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Abstract: In cloud computing, a significant demand for data requests in order to deliver on-demand services at the lowest possible cost. 

As a result, servers are essential to handle the cloud requests that are dispersed among several geographic zones. Due to less number of 

servers available in datacenter, some of them are overloaded and some servers are idle or underloaded. This results in requests failing and 

degrade the system performance. To solve this issue this paper proposed a Particle Swarm Optimization Based Fault Tolerance Load 

Balancing algorithm (PSOBFTLB). This algorithm is used to provide the flexible and reliability services to each cloud user and maintain 

the balance of load in each machine by checking the status. To verify our work, a series of experiments over multiple datasets are done 

by using the CloudSim simulator. According to the simulation results, the PSOBFTLB algorithm works better while using 5% more 

resources, reduces 15% of the execution time, 12% of the makespan time, 9% of the average response time, and 8% of the average 

waiting time. Overall, it increases 12% throughput by taking 10% more task is completed as compare with other algorithms such as 

DLBA and ACO-VMM algorithm. 
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1. Introduction 

Cloud computing is growing in popularity as a 

comprehensive approach to computing. It provides the 

required services whatever the user wants. These services 

are on request basis or demand basis, less cost and easily 

available. Commonly, these services are offered by 

datacenter where it contains number of servers. Many 

companies, like Google, Amazon, Microsoft, and many 

more, have embraced cloud computing in recent years as a 

dependable and effective computing solution. Due to 

number of advantages of cloud computing, a greater 

number of requests are coming from user site. As compare 

to user request, there is not sufficient servers are available 

in    datacenter. These   servers       are logically divided 

into several virtual machines (VMs) with the aid of the 

virtualization approach, which shows in Fig. 1 [1].  

Along with several advantages of cloud computing, there is 

also some disadvantages of cloud computing and fault 

tolerance in load balancing is one of them. A system with 

fault tolerance can keep working even if one of its parts 

fails [2]. Commonly in cloud computing fault occurs to 

maintain the load balancing in VMs. As a result, load 

balancing in cloud computing is a difficult concept [3]. 

The workload in the cloud can vary periodically based on 

user demands, making it challenging to allocate these 

resources [4]. Fault tolerance in load balancing problem 

can be handled by an effective scheduling algorithm where 

it can uniformly distribute the entire task among available 

VM that all VM should be in balanced. Heuristic, meta-

heuristic, and hybrid scheduling algorithms are the three 

types of scheduling algorithms that are available. Among 

these three types meta-heuristic is better to solve the 

problem in a limited time period of dynamic environment 

[5]. 

 

Fig. 1. Cloud computing model 

Still, meta-heuristic scheduling algorithms have common 

drawbacks are: (1) it has slow convergence; (2) maximum 

time required for selection VM; (3) executes a large 
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number of dynamically allocated tasks. Among various 

meta-heuristic scheduling, PSO technique is most popular 

due to its simplicity nature and less parameter is required 

to be finding the optimum result [6] and it is proposed by 

Kennedy and Eberhart [7]. There are various types of PSO 

method are available and Modified PSO (MPSO) is one of 

them [8]. Commonly in standard PSO, local optimum 

problems have been demonstrated that cause slow rate of 

convergence. This is why we concentrated on a modified 

PSO algorithm to maintain the load and proposed Particle 

Swarm Optimization Based Fault Tolerance Load 

Balancing scheduling (PSOBFTLB) algorithm. Proposed 

scheduling approach uses the linearly decreasing inertia 

weight parameter to solve local optimum problem and 

produces a better fitness function to choose the suitable 

VM and minimize the execution time.  

Our work has contributed to the literature in the following 

ways: (1) Creating the PSOBFTLB method for fault 

tolerance load balancing, which focuses task migration, 

instead of migrating the entire overloaded VM.  (2) Reduce 

makespan time and make the most use of available 

resources. (3) Verify the effectiveness of our approach by 

using the Jswarm and CloudSim program. The rest of this 

paper is structured as follows: The relevant task is 

displayed in Section 2, and the goal function is shown in 

Section 3. We go over the PSO approach in part 4. The 

PSOBFTLB model structure is described in Section 5. 

Performance evaluation is shown in Section 6. Section 7 

contains the paper's conclusion and future directions. 

2. Related Work 

Numerous techniques have been created by different 

researchers to addresses different fault tolerance metrics in 

load balancing, including makespan time, resource 

utilization, etc. Such methods are based on PSO based 

scheduling method and VM migration (VMM) concept.  

Modified central scheduler load balancing (MCSLB) 

method is proposed in [9]. The main role of this technique 

is to move VMs from the heavy load host to the lightest 

host based on VM migration. In order to minimize or 

prevent dynamic migration and attain optimal load 

balancing, [10] suggested a genetic algorithm-based 

scheduling technique for VM resource load balancing that 

takes system variance and historical data into account. 

Migration Management Agent (MMA) algorithm is 

proposed in [11] for dynamically balancing virtual 

machine loads.  A two-stage genetic mechanism is 

proposed in [12] for the migration-based load balance of 

virtual machine hosts (VMHs) in cloud computing. This 

approach uses gene expression programming (GEP) to 

create symbolic regression models that forecast the loads 

of virtual machine heads (VMHs) during load balancing 

and characterize VM performance. In [13], a distributed 

virtual machine migration plan based on the Ant Colony 

Optimization (ACO) method is put forth. This method 

aims to minimize the number of migrations while 

achieving load balancing and reasonable resource use. In 

[14] proposed guaranteed fault-tolerant requirement load 

balancing scheme (GFTLBS).  This scheme is used to 

migrates the VMs to maintain the load as balanced. A fault 

tolerance technique for handling server failures is 

developed in [15]. It involves relocating the VMs that are 

located on the downed server. Several load balancing 

techniques made for cloud computing environment is 

proposed in [16]. According to the study results, the 

majority of meta-heuristics outperform conventional 

heuristics in terms of results. In order to maintain a 

balanced load across VMs, a dynamic load balancing 

solution is suggested in [17]. In order to optimize VM 

utilization with a uniform load distribution, [18] proposed 

a hybrid method-based Deadline-constrained, Dynamic 

VM Provisioning and Load Balancing architecture that 

may reduce costs and makespan. Logarithm PSO based 

task scheduling algorithm is proposed in [19] which is used 

to reduce makespan time. A PSO-based scheduling 

technique was created in [20] and is utilized to increase 

resource utilization while reducing makespan. A clustering 

strategy is utilized in [21] to obtain the improved PSO 

(IPSO) algorithm, which is used to minimize the makespan 

time.  

From the existing method, we discovered that the majority 

of researchers are attempting to balance the load across all 

VMs by using VMM technique, decrease makespan, and 

maximize resource consumption. VMM concept shows 

high cost that can affect the entire services. Instead of 

VMM, we use task migration concept by checking status 

of VM. This mechanism helps to avoid the fault occur 

when balance the load in VM.  

3. Objective Function 

Selection of suitable VM is depending on the current load 

and capacity of VM. Once the optimal VM has been 

identified, allocate the task to it in order to minimize 

execution time and enhance system efficiency. In order to 

manage these goals, the suggested scheduling first gathers 

all the data on incoming tasks and available virtual 

machines (VMs), including task number (𝑇𝑡), task length 

(𝑇𝑙𝑒𝑛𝑔𝑡ℎ), task file size (𝑇𝑓𝑠), VM number, CPU (𝑉𝑀𝑐𝑝𝑢), 

memory, MIPS (𝑉𝑀𝑚𝑖𝑝𝑠) and bandwidth (𝑉𝑀𝑏𝑤) [22]. 

3.1 Selection of VM  

Initially, tasks are waiting in task queue and allocated to a 

VM on first come first serve order. The choice of VM at 

each iteration is determined by the VM's current load 

(𝑉𝑀𝑙𝑜𝑎𝑑) and capacity (𝑉𝑀𝑐𝑎𝑝𝑎) which is shown in Eq. (1) 

and (2). The processing rate of VM (𝑉𝑀𝑝𝑟) is calculated by 

using Eq. (3). 
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𝑉𝑀𝑙𝑜𝑎𝑑 =
𝑇𝑡×𝑇𝑙𝑒𝑛𝑔𝑡ℎ

𝑉𝑀𝑝𝑟
    

 … (1) 

𝑉𝑀𝑐𝑎𝑝𝑎 = 𝑉𝑀𝑝𝑟 + 𝑉𝑀𝑏𝑤    … 

(2) 

𝑉𝑀𝑝𝑟 = 𝑉𝑀𝑚𝑖𝑝𝑠 × 𝑉𝑀𝑐𝑝𝑢    … 

(3) 

Based on the capacity and load of the VM; each VM has 

three states: balanced, underload, and overload. We have to 

take an assumption that if a VM load is under 25% of its 

capacity then it is under load, if a VM load is over 80% of 

its capacity then it is overloaded otherwise it is in balanced 

stage which is shown in Eq. (4) [23]. After checking the 

VM stages, the best VM is selected (𝑉𝑀𝑠𝑒𝑙) for handle the 

task.  

𝑉𝑀𝑠𝑒𝑙 = {

𝑉𝑀𝑙𝑜𝑎𝑑 < |𝑉𝑀𝑐𝑎𝑝𝑎 × 25%|, 𝑈𝑛𝑑𝑒𝑟𝑙𝑜𝑎𝑑

𝑉𝑀𝑙𝑜𝑎𝑑 > |𝑉𝑀𝑐𝑎𝑝𝑎 × 80%|, 𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑

𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑

            

… (4) 

3.2 Makespan Time 

After selecting the best VM from datacenter then task is 

allocated to be reducing the overall makespan time. 

Consequently, determine the expected execution time 

(𝐸𝑇𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑) which is representing as in Eq. (5).  

𝐸𝑇𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 =
𝑇𝑙𝑒𝑛𝑔𝑡ℎ

𝑉𝑀𝑝𝑟
    … 

(5) 

Task allocation time (𝑇𝐴𝑡𝑖𝑚𝑒) is the amount of time 

required to allocate the task on to the VM. It is based on 

the task file size relative to the bandwidth of VM, as 

shown in Eq. (6).   

𝑇𝐴𝑡𝑖𝑚𝑒 = 𝑇𝑓𝑠/𝑉𝑀𝑏𝑤    … 

(6) 

Total execution time (𝐸𝑇𝑡𝑜𝑡𝑎𝑙) is the sum of the task 

allocation time and the expected execution time, as given 

by Eq. (7). 

𝐸𝑇𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑇𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 + 𝑇𝐴𝑡𝑖𝑚𝑒    … 

(7) 

When more tasks are completed successfully at the 

datacenter, makespan time (𝑀𝑆𝑡𝑖𝑚𝑒) can decrease. It can be 

ascertained by calculating the maximum of the execution 

time as a whole using Eq. (8).  

𝑀𝑆𝑡𝑖𝑚𝑒 = 𝑚𝑎𝑥{𝐸𝑇𝑡𝑜𝑡𝑎𝑙}                    

  ... (8) 

3.3 Resource Utilization 

The next optimization goal is to raise the value of(𝑅𝑢𝑡𝑖𝑙), 

the resource usage, as it appears in Eq. (9). Resource usage 

is calculated as the total execution time of all tasks divided 

by the makespan.  

𝑅𝑢𝑡𝑖𝑙 =
𝐸𝑇𝑡𝑜𝑡𝑎𝑙

𝑀𝑆𝑡𝑖𝑚𝑒
     ... (9) 

3.4 Fitness Function 

The fitness function (𝐹𝑓𝑢𝑛𝑐) of the PSOBFTLB algorithm 

is now defined as Eq. (10), which provides a particle with 

an optimal solution and a better position.  

𝐹𝑓𝑢𝑛𝑐 = 𝑀𝑆𝑡𝑖𝑚𝑒 + 𝑅𝑢𝑡𝑖𝑙                      … 

(10) 

To collect the above information, by applying our 

proposed method scheduler can get the knowledge that 

which VM is now idle or busy. Then it transfers the extra 

task or next incoming task on selected VM. Instead of 

VMM technique we used task migration technique to 

reduce the cost of services. 

4. Particle Swarm Optimization (PSO) 

PSO is a swarm-based intelligence method [7] where each 

particle can find their personal best (𝑃𝑏𝑒𝑠𝑡) and global best 

(𝐺𝑏𝑒𝑠𝑡) to get the optimum result. Based on particle’s 

fitness value their 𝑃𝑏𝑒𝑠𝑡 and 𝐺𝑏𝑒𝑠𝑡  can be evaluated. Also, 

their velocity and position can be modified.  Every 

iteration updates each particle's location and velocity using 

the subsequent Eq. (11) and Eq. (12) [22].  

𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝑉𝑖(𝑡 + 1)                   … 

(11) 

𝑉𝑖(𝑡 + 1) = 𝜔𝑉𝑖(𝑡) + 𝑐1𝑟1(𝑃𝑏𝑒𝑠𝑡(𝑡) − 𝑋𝑖(𝑡)) +

𝑐2𝑟2(𝐺𝑏𝑒𝑠𝑡(𝑡) − 𝑋𝑖(𝑡))       

              … (12) 

5. Model of PSOBFTLB 

The proposed approach organizes the number of upcoming 

tasks based on the fitness function relative to the available 

cloud resources. During the execution, the values for 𝑃𝑏𝑒𝑠𝑡  

and 𝐺𝑏𝑒𝑠𝑡  are updated based on particle's fitness function. 

The optimal position of every particle is identified by 

comparing its current fitness value with its unique 𝑃𝑏𝑒𝑠𝑡 

value. In a similar manner, it considers the current fitness 

value of the population as a whole to calculate the best 

fitness value 𝐺𝑏𝑒𝑠𝑡 . The scheduler periodically verifies the 

state of each VM and determines whether a job should be 

assigned to a VM or not. This process is repeated until the 

task queue is not empty.  Proposed scheduling algorithm is 

modified two important parameters such as inertia weight 

and convergence rate. Both are used to improve the fitness 

function for getting an effective result as compare to 

existing fault tolerance load balancing method. Fig. 2 

shows the proposed scheduling model. 

5.1 Inertia Weight Parameter 
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Inertia weight parameter (𝜔) is an important concept which 

is used to avoid the local optimum problem.  It regulates 

the particle's momentum and determines how much the 

previous flight direction will affect the new velocity [24]. 

According to early empirical research the value of 𝜔 is 

belong in to 0 to 1. In our proposed method, we used 

linearly decreasing inertia weight parameter which is 

represented in Eq. (13). 

𝜔 = 𝜔𝑚𝑎𝑥 −
𝜔𝑚𝑎𝑥−𝜔𝑚𝑖𝑛

𝑘𝑚𝑎𝑥
 × 𝑘               

… (13) 

Where 𝜔𝑚𝑎𝑥  particle swarm's maximum inertia weight. 

The particle swarm's minimal inertia weight is denoted by 

𝜔𝑚𝑖𝑛 . 𝑘𝑚𝑎𝑥 denotes the particle swarm's maximum 

number of iterations. 

 

Fig. 2. PSOBFTLB model 

5.2 Convergence Rate 

In order to guarantee convergence to a stable point, Clerc 

and Kennedy analysed particle trajectories [25] which 

leads to a modification in the velocity equation, as shown 

in Eq. (14) and the constriction coefficient, χ, is 

determined using the formula in Eq. (15) where 𝜅 controls 

the rate of convergence. 

𝑉𝑖(𝑡 + 1) = 𝜒𝑉𝑖(𝑡) + 𝑐1𝑟1(𝑃𝑏𝑒𝑠𝑡 − 𝑋𝑖(𝑡)) +

𝑐2𝑟2(𝑆𝑏𝑒𝑠𝑡 − 𝑋𝑖(𝑡)) + 𝑐3𝑟3(𝐺𝑏𝑒𝑠𝑡(𝑡) − 𝑋𝑖(𝑡)) 

       

              … (14) 

𝜒 =
2𝜅

|2 − 𝜑 −√𝜑2−4𝜑|
                            … 

(15) 

5.3 Pseudocode of PSOBFTLB 

Input: VM set as 𝑉𝑀𝑚 = {𝑉𝑀1, 𝑉𝑀2, … , 𝑉𝑀𝑝} and Task 

set as 𝑇𝑡 = {𝑇1, 𝑇2, … , 𝑇𝑞} 

Output: Reduce makespan time while maximizing 

resource use. 

1. Begin Method (T, VM) 

2. Initialize 𝜔, 𝑐1, 𝑐2, population size, iterations, 𝑟1, 𝑟2 

and 𝑃𝑏𝑒𝑠𝑡 

3. While (T! =  ∅) 

4.       For 1 to p     

5.             For 1 to q            

6.                   Utilizing the PSOBFTLB algorithm, 

determine the 𝐹𝑓𝑢𝑛𝑐  

7.  To determine the optimal value, 

compare the current fitness value with 𝑃𝑏𝑒𝑠𝑡   

8.                     If (𝐹𝑓𝑢𝑛𝑐 ≤  𝑃𝑏𝑒𝑠𝑡) 

9.                     Set current 𝐹𝑓𝑢𝑛𝑐 as new 𝑃𝑏𝑒𝑠𝑡 

10.                   End of if 

11.                   Compare all of your own best fitness to the 

global best fitness. 

12.                   Find 𝐺𝑏𝑒𝑠𝑡  ⍱ 𝑃𝑏𝑒𝑠𝑡  

13.                   If 𝑃𝑏𝑒𝑠𝑡 ≤ 𝐺𝑏𝑒𝑠𝑡  

14.                   Assign  𝑃𝑏𝑒𝑠𝑡as global best  

15.                   Else 

16.                   Assign 𝐺𝑏𝑒𝑠𝑡  as global best 

17.                   Return 𝐺𝑏𝑒𝑠𝑡  

18.                   End of if 

19.                   Update iteration 

20.                   Modify the particle's position and velocity  

21.                   Continue doing so until achieve the best 

outcome 

22.             End For 

23.       End For 

24. End While 

25. End Method 

6. Assessment of Performance  

The suggested PSOBFTLB technique is compared with 

Dynamic Load Balancing Algorithm (DLBA) and VM 

migration strategy based on Ant Colony Optimization 

(ACO-VMM). The CloudSim tools and Eclipse Java 

Programming Environment are used to implement the 

suggested PSOBFTLB. Our PC was configured with an 

 

Table 1. Properties of tasks, VMs, servers and PSO parameters. 
Task range 10-50 VM range 3-5 Server range 5 Number of particles 50 

Length 1000-6000 MIPS 250-300 MIPS 3000 𝑐1&𝑐2 2 

File Size 300 Memory 256-512 Memory 512 𝑟1&𝑟2 [0,1] 

  CPU 1-5 CPU 7 Maximum iteration 100 

  Bandwidth 1000 Bandwidth 3000   
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Intel (R) Core (TM) i3-7100 processor running at 2.40 

GHz and 4 GB of RAM. Windows 10 was the 64-bit 

operating system. The simulation's parameters are 

displayed In Table 1, simulation results are displayed from 

Fig. 3 to Fig. 12, and the corresponding datasets are 

displayed from Table 2 to Table 11.  

6.1 Execution time 

Execution time is shown in Fig. 3 and Fig. 4. The dataset 

used in Fig. 3 is Table 2, which contains 1000 to 5000 tasks 

and 50 numbers of VMs. Similarly, Table 3 and Fig. 4 have 

10 to 50 VMs and 5000 number of tasks. Initially, in Fig. 3 

we have found that the proposed scheduling algorithm 

reduces approximate 7% to 15% execution time when the 

number of tasks increases from 1000 to 5000. Similarly, in 

Fig. 4 the proposed algorithm is reduced by approximate 

5% to 11% of execution time as compared to its competitor. 

6.2 Makespan time 

Makespan time is shown in Fig. 5 and Fig. 6. Table 4 is 

the dataset for Fig. 5, which contains 1000 to 5000 tasks 

and 50 numbers of VMs. Table 5 is the dataset for Fig. 6, 

which contains 5000 number of tasks and 10 to 50 

numbers of VMs. Initially, in Fig. 5 we have to found that 

proposed scheduling algorithm reduce approximate 9% to 

12% makespan time when number of tasks is increases. 

Similarly, Fig. 6 reducing approximate 8% to 11 of 

makespan time as compared to its competitor. 

6.3 Resource utilization 

Fig. 7 shows the average resource utilization of 1000 to 

5000 number of task on 50 numbers of VMs. From the 

figure we have find that the proposed algorithm can be 

increase the average resource utilization as around 2% to 

4%. Table 6 shows the dataset for Fig. 7.  Fig. 8 shows the 

average resource utilization of 10 to 50 numbers of VMs 

where 5000 number of tasks is taken. From this figure we 

have find that the proposed algorithm can be increase the 

average resource utilization as around 2% to 5%. Table 7 

shows the dataset for Fig. 8. 

6.4 Response time 

Fig. 9 is the illustration of average response time for 

selected algorithm and find that minimum response time is 

461 which is PSOBFTLB algorithm. Table 8 is the dataset 

for Fig. 9. Average response time of PSOBFTLB 

algorithm is reduced around 5% to 9% as compared to 

DLBA and ACO-VMM scheduling algorithm. 

6.5 Task completed 

The quantity of tasks finished by each scheduling strategy 

is displayed in Fig. 10. This result indicates that, in 

comparison to the current approach, our suggested 

algorithm improves the task completion count. This graph 

displays the algorithm's performance after 1000–5000 

tasks are run over 50 VMs. Table 9 shows the dataset for 

Fig. 10. Total task completed of PSOBFTLB is improved 

around 6% to 10% as compare to DLBA and ACO-VMM 

scheduling algorithm. 

6.6 Average waiting time 

Table 10 and Fig. 11 shows data set and graph for average 

waiting time of all task on to VM for processing. From this 

information, we found that proposed scheduling is reduce 

approximate 5% to 8% waiting time as compare to DLBA 

and ACO-VMM algorithm. 

6.7 Throughput 

Fig. 12 demonstrate that, in comparison to previous 

baseline algorithms, the created PSOBFTLB has improved 

approximate 9% to 12% of throughput as compared to two 

mentioned techniques. Table 11 is the dataset for Fig. 12. 

Table 2. Execution time in second with 50 numbers of 

VMs and 1000 to 5000 tasks. 

Numbe

r of 

VM 

Number 

of Task 

PSOBFTL

B 

DLBA ACO-

VMM 

50 1000 8574.71 8801.83 9185.23 

50 2000 10851.45 11075.92 11713.47 

50 3000 14383.75  15423.51 16673.54  

50 4000 19714.70  21227.28  22852.35 

50 5000 24237.32 25896.94 28137.16 

 

Table 3. Execution time in second with 5000 tasks and 10 

to 50 number of VMs. 

Numbe

r of 

VM 

Number 

of Task 

PSOBFTL

B 

DLBA ACO-

VMM 

10 5000 44598.68  45193.29 46101.42 

20 5000 41687.34  42271.71 43259.35 

30 5000 37465.12  38887.68 40311.92 

40 5000 34981.43  36884.94  38872.26 

50 5000 33102.42 34843.94 37115.36 

 

Table 4. Makespan time of different algorithms with 50 

number of VMs and 1000 to 5000 task sets. 

Numbe

r of 

VM 

Number 

of Task 

PSOBFTL

B 

DLBA ACO-

VMM 

50 1000 1684.13 1706.91 1666.91 

50 2000 1769.51 1784.23 1773.47  
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50 3000 1772.54 1832.25 1892.97  

50 4000 1314.18 1959.24  1963.91  

50 5000 1935.94 2107.16 2178.26 

 

Table 5. Makespan time of different algorithms with 5000 

tasks and 10 to 50 number of VMs. 

Numbe

r of 

VM 

Number 

of Task 

PSOBFTL

B 

DLBA ACO-

VMM 

10 5000 2528.89 2614.42 2681.69  

20 5000 2357.72  2408.35 2478.12  

30 5000 2218.68 2264.97  2307.96  

40 5000 2108.94  2177.26  2229.52  

50 5000 1919.84 2074.46 2144.76 

 

Table 6. Average resource utilization with 50 numbers of 

VMs and 1000 to 5000 number of tasks. 

Numbe

r of 

VM 

Number 

of Task 

PSOBFTL

B 

DLBA ACO-

VMM 

50 1000 0.71 0.703 0.698 

50 2000 0.77  0.755 0.74 

50 3000 0.81  0.79  0.775  

50 4000 0.85  0.83  0.81 

50 5000 0.86 0.84 0.823 

 

Table 7. Average resource utilization with 5000 number of 

tasks and 10 to 50 number of VMs. 

Numbe

r of 

VM 

Number 

of Task 

PSOBFTL

B 

DLBA ACO-

VMM 

10 5000 0.69 0.66 0.65  

20 5000 0.87 0.81 0.76  

30 5000 0.91  0.89  0.85  

40 5000 0.95 0.93  0.90  

50 5000 0.96 0.94 0.91 

 

Table 8. Average response time of different algorithms. 

Load balancing 

parameter 

PSOBFTL

B 

DLBA ACO-VMM 

Average response 

time 

461 485 505 

 

Table 9. Task completed of different algorithms with 1000 

to 5000 number of tasks. 

Number 

of Task 

PSOBFTLB DLBA ACO-

VMM 

1000 990.14 910.84 885.38 

2000 1990.17  1909.76  1828.81  

3000 2987.49 2802.58  2709.78  

4000 3991.41  3773.83  3662.22  

5000 4991.58 4701.07 4508.45 

 

Table 10. Average waiting time in second with 10 to 100 

numbers of iterations. 

Iteration PSOBFTLB DLBA ACO-

VMM 

20 78 84 86 

40 80 84 86 

60 78 83 85 

80 80 83 87 

100 80 84 87 

 

Table 11. Throughput value in seconds of different 

algorithms with 1000 to 5000 number of tasks. 

Schedule 

algorithm 

1000 2000 3000 

PSOBFTLB 29.14 30.17  31.09 

DLBA 27.48  27.94  28.68 

ACO-VMM 26.58 27.21 27.78 

 

 

 

 

 

 

 

 

Fig. 3. Execution time of different tasks 
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Fig. 4. Execution time of different VMs 

 

 

 

 

 

 

 

 

Fig. 5. Makespan time of different tasks 

 

 

 

 

 

 

 

 

Fig. 6. Makespan time of different VMs 

 

Fig. 7. Average resource utilization obtained for 1000 to 

5000 tasks 

 

Fig. 8. Average resource utilization obtained for 10 to 50 

VMs 

 

Fig. 9. Comparison average response time between various 

scheduling algorithm 

 

Fig. 10. Comparison of task completed between various 

scheduling algorithm 

 

Table 11. Throughput value in seconds of different 

algorithms with 1000 to 5000 number of tasks 
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Fig. 12. Throughput value 

11. Conclusion 

Choosing the best resource in a cloud environment can be 

difficult because of the variety and complexity of new 

applications, intricate pricing schemes, and various 

provisioning plans. Thus, creating an effective scheduling 

method for cloud environments that enhances necessary 

QoS metrics within user-specified time frames is crucial. 

Several baseline scheduling methods, as well as their 

benefits and drawbacks in a cloud context, have been 

covered in this work. Using the PSOBFTLB method, the 

resource monitoring continuously verifies the state of 

VMs, the scheduler schedules tasks at VMs, and the 

controller uses an optimal task-to-resource mapping to 

provision and de-provision resources based on user 

demand. Performance of PSOBFTLB algorithm is 

evaluated using the CloudSim simulator and contrasted 

with baseline algorithms that are currently in use, including 

DLBA and ACO-VMM. Simulation results, shown in 

Table 2 to Table 11 and Fig. 3 to Fig. 12. In the future, 

we'll develop an autonomous resource provisioning 

strategy that uses a hybrid algorithm to maximize various 

QoS metrics within a user-defined deadline while 

maintaining the SLA.  

The primary conclusions from the experimental study, in 

comparison to DLBA and ACO-VMM, are as follows:  

● PSOBFTLB algorithm performs better in reducing 

approximately 15% execution time. 

● The proposed algorithm reduces by approximate 12% 

makespan time. 

● The proposed algorithm reduces by approximate 9% 

average response time. 

● The proposed algorithm reduces 8% of overall waiting 

time. 

● The proposed algorithm increases by approximate 5% 

average resource utilization. 

● The proposed algorithm improves to complete a vast 

number of tasks by approximate 10%. 

● The proposed algorithm improves by approximate 

12% throughput. 
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