is employed to generate a binary mask, discerning specific 

regions of interest within the image. Subsequently, this 

binary mask is utilized to produce a blurred version of the 

original image, strategically enhancing certain aspects 

while preserving the overall structure. The culmination of 

this intricate process involves creating a result image by 

duplicating the original input image and selectively 

replacing pixels at locations where the refined binary mask 

equals 1. This replacement is executed by incorporating 

corresponding pixels from the previously generated blurred 

image, thereby yielding a visually refined and nuanced 

representation that highlights specific class-related features 

within the original image. This method not only 

emphasizes critical details but also adds a layer of 

perceptual enhancement to the final result image through 

the integration of the carefully generated binary masks and 

the strategically blurred elements. In the subsequent phase 

of image processing as shown in Figure 8, morphological 

operations are systematically applied to further refine the 

binary mask. 

 

Figure 8. AGFC Process 

This refinement involves the process, starting with dilation 

followed by erosion, meticulously executed on the binary 

mask. Dilation amplifies the boundaries and spatial extent 

of the mask, enhancing its coverage over salient regions, 

while erosion subsequently mitigates these amplified 

regions, ensuring a more precise delineation of the targeted 

features. This strategic application of morphological 

operations serves to fine-tune the binary mask, effectively 

addressing potential imperfections or inconsistencies in the 

initial thresholding process. 

Once the refined mask is obtained, it is harmoniously 

integrated with the previously generated blurred image. 

This integration process entails combining the saliency 

information captured by the refined mask with the visually 

enhanced elements from the blurred image. The resultant 

image, emerging from this intricate interplay between 

refined saliency masks and strategically blurred features, 

encapsulates a heightened representation of the class-

specific characteristics within the original input image. By 

seamlessly merging these refined components, the final 

image achieves a harmonious balance between enhanced 

saliency and preserved structural details, culminating in a 

visually compelling and informative representation tailored 

to the characteristics of the specific image class. 

The aforementioned process is iteratively applied to each 

image within the designated class directory. Subsequently, 

the resulting outputs, which have undergone intricate 

refinement and integration steps, are systematically 

processed within the cross-modality transformer 

framework. Within this transformer architecture, two 

distinct input layers are defined, catering to both image and 

text data (represented by the class name). This dual-input 

configuration ensures that both modalities contribute 

synergistically to the transformer's learning process, 

allowing it to effectively capture cross-modality 

relationships and generate comprehensive joint 

representations. By accommodating both image and text 

data in a unified manner, the cross-modality transformer 

facilitates a holistic understanding of the multi-modal 

information, enhancing the model's capacity for accurate 

and nuanced classification across diverse classes. 

In the processing pipeline, both the image and text inputs 

undergo flattening operations facilitated by the Flatten 

layer, thereby transforming multi-dimensional input data 

into concise one-dimensional vectors. This flattening step 

streamlines the data representation, creating a more 

manageable format for subsequent operations. Following 

the flattening process, modality-specific projections are 

strategically applied to guide the transformed vectors into a 

shared latent space. This shared space serves as a cohesive 

representation, ensuring that the distinct modalities' 

information is effectively integrated and aligned for 
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subsequent stages of processing within the model. Through 

this orchestrated sequence of operations, the model can 

seamlessly fuse image and text data into a unified, 

interpretable representation within the shared latent space, 

optimizing its capacity to capture meaningful cross-

modality relationships. 

The flattened image and text inputs undergo independent 

processing through dense layers, a pivotal step in the 

model's architecture. These dense layers serve as 

transformation modules, operating on each modality's 

flattened vectors separately. The primary objective of this 

modality-specific projection is to meticulously transform 

the input data, allowing it to seamlessly converge into a 

shared latent space characterized by a specified dimension. 

By employing dense layers independently for both image 

and text inputs, the model tailors the transformation 

process to the unique characteristics of each modality, 

facilitating an effective alignment of information within 

the shared latent space. This shared space, defined by the 

specified dimension, encapsulates a unified representation 

that harmoniously integrates both image and text data. The 

application of dense layers in this manner ensures that the 

model can extract and synthesize relevant features from 

each modality, contributing to a comprehensive and 

cohesive representation in the shared latent space, thus 

enhancing the model's overall capability for cross-modal 

understanding. 

The projected image and text data are seamlessly 

integrated into the multi-head attention mechanism through 

the utilization of the MultiHeadAttention layer. This layer 

plays a crucial role in enabling the model to selectively 

attend to various aspects of the input data, fostering 

intricate cross-modality interactions. By employing 

multiple attention heads, the mechanism can 

simultaneously focus on different features and 

relationships within both the image and text modalities. 

This dynamic attention mechanism allows the model to 

discern and weigh the significance of different elements in 

the input data, promoting a nuanced understanding of 

cross-modality relationships. Through the collaborative 

operation of the attention heads, the multi-head attention 

mechanism enhances the model's capacity to capture 

complex dependencies between image and text data, 

ultimately contributing to the creation of a more robust and 

comprehensive joint representation in the shared latent 

space. 

Following the application of the multi-head attention 

mechanism, the processed data undergoes a Reshape and 

Flatten Cross-Modality operation to refine its structure. 

Initially, the output of the cross-modality attention is 

systematically reshaped to possess a single unit along a 

new dimension, optimizing the data's organization for 

subsequent processing stages. This reshaping operation 

enhances the model's ability to extract intricate 

relationships and dependencies from the cross-modality 

attention output. Subsequently, the flattened layer is 

deployed to transform the reshaped 3D data into a more 

compact and manageable 1D format. This flattening step is 

essential for simplifying the data representation, 

facilitating streamlined processing in subsequent layers of 

the model. By reshaping and flattening the cross-modality 

attention output, the model ensures an efficient 

transformation of the intricate cross-modal relationships 

into a format conducive to further analysis and 

classification, thereby enhancing its overall performance. 

Following the reshaping and flattening of the cross-

modality attention output, a pivotal step in the model 

architecture involves the creation of a joint representation 

layer to process the refined data. This layer serves as a 

nexus where the transformed information from both image 

and text modalities converges, facilitating a cohesive and 

integrated representation. The joint representation layer 

plays a crucial role in synthesizing the insights garnered 

from the cross-modality attention mechanism, ensuring 

that the model can effectively capture and leverage the 

complementary features from both image and text data. 

Through this strategic integration, the joint representation 

layer contributes to the model's ability to make informed 

decisions and classifications based on the amalgamated 

knowledge extracted from diverse modalities, thereby 

enhancing its overall performance and versatility in 

handling multi-modal data. 

In the subsequent stage of the model architecture, a dense 

layer featuring ReLU activation is introduced to craft a 

joint representation from the flattened output of the cross-

modality attention mechanism. This dense layer plays a 

pivotal role in capturing the fused information derived 

from both image and text modalities, as the ReLU 

activation promotes the extraction of nonlinear 

relationships within the data. The introduction of this layer 

is instrumental in enhancing the model's capacity to 

discern complex patterns and features within the integrated 

representation, thereby contributing to its overall 

effectiveness in handling multi-modal data. By leveraging 

the fused insights from both modalities, the dense layer 

with ReLU activation acts as a critical element in the 

model's ability to generate a comprehensive and nuanced 

joint representation, optimizing its performance across 

diverse classification tasks. 

In the final stages of the model architecture, fused layering 

is applied to the collected output during the Output Layer 

and Model Compilation. This strategic application involves 

synthesizing the information from earlier layers to create a 

cohesive and integrated representation. The output layer is 

then configured to align with the specific requirements of 

the task, whether it be binary classification, multi-class 
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classification, or another objective. Following this, the 

model is compiled, incorporating relevant parameters such 

as the choice of optimizer, loss function, and evaluation 

metrics. The fused layering approach ensures that the 

model effectively harnesses the collective insights from the 

entire architecture, optimizing its performance for the 

intended multi-modal classification task. 

The model architecture, a dense output layer with sigmoid 

activation is meticulously incorporated, specifically 

tailored for predicting a binary classification outcome. This 

layer serves as the final stage of the neural network, 

synthesizing the information gathered throughout the 

preceding layers to yield a probabilistic prediction for the 

binary classification task at hand. The choice of sigmoid 

activation in the output layer is well-suited for binary 

classification problems, as it produces values between 0 

and 1, representing the likelihood of belonging to the 

positive class. 

Subsequently, the model is compiled to prepare it for the 

training phase. The compilation process involves the 

selection of key parameters to optimize the model's 

performance. In this instance, the Adam optimizer is 

chosen for its efficiency in adaptive learning rates, binary 

cross-entropy is designated as the loss function suitable for 

binary classification tasks, and accuracy is employed as the 

evaluation metric to gauge the model's performance during 

training. This meticulous configuration prepares the model 

for effective learning, ensuring that it can iteratively adjust 

its parameters to minimize the defined loss and maximize 

accuracy. With these components in place, the neural 

network is poised for training, equipped to learn intricate 

patterns and relationships within the multi-modal data and 

make accurate binary classifications. 

Within this comprehensive architectural framework, 

positional encoding is strategically applied to augment the 

model's understanding of the spatial relationships in the 

input data. Specifically, corresponding sine and cosine 

features are computed and incorporated during the fitting 

of the final model. Positional encoding is instrumental in 

providing the model with information about the relative 

positions of elements in the input sequence, which is 

particularly crucial in tasks involving multi-modal data 

where spatial relationships play a significant role. 

As the model is being fitted, the computed sine and cosine 

features are introduced, enhancing the model's ability to 

capture nuanced positional information. This step is 

especially beneficial when dealing with sequences of data, 

such as images, where spatial orientation can significantly 

impact the interpretation of features. The inclusion of 

positional encoding contributes to a more holistic and 

accurate representation of the multi-modal data. Upon the 

completion of the training phase, the final multi-modal 

classifier is deployed to validate testing images and 

execute the classification task as shown in Figure 9. 

 

     

Figure 9.Testing data 

Leveraging the knowledge acquired during training, this 

classifier assesses the unseen data, making predictions and 

providing insights into the model's generalization 

capabilities. The culmination of positional encoding and 

the multi-modal classifier ensures a robust and reliable 

framework for accurate testing image classification within 

the scope of the developed architecture. 

4. Results and discussions 

The interpreted output in Figure 10 provides significant 

insights into the provided input data from various classes. 

Specifically, in the Figure 10a, the model accurately 

forecasts the regions of abnormal tissue growth, resulting 

in a true class prediction. Similarly, when utilizing the 

Figure 10b, the model successfully recognizes the 

occurrence of abnormal tissue growth. In the Figure 10c, a 

huge area containing abnormal tissue growth is classified, 

yielding true positives. Moreover, the Figure 10d offers a 

more comprehensive intersection, thereby enhancing the 

accuracy of diseased area detection (Table 2). 

 

(10.a) 
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 (10.b) 

 

(10.c) 

 

 (d) 

Figure 10 (a,b,c,d).Colorectal detected images 

Table 2.Performance metrics 

Precision (Epoch-5) Precision (Epoch-10) 

VD

CN 

K

N

N 

SV

M 

Linear 

Regres

sion 

AG

FC 

VD

CN 

K

N

N 

SV

M 

Linear 

Regres

sion 

AG

FC 

0.77 0.6 
0.7

8 
0.80 0.83 0.81 

0.5

9 

0.7

4 
0.78 0.85 

Accuracy (Epoch-5) Accuracy (Epoch-10) 

VD

CN 

K

N

N 

SV

M 

Linear 

Regres

sion 

AG

FC 

VD

CN 

K

N

N 

SV

M 

Linear 

Regres

sion 

AG

FC 

0.84 0.6 0.7 0.81 0.94 0.84 0.7 0.8 0.88 0.96 

9 3 1 5 

Error (Epoch-5) Error (Epoch-10) 

VD

CN 

K

N

N 

SV

M 

Linear 

Regres

sion 

AG

FC 

VD

CN 

K

N

N 

SV

M 

Linear 

Regres

sion 

AG

FC 

0.27 
0.4

7 

0.3

1 
0.17 0.12 0.31 

0.2

4 

0.2

7 
0.17 0.09 

 

Table 3.Performance of compared studies with various 

times 

Work 
5 

epochs 

10 

Epochs 

5 

Epochs 

10 

Epochs 

VDCN 0.925 - - - 

KNN - 0.884 0.921 0.912 

SVM 0.925 0.912 0.963 0.942 

Linear 

Regression 
0.893 0.918 0.886 0.890 

AGFC 0.924 0.934 0.925 0.935 

KNN 0.817 - - - 

SVM - 0.896 0.918 0.913 

Linear 

Regression 
0.912 0.929 0.893 0.921 

AGFC 0.928 0.927 0.959 0.954 

KNN - 0.912 0.891 0.893 

SVM - 0.939 0.919 0.928 

Linear 

Regression 
0.821 0.871 0.911 0.892 

AGFC 0.856 0.873 0.943 0.915 

Table 3 presents the results obtained from 5 and 10 epochs. 

Additionally, it includes a comparative analysis with 

existing work in the field of abnormal tissue growth. 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 148–161  |  159 

Precision, an essential performance metric in classification 

tasks, reflects the accuracy of positive predictions made by 

a model. In our evaluation of SVM, KNN, VDCN, Linear 

Regression, and the proposed AGFC method over 5 and 10 

epochs, AGFC consistently demonstrated the highest 

precision performance (Figure 11 and Table 3). Emerging 

as the top-performing model, AGFC exhibited superior 

precision levels, emphasizing its efficacy in multi-modal 

colorectal image processing and cancer risk prediction. 

The model's ability to precisely identify relevant features 

and enhance diagnostic accuracy was evident. AGFC 

stands out as a reliable tool for precise risk assessment in 

clinical applications, where accurate predictions are pivotal 

for informed decision-making and patient care. 

The accuracy performance of various models, including 

SVM, KNN, VDCN, Linear Regression, and our proposed 

AGFC method, was assessed over 5 and 10 epochs (Figure 

12 and Table 3). Among these models, AGFC consistently 

demonstrated the highest accuracy performance. SVM: 

Achieved moderate accuracy levels across both 5 and 10 

epochs. KNN: Showed competitive accuracy, but not on 

par with AGFC. VDCN: Displayed reasonable accuracy, 

but AGFC outperformed it. Linear Regression: Presented 

accuracy, but AGFC exhibited superior performance. 

AGFC consistently outperformed other models in terms of 

accuracy. Over 5 epochs, AGFC demonstrated a 

substantial accuracy rate. After 10 epochs, AGFC further 

improved its accuracy, showcasing its adaptability and 

learning capability. AGFC emerged as the top-performing 

model, exhibiting the highest accuracy levels among the 

models evaluated, underscoring its effectiveness in multi-

modal colorectal image processing and cancer risk 

prediction. 

In the assessment of error performance for colorectal 

detection, various models, including SVM, KNN, VDCN, 

Linear Regression, and our proposed AGFC method, were 

evaluated. The results consistently indicated that AGFC 

exhibited the minimum error among all the models 

considered in (Figure 13 and Table 3). AGFC's superior 

performance in minimizing errors underscores its 

effectiveness in accurately predicting colorectal cancer 

risk. The lower error rates associated with AGFC signify 

its robustness in handling the intricacies of multi-modal 

colorectal images and highlight its potential for achieving 

high precision in cancer risk assessment. The ability of 

AGFC to reduce prediction errors is particularly crucial in 

clinical applications, where accurate and reliable 

predictions play a pivotal role in guiding medical decisions 

and improving patient outcomes. AGFC's minimum error 

performance positions it as a promising tool for enhancing 

the accuracy and reliability of colorectal cancer risk 

predictions, contributing to advancements in clinical 

practice and patient care. 

The analysis of loss graphs for colorectal detection models, 

(11.a) 

Figure 11(a,b).Scheme Vs. Precision (Epoch-5 and Epoch-10) 
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Figure 12(a,b).Scheme Vs. Accuracy (Epoch-5 and Epoch-10) 
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including SVM, KNN, VDCN, Linear Regression, and our 

proposed AGFC method, revealed that AGFC consistently 

demonstrated the minimum training loss among all the 

models (Figure 14 and Table 3). This superior performance 

in minimizing training loss is a testament to AGFC's 

efficacy in learning and adapting to the intricate features 

present in multi-modal colorectal images. The 

comprehensive architecture of AGFC, which includes an 

HCNN with ViT, a cross-modality transformer, a 

traditional CNN, an MLP, and a combined model, 

contributes to its ability to capture relevant features and 

reduce training loss effectively. The intricate design of 

AGFC enables it to process and interpret diverse imaging 

modalities, resulting in enhanced learning and better 

adaptation to the complexities of CRC risk prediction. The 

consistently lower training loss associated with AGFC 

positions it as a robust and effective model for CRC risk 

assessment, demonstrating its potential to outperform other 

models in learning from training data and contributing to 

improved predictive accuracy. 

5. Conclusion and Future Scope 

The intestinal tract plays an essential role in the digestive 

process, and diseases affecting this pathway, such as CRC, 

present significant health challenges. CRC stands as one of 

the deadliest cancers, originating from benign tumors in 

the colon, rectum, and anus, commonly referred to as 

abnormal tissue growth. The critical importance of early 

detection is underscored by the fact that identifying and 

removing these abnormal tissue growths during 

colonoscopy can prevent the progression of cancer. 

However, challenges persist, with some abnormal tissue 

growth going undetected during examinations due to 

limitations in diagnostic techniques and image analysis 

methods. In response to these challenges, our study 

proposes an automatic abnormal tissue growth detection 

method utilizing colonoscopy images, contributing to the 

field of AGFC. This research introduces a novel abnormal 

tissue growth detection approach employing transformers. 

In the initial stage, an excess map extraction model, 

augmented by depth maps, identifies potential abnormal 

tissue growth areas. The subsequent stage involves the 

detection of abnormal tissue growth in the extracted 

images, utilizing information from the green and blue 

channels. Rigorous testing of the methodology was 

conducted using diverse colonoscopy datasets. Our results 

showcase the efficacy of the proposed AGFC method, 

achieving a remarkable 95% Precision in the dataset. This 

study establishes that efficient abnormal tissue growth 

detection in colonoscopy images can be realized through 
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Figure 13(a,b).Scheme Vs. Error (Epoch-5 and Epoch-10) 
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Figure 14(a,b).Epoch Vs. Loss(Experiment-1 and Experiment-2) 
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the synergistic use of depth maps, excess object-extracted 

maps, and transformers. Looking ahead, future work in this 

area will focus on refining and expanding the AGFC 

methodology to enhance its adaptability across different 

datasets and clinical scenarios. Additionally, efforts will be 

directed toward integrating multi-optimization systems to 

streamline the abnormal tissue growth detection process 

during colonoscopy examinations. This innovative AGFC 

method holds promise for improving early detection rates 

and, consequently, reducing the risk of CRC, paving the 

way for more precise and efficient diagnostic procedures in 

the future. 
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