

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 172–180 | 172

Fault Tolerance Enhancement Through Load Balancing Optimization in

Cloud Computing

Bikash Chandra Pattnaik 1, Bidush Kumar Sahoo2, Arabinda Pradhan 3, Satya Ranjan Mishra 4, Himadri

Sekhar Tripathy 5, Payal Agasti 6

Submitted:13/03/2024 Revised: 28/04/2024 Accepted: 05/05/2024

Abstract: In cloud computing, a significant demand for data requests in order to deliver on-demand services at the lowest possible cost.

As a result, servers are essential to handle the cloud requests that are dispersed among several geographic zones. Due to less number of

servers available in datacenter, some of them are overloaded and some servers are idle or underloaded. This results in requests failing and

degrade the system performance. To solve this issue this paper proposed a Particle Swarm Optimization Based Fault Tolerance Load

Balancing algorithm (PSOBFTLB). This algorithm is used to provide the flexible and reliability services to each cloud user and maintain

the balance of load in each machine by checking the status. To verify our work, a series of experiments over multiple datasets are done

by using the CloudSim simulator. According to the simulation results, the PSOBFTLB algorithm works better while using 5% more

resources, reduces 15% of the execution time, 12% of the makespan time, 9% of the average response time, and 8% of the average

waiting time. Overall, it increases 12% throughput by taking 10% more task is completed as compare with other algorithms such as

DLBA and ACO-VMM algorithm.

Keywords: Resource Utilization, Fault Tolerance, PSO, Load Balancing, Makespan

1. Introduction

Cloud computing is growing in popularity as a

comprehensive approach to computing. It provides the

required services whatever the user wants. These services

are on request basis or demand basis, less cost and easily

available. Commonly, these services are offered by

datacenter where it contains number of servers. Many

companies, like Google, Amazon, Microsoft, and many

more, have embraced cloud computing in recent years as a

dependable and effective computing solution. Due to

number of advantages of cloud computing, a greater

number of requests are coming from user site. As compare

to user request, there is not sufficient servers are available

in datacenter. These servers are logically divided

into several virtual machines (VMs) with the aid of the

virtualization approach, which shows in Fig. 1 [1].

Along with several advantages of cloud computing, there is

also some disadvantages of cloud computing and fault

tolerance in load balancing is one of them. A system with

fault tolerance can keep working even if one of its parts

fails [2]. Commonly in cloud computing fault occurs to

maintain the load balancing in VMs. As a result, load

balancing in cloud computing is a difficult concept [3].

The workload in the cloud can vary periodically based on

user demands, making it challenging to allocate these

resources [4]. Fault tolerance in load balancing problem

can be handled by an effective scheduling algorithm where

it can uniformly distribute the entire task among available

VM that all VM should be in balanced. Heuristic, meta-

heuristic, and hybrid scheduling algorithms are the three

types of scheduling algorithms that are available. Among

these three types meta-heuristic is better to solve the

problem in a limited time period of dynamic environment

[5].

Fig. 1. Cloud computing model

Still, meta-heuristic scheduling algorithms have common

drawbacks are: (1) it has slow convergence; (2) maximum

time required for selection VM; (3) executes a large

1,3,4,5 Gandhi Institute for Education and Technology, Affiliated to

Biju Patnaik University of Technology Rourkela, Odisha, India

ORCID ID: 0009-0000-6713-1492

ORCID ID: 0000-0002-3299-8990

ORCID ID: 0009-0003-2238-6338

ORCID ID:0009-0009-9019-0277

2 GIET University, Gunupur, Odisha, India

ORCID ID: 0000-0002-5044-0819

6Utkal University, Vanivihar, Bhubaneswar, Odisha, India

ORCID ID: 0009-0003-3142-8499
* Corresponding Author Email: arabindapradhan@giet.edu.in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 172–180 | 173

number of dynamically allocated tasks. Among various

meta-heuristic scheduling, PSO technique is most popular

due to its simplicity nature and less parameter is required

to be finding the optimum result [6] and it is proposed by

Kennedy and Eberhart [7]. There are various types of PSO

method are available and Modified PSO (MPSO) is one of

them [8]. Commonly in standard PSO, local optimum

problems have been demonstrated that cause slow rate of

convergence. This is why we concentrated on a modified

PSO algorithm to maintain the load and proposed Particle

Swarm Optimization Based Fault Tolerance Load

Balancing scheduling (PSOBFTLB) algorithm. Proposed

scheduling approach uses the linearly decreasing inertia

weight parameter to solve local optimum problem and

produces a better fitness function to choose the suitable

VM and minimize the execution time.

Our work has contributed to the literature in the following

ways: (1) Creating the PSOBFTLB method for fault

tolerance load balancing, which focuses task migration,

instead of migrating the entire overloaded VM. (2) Reduce

makespan time and make the most use of available

resources. (3) Verify the effectiveness of our approach by

using the Jswarm and CloudSim program. The rest of this

paper is structured as follows: The relevant task is

displayed in Section 2, and the goal function is shown in

Section 3. We go over the PSO approach in part 4. The

PSOBFTLB model structure is described in Section 5.

Performance evaluation is shown in Section 6. Section 7

contains the paper's conclusion and future directions.

2. Related Work

Numerous techniques have been created by different

researchers to addresses different fault tolerance metrics in

load balancing, including makespan time, resource

utilization, etc. Such methods are based on PSO based

scheduling method and VM migration (VMM) concept.

Modified central scheduler load balancing (MCSLB)

method is proposed in [9]. The main role of this technique

is to move VMs from the heavy load host to the lightest

host based on VM migration. In order to minimize or

prevent dynamic migration and attain optimal load

balancing, [10] suggested a genetic algorithm-based

scheduling technique for VM resource load balancing that

takes system variance and historical data into account.

Migration Management Agent (MMA) algorithm is

proposed in [11] for dynamically balancing virtual

machine loads. A two-stage genetic mechanism is

proposed in [12] for the migration-based load balance of

virtual machine hosts (VMHs) in cloud computing. This

approach uses gene expression programming (GEP) to

create symbolic regression models that forecast the loads

of virtual machine heads (VMHs) during load balancing

and characterize VM performance. In [13], a distributed

virtual machine migration plan based on the Ant Colony

Optimization (ACO) method is put forth. This method

aims to minimize the number of migrations while

achieving load balancing and reasonable resource use. In

[14] proposed guaranteed fault-tolerant requirement load

balancing scheme (GFTLBS). This scheme is used to

migrates the VMs to maintain the load as balanced. A fault

tolerance technique for handling server failures is

developed in [15]. It involves relocating the VMs that are

located on the downed server. Several load balancing

techniques made for cloud computing environment is

proposed in [16]. According to the study results, the

majority of meta-heuristics outperform conventional

heuristics in terms of results. In order to maintain a

balanced load across VMs, a dynamic load balancing

solution is suggested in [17]. In order to optimize VM

utilization with a uniform load distribution, [18] proposed

a hybrid method-based Deadline-constrained, Dynamic

VM Provisioning and Load Balancing architecture that

may reduce costs and makespan. Logarithm PSO based

task scheduling algorithm is proposed in [19] which is used

to reduce makespan time. A PSO-based scheduling

technique was created in [20] and is utilized to increase

resource utilization while reducing makespan. A clustering

strategy is utilized in [21] to obtain the improved PSO

(IPSO) algorithm, which is used to minimize the makespan

time.

From the existing method, we discovered that the majority

of researchers are attempting to balance the load across all

VMs by using VMM technique, decrease makespan, and

maximize resource consumption. VMM concept shows

high cost that can affect the entire services. Instead of

VMM, we use task migration concept by checking status

of VM. This mechanism helps to avoid the fault occur

when balance the load in VM.

3. Objective Function

Selection of suitable VM is depending on the current load

and capacity of VM. Once the optimal VM has been

identified, allocate the task to it in order to minimize

execution time and enhance system efficiency. In order to

manage these goals, the suggested scheduling first gathers

all the data on incoming tasks and available virtual

machines (VMs), including task number (𝑇𝑡), task length

(𝑇𝑙𝑒𝑛𝑔𝑡ℎ), task file size (𝑇𝑓𝑠), VM number, CPU (𝑉𝑀𝑐𝑝𝑢),

memory, MIPS (𝑉𝑀𝑚𝑖𝑝𝑠) and bandwidth (𝑉𝑀𝑏𝑤) [22].

3.1 Selection of VM

Initially, tasks are waiting in task queue and allocated to a

VM on first come first serve order. The choice of VM at

each iteration is determined by the VM's current load

(𝑉𝑀𝑙𝑜𝑎𝑑) and capacity (𝑉𝑀𝑐𝑎𝑝𝑎) which is shown in Eq. (1)

and (2). The processing rate of VM (𝑉𝑀𝑝𝑟) is calculated by

using Eq. (3).

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 172–180 | 174

𝑉𝑀𝑙𝑜𝑎𝑑 =
𝑇𝑡×𝑇𝑙𝑒𝑛𝑔𝑡ℎ

𝑉𝑀𝑝𝑟

 … (1)

𝑉𝑀𝑐𝑎𝑝𝑎 = 𝑉𝑀𝑝𝑟 + 𝑉𝑀𝑏𝑤 …

(2)

𝑉𝑀𝑝𝑟 = 𝑉𝑀𝑚𝑖𝑝𝑠 × 𝑉𝑀𝑐𝑝𝑢 …

(3)

Based on the capacity and load of the VM; each VM has

three states: balanced, underload, and overload. We have to

take an assumption that if a VM load is under 25% of its

capacity then it is under load, if a VM load is over 80% of

its capacity then it is overloaded otherwise it is in balanced

stage which is shown in Eq. (4) [23]. After checking the

VM stages, the best VM is selected (𝑉𝑀𝑠𝑒𝑙) for handle the

task.

𝑉𝑀𝑠𝑒𝑙 = {

𝑉𝑀𝑙𝑜𝑎𝑑 < |𝑉𝑀𝑐𝑎𝑝𝑎 × 25%|, 𝑈𝑛𝑑𝑒𝑟𝑙𝑜𝑎𝑑

𝑉𝑀𝑙𝑜𝑎𝑑 > |𝑉𝑀𝑐𝑎𝑝𝑎 × 80%|, 𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑

𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑

… (4)

3.2 Makespan Time

After selecting the best VM from datacenter then task is

allocated to be reducing the overall makespan time.

Consequently, determine the expected execution time

(𝐸𝑇𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑) which is representing as in Eq. (5).

𝐸𝑇𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 =
𝑇𝑙𝑒𝑛𝑔𝑡ℎ

𝑉𝑀𝑝𝑟
 …

(5)

Task allocation time (𝑇𝐴𝑡𝑖𝑚𝑒) is the amount of time

required to allocate the task on to the VM. It is based on

the task file size relative to the bandwidth of VM, as

shown in Eq. (6).

𝑇𝐴𝑡𝑖𝑚𝑒 = 𝑇𝑓𝑠/𝑉𝑀𝑏𝑤 …

(6)

Total execution time (𝐸𝑇𝑡𝑜𝑡𝑎𝑙) is the sum of the task

allocation time and the expected execution time, as given

by Eq. (7).

𝐸𝑇𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑇𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 + 𝑇𝐴𝑡𝑖𝑚𝑒 …

(7)

When more tasks are completed successfully at the

datacenter, makespan time (𝑀𝑆𝑡𝑖𝑚𝑒) can decrease. It can be

ascertained by calculating the maximum of the execution

time as a whole using Eq. (8).

𝑀𝑆𝑡𝑖𝑚𝑒 = 𝑚𝑎𝑥{𝐸𝑇𝑡𝑜𝑡𝑎𝑙}

 ... (8)

3.3 Resource Utilization

The next optimization goal is to raise the value of(𝑅𝑢𝑡𝑖𝑙),

the resource usage, as it appears in Eq. (9). Resource usage

is calculated as the total execution time of all tasks divided

by the makespan.

𝑅𝑢𝑡𝑖𝑙 =
𝐸𝑇𝑡𝑜𝑡𝑎𝑙

𝑀𝑆𝑡𝑖𝑚𝑒
 ... (9)

3.4 Fitness Function

The fitness function (𝐹𝑓𝑢𝑛𝑐) of the PSOBFTLB algorithm

is now defined as Eq. (10), which provides a particle with

an optimal solution and a better position.

𝐹𝑓𝑢𝑛𝑐 = 𝑀𝑆𝑡𝑖𝑚𝑒 + 𝑅𝑢𝑡𝑖𝑙 …

(10)

To collect the above information, by applying our

proposed method scheduler can get the knowledge that

which VM is now idle or busy. Then it transfers the extra

task or next incoming task on selected VM. Instead of

VMM technique we used task migration technique to

reduce the cost of services.

4. Particle Swarm Optimization (PSO)

PSO is a swarm-based intelligence method [7] where each

particle can find their personal best (𝑃𝑏𝑒𝑠𝑡) and global best

(𝐺𝑏𝑒𝑠𝑡) to get the optimum result. Based on particle’s

fitness value their 𝑃𝑏𝑒𝑠𝑡 and 𝐺𝑏𝑒𝑠𝑡 can be evaluated. Also,

their velocity and position can be modified. Every

iteration updates each particle's location and velocity using

the subsequent Eq. (11) and Eq. (12) [22].

𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝑉𝑖(𝑡 + 1) …

(11)

𝑉𝑖(𝑡 + 1) = 𝜔𝑉𝑖(𝑡) + 𝑐1𝑟1(𝑃𝑏𝑒𝑠𝑡(𝑡) − 𝑋𝑖(𝑡)) +

𝑐2𝑟2(𝐺𝑏𝑒𝑠𝑡(𝑡) − 𝑋𝑖(𝑡))

 … (12)

5. Model of PSOBFTLB

The proposed approach organizes the number of upcoming

tasks based on the fitness function relative to the available

cloud resources. During the execution, the values for 𝑃𝑏𝑒𝑠𝑡

and 𝐺𝑏𝑒𝑠𝑡 are updated based on particle's fitness function.

The optimal position of every particle is identified by

comparing its current fitness value with its unique 𝑃𝑏𝑒𝑠𝑡

value. In a similar manner, it considers the current fitness

value of the population as a whole to calculate the best

fitness value 𝐺𝑏𝑒𝑠𝑡 . The scheduler periodically verifies the

state of each VM and determines whether a job should be

assigned to a VM or not. This process is repeated until the

task queue is not empty. Proposed scheduling algorithm is

modified two important parameters such as inertia weight

and convergence rate. Both are used to improve the fitness

function for getting an effective result as compare to

existing fault tolerance load balancing method. Fig. 2

shows the proposed scheduling model.

5.1 Inertia Weight Parameter

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 172–180 | 175

Inertia weight parameter (𝜔) is an important concept which

is used to avoid the local optimum problem. It regulates

the particle's momentum and determines how much the

previous flight direction will affect the new velocity [24].

According to early empirical research the value of 𝜔 is

belong in to 0 to 1. In our proposed method, we used

linearly decreasing inertia weight parameter which is

represented in Eq. (13).

𝜔 = 𝜔𝑚𝑎𝑥 −
𝜔𝑚𝑎𝑥−𝜔𝑚𝑖𝑛

𝑘𝑚𝑎𝑥
 × 𝑘

… (13)

Where 𝜔𝑚𝑎𝑥 particle swarm's maximum inertia weight.

The particle swarm's minimal inertia weight is denoted by

𝜔𝑚𝑖𝑛 . 𝑘𝑚𝑎𝑥 denotes the particle swarm's maximum

number of iterations.

Fig. 2. PSOBFTLB model

5.2 Convergence Rate

In order to guarantee convergence to a stable point, Clerc

and Kennedy analysed particle trajectories [25] which

leads to a modification in the velocity equation, as shown

in Eq. (14) and the constriction coefficient, χ, is

determined using the formula in Eq. (15) where 𝜅 controls

the rate of convergence.

𝑉𝑖(𝑡 + 1) = 𝜒𝑉𝑖(𝑡) + 𝑐1𝑟1(𝑃𝑏𝑒𝑠𝑡 − 𝑋𝑖(𝑡)) +

𝑐2𝑟2(𝑆𝑏𝑒𝑠𝑡 − 𝑋𝑖(𝑡)) + 𝑐3𝑟3(𝐺𝑏𝑒𝑠𝑡(𝑡) − 𝑋𝑖(𝑡))

 … (14)

𝜒 =
2𝜅

|2 − 𝜑 −√𝜑2−4𝜑|
 …

(15)

5.3 Pseudocode of PSOBFTLB

Input: VM set as 𝑉𝑀𝑚 = {𝑉𝑀1, 𝑉𝑀2, … , 𝑉𝑀𝑝} and Task

set as 𝑇𝑡 = {𝑇1, 𝑇2, … , 𝑇𝑞}

Output: Reduce makespan time while maximizing

resource use.

1. Begin Method (T, VM)

2. Initialize 𝜔, 𝑐1, 𝑐2, population size, iterations, 𝑟1, 𝑟2

and 𝑃𝑏𝑒𝑠𝑡

3. While (T! = ∅)

4. For 1 to p

5. For 1 to q

6. Utilizing the PSOBFTLB algorithm,

determine the 𝐹𝑓𝑢𝑛𝑐

7. To determine the optimal value,

compare the current fitness value with 𝑃𝑏𝑒𝑠𝑡

8. If (𝐹𝑓𝑢𝑛𝑐 ≤ 𝑃𝑏𝑒𝑠𝑡)

9. Set current 𝐹𝑓𝑢𝑛𝑐 as new 𝑃𝑏𝑒𝑠𝑡

10. End of if

11. Compare all of your own best fitness to the

global best fitness.

12. Find 𝐺𝑏𝑒𝑠𝑡 ⍱ 𝑃𝑏𝑒𝑠𝑡

13. If 𝑃𝑏𝑒𝑠𝑡 ≤ 𝐺𝑏𝑒𝑠𝑡

14. Assign 𝑃𝑏𝑒𝑠𝑡as global best

15. Else

16. Assign 𝐺𝑏𝑒𝑠𝑡 as global best

17. Return 𝐺𝑏𝑒𝑠𝑡

18. End of if

19. Update iteration

20. Modify the particle's position and velocity

21. Continue doing so until achieve the best

outcome

22. End For

23. End For

24. End While

25. End Method

6. Assessment of Performance

The suggested PSOBFTLB technique is compared with

Dynamic Load Balancing Algorithm (DLBA) and VM

migration strategy based on Ant Colony Optimization

(ACO-VMM). The CloudSim tools and Eclipse Java

Programming Environment are used to implement the

suggested PSOBFTLB. Our PC was configured with an

Table 1. Properties of tasks, VMs, servers and PSO parameters.
Task range 10-50 VM range 3-5 Server range 5 Number of particles 50

Length 1000-6000 MIPS 250-300 MIPS 3000 𝑐1&𝑐2 2

File Size 300 Memory 256-512 Memory 512 𝑟1&𝑟2 [0,1]

 CPU 1-5 CPU 7 Maximum iteration 100

 Bandwidth 1000 Bandwidth 3000

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 172–180 | 176

Intel (R) Core (TM) i3-7100 processor running at 2.40

GHz and 4 GB of RAM. Windows 10 was the 64-bit

operating system. The simulation's parameters are

displayed In Table 1, simulation results are displayed from

Fig. 3 to Fig. 12, and the corresponding datasets are

displayed from Table 2 to Table 11.

6.1 Execution time

Execution time is shown in Fig. 3 and Fig. 4. The dataset

used in Fig. 3 is Table 2, which contains 1000 to 5000 tasks

and 50 numbers of VMs. Similarly, Table 3 and Fig. 4 have

10 to 50 VMs and 5000 number of tasks. Initially, in Fig. 3

we have found that the proposed scheduling algorithm

reduces approximate 7% to 15% execution time when the

number of tasks increases from 1000 to 5000. Similarly, in

Fig. 4 the proposed algorithm is reduced by approximate

5% to 11% of execution time as compared to its competitor.

6.2 Makespan time

Makespan time is shown in Fig. 5 and Fig. 6. Table 4 is

the dataset for Fig. 5, which contains 1000 to 5000 tasks

and 50 numbers of VMs. Table 5 is the dataset for Fig. 6,

which contains 5000 number of tasks and 10 to 50

numbers of VMs. Initially, in Fig. 5 we have to found that

proposed scheduling algorithm reduce approximate 9% to

12% makespan time when number of tasks is increases.

Similarly, Fig. 6 reducing approximate 8% to 11 of

makespan time as compared to its competitor.

6.3 Resource utilization

Fig. 7 shows the average resource utilization of 1000 to

5000 number of task on 50 numbers of VMs. From the

figure we have find that the proposed algorithm can be

increase the average resource utilization as around 2% to

4%. Table 6 shows the dataset for Fig. 7. Fig. 8 shows the

average resource utilization of 10 to 50 numbers of VMs

where 5000 number of tasks is taken. From this figure we

have find that the proposed algorithm can be increase the

average resource utilization as around 2% to 5%. Table 7

shows the dataset for Fig. 8.

6.4 Response time

Fig. 9 is the illustration of average response time for

selected algorithm and find that minimum response time is

461 which is PSOBFTLB algorithm. Table 8 is the dataset

for Fig. 9. Average response time of PSOBFTLB

algorithm is reduced around 5% to 9% as compared to

DLBA and ACO-VMM scheduling algorithm.

6.5 Task completed

The quantity of tasks finished by each scheduling strategy

is displayed in Fig. 10. This result indicates that, in

comparison to the current approach, our suggested

algorithm improves the task completion count. This graph

displays the algorithm's performance after 1000–5000

tasks are run over 50 VMs. Table 9 shows the dataset for

Fig. 10. Total task completed of PSOBFTLB is improved

around 6% to 10% as compare to DLBA and ACO-VMM

scheduling algorithm.

6.6 Average waiting time

Table 10 and Fig. 11 shows data set and graph for average

waiting time of all task on to VM for processing. From this

information, we found that proposed scheduling is reduce

approximate 5% to 8% waiting time as compare to DLBA

and ACO-VMM algorithm.

6.7 Throughput

Fig. 12 demonstrate that, in comparison to previous

baseline algorithms, the created PSOBFTLB has improved

approximate 9% to 12% of throughput as compared to two

mentioned techniques. Table 11 is the dataset for Fig. 12.

Table 2. Execution time in second with 50 numbers of

VMs and 1000 to 5000 tasks.

Numbe

r of

VM

Number

of Task

PSOBFTL

B

DLBA ACO-

VMM

50 1000 8574.71 8801.83 9185.23

50 2000 10851.45 11075.92 11713.47

50 3000 14383.75 15423.51 16673.54

50 4000 19714.70 21227.28 22852.35

50 5000 24237.32 25896.94 28137.16

Table 3. Execution time in second with 5000 tasks and 10

to 50 number of VMs.

Numbe

r of

VM

Number

of Task

PSOBFTL

B

DLBA ACO-

VMM

10 5000 44598.68 45193.29 46101.42

20 5000 41687.34 42271.71 43259.35

30 5000 37465.12 38887.68 40311.92

40 5000 34981.43 36884.94 38872.26

50 5000 33102.42 34843.94 37115.36

Table 4. Makespan time of different algorithms with 50

number of VMs and 1000 to 5000 task sets.

Numbe

r of

VM

Number

of Task

PSOBFTL

B

DLBA ACO-

VMM

50 1000 1684.13 1706.91 1666.91

50 2000 1769.51 1784.23 1773.47

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 172–180 | 177

50 3000 1772.54 1832.25 1892.97

50 4000 1314.18 1959.24 1963.91

50 5000 1935.94 2107.16 2178.26

Table 5. Makespan time of different algorithms with 5000

tasks and 10 to 50 number of VMs.

Numbe

r of

VM

Number

of Task

PSOBFTL

B

DLBA ACO-

VMM

10 5000 2528.89 2614.42 2681.69

20 5000 2357.72 2408.35 2478.12

30 5000 2218.68 2264.97 2307.96

40 5000 2108.94 2177.26 2229.52

50 5000 1919.84 2074.46 2144.76

Table 6. Average resource utilization with 50 numbers of

VMs and 1000 to 5000 number of tasks.

Numbe

r of

VM

Number

of Task

PSOBFTL

B

DLBA ACO-

VMM

50 1000 0.71 0.703 0.698

50 2000 0.77 0.755 0.74

50 3000 0.81 0.79 0.775

50 4000 0.85 0.83 0.81

50 5000 0.86 0.84 0.823

Table 7. Average resource utilization with 5000 number of

tasks and 10 to 50 number of VMs.

Numbe

r of

VM

Number

of Task

PSOBFTL

B

DLBA ACO-

VMM

10 5000 0.69 0.66 0.65

20 5000 0.87 0.81 0.76

30 5000 0.91 0.89 0.85

40 5000 0.95 0.93 0.90

50 5000 0.96 0.94 0.91

Table 8. Average response time of different algorithms.

Load balancing

parameter

PSOBFTL

B

DLBA ACO-VMM

Average response

time

461 485 505

Table 9. Task completed of different algorithms with 1000

to 5000 number of tasks.

Number

of Task

PSOBFTLB DLBA ACO-

VMM

1000 990.14 910.84 885.38

2000 1990.17 1909.76 1828.81

3000 2987.49 2802.58 2709.78

4000 3991.41 3773.83 3662.22

5000 4991.58 4701.07 4508.45

Table 10. Average waiting time in second with 10 to 100

numbers of iterations.

Iteration PSOBFTLB DLBA ACO-

VMM

20 78 84 86

40 80 84 86

60 78 83 85

80 80 83 87

100 80 84 87

Table 11. Throughput value in seconds of different

algorithms with 1000 to 5000 number of tasks.

Schedule

algorithm

1000 2000 3000

PSOBFTLB 29.14 30.17 31.09

DLBA 27.48 27.94 28.68

ACO-VMM 26.58 27.21 27.78

Fig. 3. Execution time of different tasks

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 172–180 | 178

Fig. 4. Execution time of different VMs

Fig. 5. Makespan time of different tasks

Fig. 6. Makespan time of different VMs

Fig. 7. Average resource utilization obtained for 1000 to

5000 tasks

Fig. 8. Average resource utilization obtained for 10 to 50

VMs

Fig. 9. Comparison average response time between various

scheduling algorithm

Fig. 10. Comparison of task completed between various

scheduling algorithm

Table 11. Throughput value in seconds of different

algorithms with 1000 to 5000 number of tasks

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 172–180 | 179

Fig. 12. Throughput value

11. Conclusion

Choosing the best resource in a cloud environment can be

difficult because of the variety and complexity of new

applications, intricate pricing schemes, and various

provisioning plans. Thus, creating an effective scheduling

method for cloud environments that enhances necessary

QoS metrics within user-specified time frames is crucial.

Several baseline scheduling methods, as well as their

benefits and drawbacks in a cloud context, have been

covered in this work. Using the PSOBFTLB method, the

resource monitoring continuously verifies the state of

VMs, the scheduler schedules tasks at VMs, and the

controller uses an optimal task-to-resource mapping to

provision and de-provision resources based on user

demand. Performance of PSOBFTLB algorithm is

evaluated using the CloudSim simulator and contrasted

with baseline algorithms that are currently in use, including

DLBA and ACO-VMM. Simulation results, shown in

Table 2 to Table 11 and Fig. 3 to Fig. 12. In the future,

we'll develop an autonomous resource provisioning

strategy that uses a hybrid algorithm to maximize various

QoS metrics within a user-defined deadline while

maintaining the SLA.

The primary conclusions from the experimental study, in

comparison to DLBA and ACO-VMM, are as follows:

● PSOBFTLB algorithm performs better in reducing

approximately 15% execution time.

● The proposed algorithm reduces by approximate 12%

makespan time.

● The proposed algorithm reduces by approximate 9%

average response time.

● The proposed algorithm reduces 8% of overall waiting

time.

● The proposed algorithm increases by approximate 5%

average resource utilization.

● The proposed algorithm improves to complete a vast

number of tasks by approximate 10%.

● The proposed algorithm improves by approximate

12% throughput.

References

[1] Pradhan, A., Bisoy, S. K., Kautish, S., Jasser, M. B.,

Mohamed, A. W.: Intelligent Decision-Making of

Load Balancing Using Deep Reinforcement Learning

and Parallel PSO in Cloud Environment. IEEE

Access, vol. 10, 76939-76952 (2022).

[2] Rehman, A. U., Aguiar, R. L., Barraca, J. P.: Fault-

Tolerance in the Scope of Cloud Computing. IEEE

Access, vol. 10, pp. 63422-63441 (2022).

[3] Jena, U. K., Das, P. K., Kabat, M. R.: Hybridization

of meta-heuristic algorithm for load balancing in

cloud computing environment. Journal of King Saud

University- Computer and Information Sciences.

Elsevier, pp 1-11 (2020).

[4] Pradhan, A., Bisoy, S. K., Sain, M.: Action-Based

Load Balancing Technique in Cloud Network Using

Actor-Critic-Swarm Optimization. Wireless

Communications and Mobile Computing, Wiley,

Hindawi, Volume 2022, Article ID 6456242, 1-17

(2022).

[5] Kumar, M., Sharma, S.C., Goel, A., Singh, S. P.: A

comprehensive survey for scheduling techniques in

cloud computing. Journal of Network and Computer

Applications. Elsevier, Vol. 143, pp 1–33 (2019).

[6] Masdari, M., Salehi, F., Jalali, M., Bidaki, M.: A

Survey of PSO-Based Scheduling Algorithms in

Cloud Computing. Journal of Network and Systems

Management, 25(1), pp. 122-158 (2016).

[7] Kennedy, J., Eberhart, R.C.: Particle Swarm

Optimization. Proceedings of the IEEE International

Conference on Neural Networks, Piscataway, NJ,

USA, 1942–1948 (1995).

[8] Pradhan, A., Bisoy, S. K., Das, A.: A survey on PSO

based meta-heuristic scheduling mechanism in cloud

computing environment. Journal of King Saud

University –Computer and Information Sciences,

Elsevier (2021).

[9] Wilcox Jr, T.C.: Dynamic load balancing of Virtual

machines hosted on Xen. Master’s Thesis. Brigham

Young University, USA (2009).

[10] Hu, J., Gu, J., Sun, G., Zhao, T.: A Scheduling

Strategy on Load Balancing of Virtual Machine

Resources in Cloud Computing Environment. 3rd Int.

Symp. Parallel Architectures, Algorithms and

Programming (PAAP), Dalian, China, pp. 89–96

(2010).

[11] Song, X., Ma, Y., Teng, D. A.: Load balancing

scheme using federate migration based on virtual

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 172–180 | 180

machines for cloud simulations. Mathematical

Problems in Engineering, Volume 2015, Article ID

506432, pp 1-11 (2015).

[12] Hung, L. -H., Wu, C. -H., Tsai, C. -H., Huang, H. -C.:

Migration-Based Load Balance of Virtual Machine

Servers in Cloud Computing by Load Prediction

Using Genetic-Based Methods. IEEE Access, Vol. 9

PP. 49760- 49773 (2021).

[13] Wen, W. -T., Wang, C. -D., Wu, D. -S., Xie Y. -Y.:

An ACO-based Scheduling Strategy on Load

Balancing in Cloud Computing Environment. 2015

Ninth International Conference on Frontier of

Computer Science and Technology, IEEE, pp 364–

369 (2015).

[14] Yao, L., Wu, G., Ren, L., Zhu., Y., Lin, Y.:

Guaranteeing Fault-Tolerant Requirement Load

Balancing Scheme Based on VM Migration. The

Computer Journal, Vol. 57, No. 2, 225-232 (2014).

[15] Joshi, S. C., Sivalingam, K. M.: Fault tolerance

mechanisms for virtual data center architectures.

Photonic Network Communications, 28(2), pp. 154-

164 (2014).

[16] Xu, M., Tian, W., Buyya, R.: A survey on load

balancing algorithms for virtual machines placement

in cloud computing. Concurrency Computat: Practice

and Experience, 29(12), e4123, pp. 1-16, (2017).

[17] Kumar, M., Sharma, S. C.: Dynamic load balancing

algorithm to minimize the makespan time and utilize

the resources effectively in cloud environment. IJCA,

Taylor & Francis, pp 1- 10 (2017).

[18] Kaur, A., Kaur, B.: Load balancing optimization

based on hybrid Heuristic- Metaheuristic techniques

in cloud environment. Journal of King Saud

University- Computer and Information Sciences.

Elsevier, pp 1-12 (2019).

[19] Huang, X., Li, C., Chen, H., An, D.: Task scheduling

in cloud computing using particle swarm optimization

with time varying inertia weight strategies. Cluster

Computing, Springer, 23, 1137–1147 (2020).

[20] Agarwal, M., Srivastava, G. M. S.: A PSO Algorithm

Based Task Scheduling in Cloud Computing. IJAMC.

Volume 10, Issue 4, pp 1-17 (2019).

[21] Saleh, H., Nashaati, H., Saber, W., Harb, H. M.:

IPSO Task Scheduling Algorithm for Large Scale

Data in Cloud Computing Environment. IEEE

Access, Volume 7, pp 5412-5420 (2019).

[22] Pradhan A., Bisoy, S. K.: A novel load balancing

technique for cloud computing platform based on

PSO. Journal of King Saud University –Computer

and Information Sciences, Elsevier, Volume 34, Issue

7, pp 3988-3995 (2022).

[23] Kumar, M., Sharma, S. C.: PSO-based novel resource

scheduling technique to improve QoS parameters in

cloud computing. Neural Computing and

Applications, Springer, 32, 12103–12126 (2020).

[24] Eberhart, R. C., Shi, Y.: Comparing Inertia Weights

and Constriction Factors in Particle Swarm

Optimization. Proceedings of the IEEE Congress on

Evolutionary Computation, San Diego, USA (2000).

[25] Clerc, M., Kennedy, J.: The Particle Swarm-

Explosion, Stability, and Convergence in a

Multidimensional Complex Space. IEEE

Transactions on Evolutionary Computation, 6(1), pp

58–73 (2002).

