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Abstract: In recent years, numerous contaminants have posed significant threats to rivers, streams, and lakes. The ability to analyse 

and predict water quality has become crucial in combating water pollution. Various seasonal factors, along with physicochemical 

properties, influence water quality over time. As water quality data forms a time series, the values of parameters fluctuate with changing 

meteorological conditions across seasons at each location. Consequently, robust time series analysis is essential for accurate water 

quality forecasting. Given the effectiveness of Recurrent Neural Networks for time sequence data, this study aims to develop a water 

quality prediction model by learning seasonal patterns in the time series dataset. The dataset comprises 10,560 unique instances that 

describe both physicochemical and seasonal factors. Predictive models are developed using RNN and its variants, Gated Recurrent Unit 

and Long Short-Term Memory and evaluated for their performance. The results demonstrate that incorporating seasonal data alongside 

regular physicochemical properties during model training significantly enhances predictive accuracy. By leveraging the temporal 

patterns inherent in the dataset, the models achieve promising results, indicating that the inclusion of seasonal variability is beneficial 

for improving water quality predictions. This approach not only highlights the importance of considering seasonal influences in water 

quality analysis but also showcases the potential of advanced neural network architectures in environmental monitoring and 

management. The study underscores the need for comprehensive data collection and sophisticated modelling techniques to effectively 

anticipate and mitigate the impacts of water contamination. 
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1. Introduction 

The survival of the vast majority of living species, 

including humans, depends on water, making it the 

essential resource for life. High-quality water is crucial 

for all forms of life, as water-dependent species can only 

tolerate minimal pollution before their survival is 

threatened. When certain conditions are unmet, the 

survival of these species is jeopardized. 

To effectively monitor and control water pollution, it is 

imperative to establish automatic water quality 

monitoring stations in key areas and develop accurate 

water quality prediction methods. Various water 

treatment techniques, such as anaerobic and aerobic 

treatments, activated sludge methods, and membrane 

bioreactor treatments, are employed to treat wastewater 

and mitigate pollution. Physicochemical treatment is 

utilized to separate colloidal particles in water. 

Common physicochemical parameters used to determine 

the water quality index include conductivity, turbidity, 

total alkalinity, chloride, ammonia, hardness, sulfate, 

sodium, phosphate, boron, potassium, BOD, fluoride, 

nitrate, coliform, and dissolved oxygen. Water quality is 

also influenced by seasonal conditions, which vary 

throughout the year. In addition to physicochemical 

properties, seasonal attributes such as temperature, dew, 

humidity, precipitation, wind speed, and visibility are 

critical for predicting water quality. 

Numerous research studies concentrate on a limited 

range of physicochemical parameters to develop water 

quality forecasting models. However, expanding the 

number of these factors and incorporating seasonal 

variables can substantially enhance the efficiency of 

water quality predictions. 

Present computational methods in water quality 

prediction research encompass the grey relational 

method, mathematical statistics, model-based 

approaches, Bayesian approaches, genetic algorithms, 

MLP regressors, and support vector regressors. By 

broadening the range of parameters and integrating 

seasonal data, the accuracy and reliability of these 

predictive models can be significantly improved. 
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Chen et al. [1] developed a water quality prediction 

model using machine learning algorithms for the 

Huangpu River in Shanghai, China. They employed 

random forest and support vector machines (SVM) to 

predict water quality index (WQI) values, highlighting 

the importance of environmental factors and machine 

learning techniques for accurate predictions. Liang et al. 

[2] proposed a hybrid model combining neural networks 

and grey relational analysis for water quality prediction 

in the Han River, Korea. This approach integrated 

various water quality parameters to forecast trends and 

identify pollution sources, demonstrating effectiveness 

in improving prediction accuracy. 

Zhang et al. [3] applied deep learning with convolutional 

neural networks (CNN) and long short-term memory 

(LSTM) networks to predict water quality in the 

Yangtze River, China. Their CNN-LSTM model 

captured spatial and temporal correlations, showing 

promise in enhancing prediction accuracy. Li et al. [4] 

studied ensemble learning techniques for water quality 

prediction in the Yellow River, China, comparing 

bagging, boosting, and stacking models. Ensemble 

methods combined multiple learners to achieve robust 

and accurate predictions of water quality parameters. 

These studies advance water quality prediction by 

leveraging machine learning and deep learning 

techniques to address environmental challenges and 

improve prediction accuracy.  

This research aims to develop an improved water quality 

prediction model by utilizing Recurrent Neural 

Networks (RNNs) to handle time series data. For this 

purpose, seasonal time series data collected from the 

Visual Crossing site, based on eleven sampling stations 

along the Bhavani River, is used. The water quality 

prediction model is built using variants of RNNs, 

specifically Long Short-Term Memory (LSTM) 

networks and Gated Recurrent Units (GRUs). These 

models are then thoroughly evaluated to determine their 

effectiveness in predicting water quality. 

 

2. Data Collection And Dataset Preparation 

In our prior study, we developed a predictive model for 

water quality by examining trends in physicochemical 

features using time series data from river samples. The 

training dataset consisted of 26 physicochemical 

parameters, which included pH, conductivity, turbidity, 

phenolphthalein alkalinity, total alkalinity, chloride, 

COD, TKN, ammonia, calcium hardness, magnesium 

hardness, sulfate, sodium, TSS, TDS, FDS, phosphate, 

boron, potassium, BOD, fluoride, Nitrate-N, DO, TC, 

and FC, as detailed in Table 1. 

 

Table 1: Sample Physicochemical Parameters Collected from Sampling Stations 

pH 7.15 7.46 7.5 7.18 7.45 7.05 7.4 7.38 7.56 7.1 

Conductivity  340 339 339 340 340 342 341 339 340 340 

Turbidity 2 2 2 2 2 2 2 2 2 2 

Phenolpth Alkalinity  0 0 0 0 0 0 0 0 0 0 

Total Alkalinity 111 110 112 111 110 110 112 111 112 111 

Chloride 21 21 22 21 20 20 20 21 21 21 

COD 4 3.9 4 3.9 4 4 4 3.9 3.9 4 

TKN 0.1 0.1 0.09 0.1 0.1 0.09 0.1 0.1 0.1 0.11 

Ammonia 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 

Hardness 118 118 119 119 119 119 118 118 118 117.5 

Ca. hardness 74 74 74.5 74.5 74 73.5 73.5 73.5 74 74 

Mg. Hardness 44 44 44 43.5 43.5 43.5 44 44 44 44 

Sulphate 12 12.5 12 12 12.5 12.5 12 12 12.5 12 

Sodium 27.1 27.1 27.2 27.2 27 27.1 27.1 27 27.1 27.1 

TSS 300 300 300 300 300 300 300 300 300 300 

TDS 190 190 189 189 189 190 189 190 189 188 

FDS 174 174 174 174.5 174.5 174 174 174 173.5 173 

Phosphate 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 

Boron 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Potassium 2.67 2.67 2.66 2.66 2.67 2.67 2.66 2.66 2.66 2.66 

BOD 0.89 0.87 0.89 0.88 0.85 0.87 0.82 0.81 0.88 0.82 

Fluoride 0.12 0.18 0.18 0.18 0.18 0.17 0.17 0.17 0.18 0.18 

Nitrate-N 1.1 1.1 1.1 1 1.2 1 1.2 1.2 1.2 1.2 

DO 6.99 6.97 6.81 7.19 7.3 7.39 7.06 7.02 6.97 7.39 

TC 88 98 118 86 65 105 83 113 65 85 

FC 80 80 80 79.5 79.5 79 79.5 80 80 80 

 

Seasonal variations influence river water quality over 

time due to abrupt changes in climate. Some research 

articles indicates that these seasonal parameters 

significantly affect the Water Quality Index and its 
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prediction in time series data. Rainfall and humidity are 

closely linked; relative humidity increases with 

rainwater evaporation. Wind speed is measured using a 

Davis Cup Anemometer at a height of three meters, 

compared to conventional measurements at ten meters. 

Higher wind speeds reduce the transition time between 

evaporative stages at low velocities. Dew, a crucial 

water source for rivers, significantly impacts 

microclimates and vegetation physiology. Global 

warming will alter precipitation distribution by changing 

air temperatures and circulation patterns. All seasonal 

factors alter the acceptable limits of physicochemical 

parameters, thereby reducing water quality. 

Consequently, this study considers seasonal features 

over the same time frame and incorporates their 

importance to enhance predictive model efficiency The 

seasonal features acquired from visual crossing sites are 

based on sampling station locations from January 2016 

to December 2020 and the sample data is shown in Table 

2. Seasonal Parameters like precipitation, precip over, 

cloud cover, humidity, dew, sea level pressure, wind 

speed, wind direction, and visibility are considered here, 

as these characteristics change with the season over 

time. These seasonal attributes are pooled with 

physicochemical parameters to develop a dataset in this 

work. 

 

Table 2: Sample Seasonal Parameters Collected Visual Crossing Site 

Temp 25 24 25 25 25 24 24 25 25 25 

Dew 15.7 14.6 13.4 13.6 15.6 17.7 18.9 19.4 18.3 17.8 

Humidity 59.3 56.72 51.89 53.06 58.8 62.79 68.91 68.63 65.71 63.8 

Sea level pressure 1016.6 1017.1 1015.8 1015.7 1014.8 1014.8 1015.5 1015.5 1013.7 1014.5 

Precipitation  0 0 0 0 0 0 0.2 0 0 0 

Precip cover 0 0 0 0 0 0 4.17 0 0 0 

Windspeed 16.3 14.4 13.1 15.4 14 18.7 40.2 13.6 14.4 14.9 

Wind dir 52.9 62.3 61.7 68.2 56.5 69.3 114.6 95 94.9 65.1 

Cloud cover 27.4 17.9 5.5 14.1 14.6 16 32.3 42.5 26.3 14 

Visibility 5.5 6 5.7 5.9 5.6 5.5 4.8 5.3 5.1 5.4 

 

The Water Quality Index (WQI) is a tool used to 

measure the quality of water. It is composed of several 

seasonal attributes that are used to assess the overall 

health of a water body. Temperature is an important 

attribute as it helps to indicate the presence of certain 

species, as well as the activity of the water body.  Dew 

is a measure of the amount of water vapour present in 

the atmosphere. It is significant to determine water 

quality because it helps to regulate the temperature of the 

environment, and it can also indicate the amount of 

precipitation that is likely to occur. Humidity is a 

measure of the amount of water vapour present in the air. 

It is also important to measure the water quality as it can 

affect the rate of evaporation, and also indicate the 

temperature of the environment.  

Sea level pressure is a measure of the atmospheric 

pressure at sea level and is important in water quality 

prediction because it can affect the rate at which water 

evaporates, and also indicate the amount of precipitation 

that is likely to occur. Precipitation is a measure of the 

amount of liquid or solid water particles that have fallen 

from the atmosphere. It is crucial for maintaining water 

quality as it can affect the amount of dissolved oxygen 

in the water, and it can also indicate the pollutants that 

are present. Precip Over is a measure of the amount of 

precipitation that has fallen over a certain period. It has 

a significant impact on the quality of water because it 

can indicate the number of pollutants that are present in 

the water, and it can also indicate the number of nutrients 

that are available for plant growth.  

Wind speed is a measure of the speed of the wind that is 

blowing. It is important to water quality prediction 

because it can affect the rate at which water evaporates, 

and it can also indicate the pollutants that are present in 

the water. Wind direction is a measure of the direction 

in which the wind is blowing. It plays a vital role in 

water quality because it can affect the rate at which water 

evaporates, and it can also indicate the number of 

pollutants that are present in the water. Cloud cover is a 

measure of the amount of water vapour that is present in 

the atmosphere. It has a significant effect on water 

quality due to its ability to affect the rate of evaporation, 

and it can also indicate the volume of pollutants that are 

present in the water. Visibility is a measure of how far 

one can see in the atmosphere. It is a key factor in the 

quality of water because it can indicate the pollutants 

that are present in the water, and it can also indicate the 

number of nutrients that are available for plant growth. 

 

 

 

 

Table 3: Water Quality Parameters 
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Physicochemical Parameters  Seasonal Parameters  

pH TSS Temperature  

Conductivity  TDS Dew 

Turbidity FDS Humidity 

Phenolphthalein Alkalinity  Phosphate Sea level pressure 

Total Alkalinity Boron Precipitation  

Chloride Potassium Precip cover 

COD BOD Windspeed 

TKN Fluoride Wind dir 

Ammonia Nitrate-N Cloud cover 

Hardness TC Visibility 

Ca. hardness FC Spatial Parameters 

Mg. hardness Dissolved Oxygen  Station ID 

Sulphate Temporal Parameter Latitude  

Sodium Date Longitude  

 

Thus, twenty-six physiochemical attributes are pooled 

with ten seasonal attributes along with spatial 

parameters to develop the WQI-SA dataset. Finally, 

there is a total of 40 attributes forming the time series 

data prepared for this research work.  

The river water quality data undergoes exploratory data 

analysis to understand the data properties and assess the 

importance of each parameter in generating the water 

quality index. Physicochemical data from sampling 

stations and seasonal data from the Visual Crossing site 

are listed in Table 3. Statistical techniques such as 

heatmaps, boxplot analysis, pair plot analysis, and 

histograms are used to analyse and interpret the 

distribution of parameter values. Boxplot analysis 

reveals that seasonal parameters such as wind speed and 

cloud cover exhibit a wide range of values. While wind 

speed ranges between 10 and 270, and cloud cover is 

between 0 and 100. Therefore, the parameter values are 

normalised so that they lie within the usual range for 

each parameter. Wind speed and cloud cover are 

standardised using the min-max approach. Using 

Pearson correlation, the heatmap is used to visualise and 

analyse the correlation between the parameters, such as 

positive and negative. The bar graph analysis of wind 

speed, humidity, visibility, cloud cover, and 

physicochemical parameters are depicted in Figure 1a. 

pH, turbidity, cloud cover, FDS, boron, TC, TSS, and 

wind speed are the parameters that have a negative 

correlation with WQI and are displayed in Fig. 1b. 

 

 
Fig.1a Bar graph analysis                                                     Fig.1b Heatmap analysis 

 

EDA reveals that some instances in the dataset include 

missing values that must be eliminated, so data cleaning 

is performed. EDA explains better about the attribute 

distributions and parameter correlations, providing 

suitable solutions for data modelling and pre-processing 

needs.  

The Water Quality Index (WQI) is a measure of the 

overall water quality of the proposed system. The WQI 

can be used to monitor changes in water quality over 

time and to assess the suitability of the water body. It is 

calculated by taking the average of several factors that 

are indicators of water quality, like temperature, pH, 

bod, and cod. The WQI is then assigned a score based 

on a range of 0 to 120, with higher scores indicating poor 

water quality. The WQI is computed and then added as 

the target variable along with the 40 independent 

variables for the WQI modelling prediction task. Hence 

in the work, the dataset includes both physiochemical 
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and seasonal parameters and it contains 10560 instances. 

Feature selection is a vital phase in predictive modelling 

in which appropriate parameters that contribute 

significantly to predicting the target variable are chosen. 

In this study, the SelectKBest algorithm was utilized to 

identify important features for calculating the water 

quality index. According to the SelectKBest feature 

selection algorithm, conductivity ranked highest in 

estimating the water quality index, followed by 

ammonia and phosphate. Conversely, boron and 

phenolphthalein alkalinity, identified as less significant 

by the feature selection process, were removed from the 

dataset. 

This feature selection method improved the river water 

quality dataset and finally the dataset with 10560 

instances and 38 attributes has been developed and is 

named as WQI-SA dataset for reference. 

3. Water Quality Index Prediction Model 

The challenge of predicting the water quality index is 

framed as a regression problem and addressed using 

deep neural network architectures. Deep neural 

networks effectively characterize and classify data by 

processing input data along with associated weights and 

biases through multiple interconnected layers. These 

networks typically feature numerous layers, with visible 

input and output layers that enhance prediction 

accuracy. Figure 2 illustrates the architecture of the 

proposed framework for the WQI prediction model. In 

this framework, pre-processed data is fed into the deep 

learning model at the input layer, and predictions are 

generated at the output layer. The model benefits from 

large-scale data sets, with performance improving as 

more data is incorporated, resulting in high-quality 

predictions. 

 
Fig. 2. Proposed WQI Model Architecture for River Water Quality Index Prediction 

In this study, deep learning architectures such as 

recurrent neural networks (RNNs), long short-term 

memory (LSTM), and gated recurrent units (GRU) were 

selected to develop a river water quality index prediction 

model capable of handling sequence data. Recurrent 

Neural Networks (RNNs) use outputs from previous 

sections as inputs for subsequent sections, with the 

hidden state being crucial for storing sequence 

information. However, traditional RNNs are prone to the 

vanishing gradient problem due to their limited ability to 

retain long-term memory over many time steps. To 

address this, LSTM and GRU architectures were 

employed. 

LSTM units are designed to remember and forget 

information as needed, maintaining an internal cell state 

vector to retain pertinent information from previous time 

steps. On the other hand, GRU units utilize update and 

reset gates to control the flow of information through the 

network, allowing for better gradient flow and improved 

long-term memory retention compared to standard 

RNNs. 
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In this research, 80% of the WQI-SA dataset instances 

were used to independently train RNN, LSTM, and 

GRU models, with hyperparameters optimized to 

improve model performance. Hyperparameters such as 

hidden layers, dense layers, optimizer type, epochs, 

momentum, batch size, activation functions, and dropout 

rates were fine-tuned to enhance model accuracy and 

predictive capability. 

Hidden layers are positioned between input and output 

layers, and dense layers connect all neurons from the 

previous layer to the next, significantly improving 

accuracy. Optimizers adjust neural network parameters 

like weights and learning rates to minimize loss and 

enhance model performance. Epochs determine the 

number of complete dataset iterations during training, 

while momentum enhances gradient-based optimization 

by considering gradients from previous steps. Activation 

functions introduce nonlinearity, crucial for separating 

and reducing output dimensions from dense layers. 

Lastly, dropout layers were used to prevent overfitting 

by randomly excluding specific layer weights during 

training, ensuring the model's generalization ability. 

This study successfully constructed WQI prediction 

models using LSTM, GRU, and RNN architectures, 

employing proper hyperparameter settings to facilitate 

representation learning from input instances. 

The learning rate determines the speed at which a deep 

model replaces a previously learned concept with a new 

one. Finally, three independent WQI prediction models 

are built by learning water quality patterns from the 

input instances of the WQI-SA dataset through training 

RNN, LSTM and GRU with proper hyperparameters 

settings. These models are called as RNN-WQI-SA, 

LSTM-WQI-SA and GRU-WQI-SA models for 

reference. The effectiveness of the WQI forecasting 

models is evaluated using MAE, MSE, RMSE and R2 

score. 

 

4. Experiment And Results 

In our previous study, experiments were conducted 

using the time series WQI-PCA dataset, which includes 

samples with physicochemical parameters. Prediction 

models were developed using deep neural architectures, 

specifically RNN, GRU and LSTM. The prediction 

results of these models are summarized in Table 4, 

revealing that the GRU-based WQI prediction model 

achieved an accuracy of 84% in predicting WQI. 

 

Table 4: Prediction Result using WQI-PCA Dataset 

Dataset Model MAE MSE RMSE R2 Score 

WQI-PCA 

RNN-WQI-PCA 0.512 0.408 0.6387 0.8 

LSTM-WQI-PCA 0.393 0.2401 0.4900 0.838 

GRU-WQI-PCA 0.364 0.2098 0.4580 0.845 

 

In the study, deep learning algorithms such as GRU, 

LSTM and RNN were employed to train the WQI-SA 

dataset from the Bhavani River using Python libraries. 

The dataset consisted of 8124 tagged instances for 

training, and evaluation of the prediction models was 

conducted using metrics such as MAE, MSE, RMSE, 

and R2 score values. The test dataset comprised 2009 

tagged instances from the WQI-SA dataset. 

For the deep learning models, hyperparameters were 

specified as follows: the dense layer units ranged from 5 

to 10, and the Adam optimizer was used. Epoch sizes of 

20, 50, 100, 150, 200, and 500 were experimented with. 

The ReLU activation function was chosen for training, 

and momentum was varied between 0.5 and 0.9. 

Initially, a dropout rate of 0.2 was considered, but later, 

0.3 was found to yield better results. The learning rate 

was set at 0.1, and the batch size was alternated between 

32 and 64. Experimental results indicated that setting the 

momentum to 0.8, using an epoch size of 500, dropout 

rate of 0.3, and ReLU activation function produced the 

most accurate predictions. 

These settings were selected through rigorous 

experimentation to optimize the performance of deep 

learning models for predicting water quality index. The 

results of the RNN-based WQI prediction model (RNN-

WQI-SA model) are experimented with various epochs 

such as from 20 to 500 where various metrics are 

measured at different epochs. At epoch 500, the RNN 

model achieves an MAE of 0.424, indicating the average 

absolute difference between the predicted and actual 

values. The MSE is calculated as 0.384, representing the 

average of squared differences. The RMSE is 0.6196, 

which is the square root of the MSE. The R2 score, 

measuring the goodness of fit, is 0.82, indicating a high 

level of prediction accuracy. Moving to epoch 200, the 

MAE increases slightly to 0.459, while the MSE 

becomes 0.392. The RMSE is 0.6260, and the R2 score 

remains relatively high at 0.813. As the number of 

epochs decreases, the MAE and MSE values gradually 

increase, indicating a larger difference between the 

predicted and actual values.  

At epoch 150, the MAE is 0.482, and the MSE is 0.424, 

resulting in an RMSE of 0.6511. The R2 score decreases 

to 0.806, suggesting a slightly lower level of prediction 

accuracy compared to the previous epochs. At epoch 

100, the MAE increases further to 0.512, and the MSE 

becomes 0.462. The RMSE is 0.6797, and the R2 score 

remains relatively stable at 0.80. With only 50 epochs, 
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the MAE reaches 0.537, and the MSE increases to 0.527. 

The RMSE becomes 0.7259, while the R2 score 

decreases slightly to 0.79. Finally, at epoch 20, the MAE 

is 0.579, the MSE is 0.561, and the RMSE is 0.7489. The 

R2 score drops to 0.78. These values reflect the 

performance of the RN-WQI-SA model on the WQI-SA 

dataset at different epochs, providing insight into the 

prediction results which are tabulated in Table 5. 

 

Table 5. Evaluation of RNN-WQI-SA Model Performance Using Different Epoch 

Dataset Epochs MAE MSE RMSE R2 Score 

WQI-SA 

20 0.579 0.561 0.7489 0.78 

50 0.537 0.527 0.7259 0.79 

100 0.512 0.462 0.6797 0.8 

150 0.482 0.424 0.6511 0.806 

200 0.459 0.392 0.626 0.813 

500 0.428 0.384 0.6196 0.82 

 

The prediction results of the LSTM-based WQI 

prediction model (LSTM-WQI-SA model) for different 

epochs on the WQI-SA dataset. At epoch 500, the 

LSTM-WQI-SA model achieves an MAE of 0.298, 

indicating the average absolute difference between the 

predicted and actual values. The MSE is calculated as 

0.2084, representing the average of squared differences. 

The RMSE is 0.4565, which is the square root of the 

MSE. The R2 score, measuring the goodness of fit, is 

0.856, indicating a high level of prediction accuracy. 

Moving to epoch 200, the MAE increases slightly to 

0.304, while the MSE becomes 0.239. The RMSE is 

0.4888, and the R2 score remains relatively high at 0.85. 

As the number of epochs decreases, the MAE and MSE 

values gradually increase, indicating a larger difference 

between the predicted and actual values. At epoch 150, 

the MAE is 0.328, and the MSE is 0.274, resulting in an 

RMSE of 0.5234. The R2 score decreases to 0.843, 

suggesting a slightly lower level of prediction accuracy 

compared to the previous epochs.  

At epoch 100, the MAE increases further to 0.371, and 

the MSE becomes 0.291. The RMSE is 0.5394, and the 

R2 score remains relatively stable at 0.839. With only 50 

epochs, the MAE reaches 0.398, and the MSE increases 

to 0.328. The RMSE becomes 0.5727, while the R2 

score decreases slightly to 0.83. Finally, at epoch 20, the 

MAE is 0.402, the MSE is 0.367, and the RMSE is 

0.6058. The R2 score drops to 0.827. These values 

illustrate the performance results of the LSTM-WQI-SA 

model on the WQI-SA dataset at different epochs, 

providing insight into the prediction results which are 

tabulated in Table 6. 

 

Table 6. Evaluation of LSTM-WQI-SA Model Performance Using Different Epoch 

Dataset Epochs MAE MSE RMSE R2 Score 

WQI-SA 

20 0.402 0.367 0.6058 0.827 

50 0.398 0.328 0.5727 0.83 

100 0.371 0.291 0.5394 0.839 

150 0.328 0.274 0.5234 0.843 

200 0.304 0.239 0.4888 0.85 

500 0.298 0.2084 0.4565 0.856 

The prediction results of the GRU-based WQI prediction 

model (GRU-WQI-SA model) for different epochs on 

the WQI-SA dataset. At epoch 500, the GRU-WQI-SA 

model achieves an MAE of 0.39, indicating the average 

absolute difference between the predicted and actual 

values. The MSE is calculated as 0.2149, representing 

the average of squared differences. The RMSE is 

0.4636, which is the square root of the MSE. The R2 

score, measuring the goodness of fit, is 0.839, indicating 

a relatively high level of prediction accuracy. Moving to 

epoch 200, the MAE increases slightly to 0.412, while 

the MSE becomes 0.2342. The RMSE is 0.4839, and the 

R2 score decreases to 0.83. As the number of epochs 

decreases, the MAE and MSE values gradually increase, 

indicating a larger difference between the predicted and 

actual values.  

At epoch 150, the MAE is 0.436, and the MSE is 0.269, 

resulting in an RMSE of 0.5187. The R2 score decreases 

to 0.823, suggesting a slightly lower level of prediction 

accuracy compared to the previous epochs. At epoch 

100, the MAE increases further to 0.452, and the MSE 

becomes 0.287. The RMSE is 0.5357, and the R2 score 

remains relatively stable at 0.82. With only 50 epochs, 

the MAE reaches 0.462, and the MSE increases to 0.315. 

The RMSE becomes 0.5612, while the R2 score 

decreases slightly to 0.803. Finally, at epoch 20, the 

MAE is 0.474, the MSE is 0.348, and the RMSE is 

0.5899. The R2 score drops to 0.793. These values 

highlight the performance of the GRU model on the 
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WQI-SA dataset at different epochs, providing insight 

into the prediction results which are tabulated in Table 

7.  

 

Table 7. Evaluation of GRU-WQI-SA Model Performance Using Different Epoch 

Dataset Epochs MAE MSE RMSE R2 Score 

WQI-SA 

20 0.474 0.348 0.5899 0.793 

50 0.462 0.315 0.5612 0.803 

100 0.452 0.287 0.5357 0.82 

150 0.436 0.269 0.5187 0.823 

200 0.412 0.2342 0.4839 0.83 

500 0.39 0.2149 0.4636 0.839 

 

Various experiments have been carried out with 

different dropout rates such as 0.2 and 0.3 for building 

WQI prediction models using the WQI-SA dataset and 

the experimental results concerning the same evaluation 

metrics are shown in Table 8. 

Table 8.  Results of WQI Prediction Models for Different Dropout Rates 

Dataset Algorithm  Dropout MAE MSE RMSE R2 Score 

WQI-SA 

RNN 
0.2 0.428 0.384 0.6197 0.82 

0.3 0.482 0.424 0.6512 0.806 

LSTM 
0.2 0.298 0.2084 0.4565 0.856 

0.3 0.328 0.274 0.5235 0.843 

GRU 
0.2 0.39 0.2149 0.4636 0.839 

0.3 0.436 0.269 0.5187 0.823 

  

 The prediction results of WQI models for various 

epochs and dropouts have been observed while 

implementing deep learning algorithms to discover the 

best prediction results. It is proved that the models 

trained with 500 epochs and dropout rate 0.3 with other 

hyperparameters like adam optimizer, momentum as 0.8 

and activation function as relu for RNN, LSTM and 

GRU produced the best results and are shown in Table 9 

and depicted in Fig. 3. 

Table 9.  Performance Analysis of Three WQI Prediction Models 

Dataset Dropout Epoch Models MAE MSE RMSE R2 Score 

WQI-SA 0.3 500 

RNN-WQI-SA 0.428 0.384 0.6197 0.82 

LSTM-WQI-SA 0.298 0.2084 0.4565 0.856 

GRU-WQI-SA  0.39 0.2149 0.4636 0.839 

 

 
Fig.3. Prediction Performance of all Three WQI Models 
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Based on the above results, it is evident that the LSTM-

based WQI prediction model demonstrates promising 

performance, achieving a high R2 score and lower error 

rates. Specifically, the mean absolute error of the 

LSTM-based forecasting model is lower compared to 

the RNN and GRU algorithms. Moreover, the root mean 

squared error is also lower for the LSTM-WQI-SA 

model compared to the RNN-WQI-SA and GRU-WQI-

SA models. The higher R2 score of the LSTM-WQI-SA 

forecasting model indicates greater accuracy compared 

to the other prediction models. 

 

Comparative Analysis WQI Models based on WQI-

PCA and WQI-SA Datasets 

The performance results of prediction models built using 

two distinct datasets such as WQI-PCA and WQI-SA are 

compared to analyse the efficiency of the prediction 

models. For the WQI-PCA dataset, the RNN-WQI-PCA 

model achieved an MAE of 0.512, MSE of 0.408, RMSE 

of 0.6387, and an R2 Score of 0.8. The LSTM-WQI-

PCA model outperformed RNN-WQI-PCA with an 

MAE of 0.393, MSE of 0.2401, RMSE of 0.49, and an 

R2 Score of 0.838. The GRU-WQI-PCA model showed 

the best performance on the WQI-PCA dataset with an 

MAE of 0.364, MSE of 0.2098, RMSE of 0.4580, and 

an impressive R2 Score of 0.845. It is evident that the 

GRU-WQI-PCA model yielded the most accurate 

predictions among the models evaluated. 

The prediction results of the models built using the 

WQI-SA dataset show promising results as compared to 

previous work. The RNN-WQI-SA model demonstrated 

an MAE of 0.428, MSE of 0.384, RMSE of 0.6197, and 

an R2 Score of 0.82. The LSTM-WQI-SA model 

performed even better, achieving an MAE of 0.298, 

MSE of 0.2084, RMSE of 0.4565, and an R2 Score of 

0.856, indicating high predictive accuracy. The GRU-

WQI-SA model also delivered good results with an 

MAE of 0.39, MSE of 0.2149, RMSE of 0.4636, and an 

R2 score of 0.839. The results clearly indicate that the 

LSTM-WQI-SA model produced the most precise 

predictions among the other prediction models. 

From the comparative study, it is evident that the 

prediction models built using the WQI-SA dataset 

performed better than the models built using the WQI-

PCA dataset. The LSTM-WQI-SA model emerged as 

the most accurate one, exhibiting the lowest MAE, MSE, 

and RMSE, along with the highest R2 Score. Here it is 

evident that the incorporation of seasonal parameters has 

improved the efficacy of the prediction models. The 

performance analysis of the WQI prediction models is 

tabulated in Table 10 and illustrated in Fig. 4.  

 

Table 10.  Performance Comparison of WQI Models based on WQI-PCA and WQI-SA Datasets 

Dataset Models MAE MSE RMSE R2 Score 

WQI-PCA 

RNN-WQI-PCA 0.512 0.408 0.6387 0.8 

LSTM-WQI-PCA 0.393 0.2401 0.4900 0.838 

GRU-WQI-PCA 0.364 0.2098 0.4580 0.845 

WQI-SA 

RNN-WQI-SA 0.428 0.384 0.6197 0.82 

LSTM-WQI-SA 0.298 0.2084 0.4565 0.856 

GRU-WQI-SA  0.39 0.2149 0.4636 0.839 
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Fig. 4. Performance Comparison of WQI Models based on WQI-PCA and WQI-SA Datasets 

 

Findings 

This study demonstrates the efficacy of deep learning 

approaches in developing predictive models for WQI 

using time series data, particularly by incorporating 

seasonal parameters. Seasonal parameters significantly 

enhance WQI prediction by strengthening the 

relationship between predictors and the target variable, 

thereby aiding LSTM, RNN, and GRU networks in 

learning data trends more effectively. These models 

benefit from the self-extracted features learned within 

the networks, leading to improved prediction rates. 

Proper hyperparameter configuration during training 

further reduces error rates, making the enhanced water 

quality prediction model with seasonal time series data 

a robust tool for accurately predicting water quality. 

 

5. Conclusion 

This study underscored the significance of seasonal data 

in constructing Water Quality Index (WQI) prediction 

models. Deep learning architectures were applied to 

river water quality time series forecasting, 

demonstrating their efficacy in achieving accurate WQI 

predictions. Seasonal data collected from the Visual 

Crossing site between 2016 and 2020 was combined 

with physicochemical parameters from the Bhavani 

River to create a new time series dataset. The river water 

quality forecasting model was designed and 

implemented using deep learning architectures such as 

LSTM, RNN, and GRU. The performance of these 

models was evaluated and compared with models 

trained solely on physicochemical parameters. The 

evaluation results indicated that incorporating seasonal 

data significantly improved the efficiency of the water 

quality prediction model. A generalized model was 

developed, capable of predicting the water quality of any 

river. Furthermore, the developed model can serve as a 

pre-trained model for transfer learning applications. 
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