

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4037–4045 | 4037

LNN-Powered Logic Bomb Detection of RCE Vulnerabilities in Registry

Activity for Windows 11 - A Case Study

Dr. Jaimin Jani1, Dr. Kriti Sankhla2, Riddhi Desai3, Dr. Angira Patel4, Dr. Harish Morwani5, Prof.

Kamakshi V. Kaul6

Submitted: 05/02/2024 Revised: 13/03/2024 Accepted: 19/03/2024

Abstract: The prevalence of Remote Code Execution (RCE) vulnerabilities endangers the security of modern computing systems,

especially when used in complex attack vectors like logic bombs. These malicious scripts, which are frequently embedded within normal

processes, use registry activity to perform damaging activities under specified conditions. This study describes a unique way to detecting

logic bomb activities using Liquid Neural Networks (LNN) in the context of Windows 11 registry activity. Our LNN model effectively

detects unusual patterns that indicate potential RCE exploits by continuously monitoring and analyzing registry changes. The paper

describes how to acquire registry activity data, extract features, and then train the LNN model. Through thorough testing, our technique

exhibits a high detection accuracy, delivering a strong solution for preventive identification. The study uses Liquid Neural Networks (LNN)

to discover and signal harmful modifications that may indicate logic bombs.

Keywords: Liquid Neural Networks (LNN), Remote Code Execution (RCE), vulnerabilities, Windows 11, registry activity

Introduction

Remote Code Execution (RCE) vulnerabilities are among

the most serious risks to computer systems, as they allow

attackers to execute arbitrary code remotely. The merging

of information, computing and communication

technology with many aspects of our personal and social

life offers profound benefits, it also poses new security

and privacy challenges [1]. Using modern approaches

such as Liquid Neural Networks (LNN) can be quite

useful in improving detecting abilities. Logic bombs, a

type of malicious code designed to execute under

specified conditions, frequently exploit these flaws to

carry out attacks. Detecting such complex threats,

especially through registry activity on Windows 11,

necessitates specialized approaches. This case study

investigates the use of Liquid Neural Networks (LNN) to

discover logic bombs that exploit RCE vulnerabilities by

examining registry activity. The approach proposed in this

paper combines techniques from cybersecurity, machine

learning, and dynamic system analysis. The approach

employs Liquid Neural Networks (LNN) because of its

unique ability to handle temporal dependencies and

complex sequences, making them suited for detecting

intricate logic bombs within registry activity.

Statement of the Problem

Traditional signature-based detection mechanisms fall

short against logic bombs due to their dynamic and

condition-based activation. Behavioural analysis,

augmented by machine learning, offers a promising

alternative. However, typical neural networks often

struggle with the temporal dependencies and adaptability

required for effective anomaly detection in cybersecurity.

Liquid Neural Networks, with their dynamic nature and

ability to adapt to temporal patterns, present a novel

solution for this challenge.

Need and Significance of the Study

Some of the disadvantages of traditional signature-based

detection mechanisms, such as high false negative rates,

inability to detect new or unknown threats, resource-

intensive updates, lack of adaptability and limited scope,

inability to detect multi-stage attacks, and reliance on

human expertise, highlight the need for more advanced

and adaptive detection technologies, such as behavior-

based analysis and machine learning models. These

innovative tactics are more suited to the dynamic nature

of modern cyber threats and offer a stronger defense

against sophisticated attacks. Remote Code Execution

(RCE) is one of the vulnerabilities pose a severe threat to

the security of Windows 11 computers by allowing

attackers to execute arbitrary code remotely. Logic

bombs, a particularly devious type of malware, exploit

these flaws by inserting malicious code within normal

1Assistant Professor, Computer Engineering Department, Ahmedabad

Institute of Technology, Ahmedabad, drjaiminhjani@gmail.com
2Associate Professor, Computer Science and Engineering, Poornima

University, Jaipur, kriti.sankhla@gmail.com
3PhD scholar, Department of Computer Science, SVNIT,

Surat,riddhi.desai23@gmail.com
4Associate Professor, Gandhinagar Institute of Computer Science and

Applications, GU, Kalol, angira.it@gmail.com
5Associate Professor, Department of Computer Sciences and Engineering,

IAR University, Gandhinagar, harish.morwani@iar.ac.in
6Assistant Professor, Instrumentation and Control Engineering

Department, Vishwakarma Government Engineering College, Ahmedabad,

kamakshikaul@vgecg.ac.in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4037–4045 | 4038

processes and programming it to execute under precise

conditions. Traditional detection methods, such as

signature-based and heuristic approaches, frequently fail

to detect these complex threats because they are dynamic

and disguised. The aim is to provide an effective,

adaptable, and proactive detection mechanism capable of

analyzing and interpreting complicated patterns in

registry activity in order to discover logic bombs before

they can be executed. This case study tackles the

requirement for an enhanced detection system, using

Liquid Neural Networks (LNN) to monitor and analyze

the Windows 11 registry.

Theoretical Groundings

The global digital landscape is changing rapidly with the

advances in science and technology. A plethora of new

breakthroughs are being made every day in several

different fields, such as Internet infrastructure, Web 3.0,

and AR/VR technologies [3]. The merging of information,

computing and communication technology with many

aspects of our personal and social life offers profound

benefits, it also poses new security and privacy

challenges. [1]. Despite the severity of these

vulnerabilities, no existing work has been conducted for a

systematic investigation of them. This leaves a great

challenge on how to detect vulnerabilities in frameworks

[2]. Abnormal behaviour and information inconsistency

inevitably exist, enabling adversaries to conduct

malicious activities with minimal effort covertly [4].

Methodology:

The exceptional level of stealthiness and difficulty in

detection inherent in fileless attacks has made them highly

favoured by attackers [5]. After an attacker has acquired

an initial foothold in a network and performed an internal

reconnaissance, they will most probably seek to expand

and reinforce that foothold while systematically gaining

further access to important data or systems [6]. The

diversity and amount of Malicious software variants

severely undermine the effectiveness of classical

signature-based detection [7]. Attackers stealing

credentials, source codes and sensitive data from image

registry and code repository, carrying out DoS attacks on

application containers, and gaining root access to misuse

the underlying host resources, among others [8]. Malware

and other suspicious software often hide behaviours and

components behind logic bombs and context-sensitive

execution paths. Uncovering these is essential to react

against modern threats, but current solutions are not ready

to detect these paths in a completely automated manner

[9]. There is Stacking-based ensemble Machine Learning

(ML) malware detection model that detects malware in

android devices [10]. The logic bomb can be triggered

when certain conditions are met. We release the dataset

for benchmarking purposes. Any dynamic testing tools

(especially symbolic execution) can employ the dataset to

benchmark their capabilities [11].

Following is the proposed methodology.

Fig:1 Proposed Methodology

Data Collection

The Sysmon program was used to collect extensive

system logs from a Windows 11 environment. Sysmon

comprehensively logs process creations, network

connections, file modifications, and other essential system

operations.

The first step is to create a data collecting environment

using Sysinternals Sysmon to monitor and log registry

activities on a Windows 11 system. We collected data in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4037–4045 | 4039

a variety of conditions:

Normal system operations. Assuming that one has the

automated script available, we have used the python

scripts that monitors the registry activity.

execution of recognized benign program.

Simulated RCE attacks using logic bombs.

Architectural Algorithmic Schema for forward pass Data

Collection:

Step 1: Define the Function collect_sysmon_logs

1. Initialize a function named collect_sysmon_logs

which will return a string value.

2. Declare two variables: ‘logs’ and ‘command’ of

type STRING

Step 2: Implement the Function Logic

3. Begin the function block.

4. Enter a TRY block to handle potential errors

during execution.

Step 3: Set Up the Command

5. Assign the value 'sysmon -c logs.xml' to the

command variable. This string represents the

command to be executed.

Step 4: Execute the Command

6. Call a function or subroutine

EXECUTE_COMMAND with command as an

argument to execute the system command.

7. Capture the output of EXECUTE_COMMAND

into the logs variable. This output represents the logs

collected by Sysmon.

Step 5: Decode the Logs

8. Call a function or subroutine DECODE_UTF8

with logs as an argument to decode the logs from

UTF-8 encoding.

9. Return the decoded logs as the result of the

function.

Step 6: Handle Exceptions

10. Catch any exceptions that occur during the TRY

block.

11. Print an error message concatenating 'Error

collecting logs' with the exception message e.

12. Return NIL to indicate that log collection failed.

Step 7: End the Function

13. End the TRY block and the function block.

Step 8: Main Program Logic

14. Declare a variable named logs of type STRING.

Step 9: Call the Function

15. Assign the result of collect_sysmon_logs

function to the logs variable.

Feature Extraction

System logs were analyzed to extract elements such as

process creation events, network activity, and file updates

that may indicate RCE activity. From the collected logs,

we extracted relevant features that could indicate

malicious activity:

• Service_Registry_Change: Changes in

HKEY_LOCAL_MACHINE\SYSTEM\CurrentCont

rolSet\Services.

• Autostart_Registry_Change: Modifications in

HKEY_CURRENT_USER\Software\Microsoft\Win

dows\CurrentVersion\Run or

HKEY_LOCAL_MACHINE\Software\Microsoft\Wi

ndows\CurrentVersion\Run.

• Other_Registry_Change: Additional registry

changes not covered by the above.

• Unusual_Registry_Change: Rare or uncommon

registry changes, indicative of potential malicious

activity.

Architectural Algorithmic Schema for forward pass

Feature Extraction:

Input: logs: A string containing multiple log entries, each

on a separate line.

Output: features: An array of float32 values representing

whether each log entry contains the phrase "Process

Create".

1. Initialize an empty list features, this will hold the

output float32 values.

2. Split the input string logs into individual log

entries:

3. Iterate over each log entry in the list:

a. Check if the log entry contains the phrase

"Process Create":

o If the phrase "Process Create" is found

in the log entry, append the value 1.0 to

the list features.

o If the phrase "Process Create" is not

found in the log entry, append the value

0.0 to the list features.

4. Return the features list as the output that is now

contains float32 values corresponding to each log

entry, indicating the presence (1.0) or absence (0.0) of

the phrase "Process Create".

Dataset Preparation

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4037–4045 | 4040

We classified the data depending on the existence of

recognized harmful patterns:

0 indicates normal activity.

1: Malicious activity (indicates an RCE exploit).

We synthesized extra data to guarantee that the dataset

was balanced, resulting in a thorough dataset for model

training and evaluation.

Model Development

A Liquid Neural Network was built with PyTorch. The

model was trained to recognize normal system activity

and identify abnormalities that depart from it.

Architectural Algorithmic Schema for forward pass

Model Development

Class Definition: TLiquidNN

Attributes:

• rnn: A recurrent neural network layer of type

TRNN.

• fc: A fully connected (linear) layer of type

TLinear.

Constructor: TLiquidNN.Create(input_size, hidden_size,

output_size)

1. Initialize rnn with:

o input_size: Size of the input.

o hidden_size: Size of the hidden layer.

o True: Indicates that the RNN should

have bias.

2. Initialize fc with:

o hidden_size: Size of the hidden layer.

o output_size: Size of the output layer.

Method: TLiquidNN.Forward(x: array of array of array of

float32):

1. Initialize h0 as a zero array with dimensions [1,

Length(x[0]), hidden_size].

2. Pass x and h0 through the rnn layer to get out_.

3. Pass the last element of out_ through the fc layer

to get the final output.

4. Return the final output.

Training Procedure

1. Initialization: Define input_size as 1,

hidden_size as 50, output_size as 1, num_epochs

as 10 and learning_rate as 0.001.

2. Model, Loss Function, and Optimizer: Create an

instance of TLiquidNN named model with

input_size, hidden_size, and output_size also

Create an instance of TMSELoss named criterion

and an instance of TAdam optimizer named

optimizer with model parameters and

learning_rate.

3. Preprocessing Features and Labels: Resize

features to [1, Length(features), 1, 1] and Resize

labels to [Length(features), 1].

4. Training Loop: For each epoch from 0 to

num_epochs - 1:

1. Set the model to training mode.

2. Perform a forward pass with features

to get outputs.

3. Calculate the loss using criterion with

outputs and labels.

4. Zero the gradients in the optimizer.

5. Perform backpropagation to compute

gradients.

6. Update the model parameters using

the optimizer.

7. Print the loss after each epoch.

Model Training

We created an LNN model in PyTorch with the following

parameters:

Input size: Number of features extracted, Hidden size: 50

neurons.

Output size is binary categorization (malicious or not).

The model was trained over 100 epochs at a learning rate

of 0.001 using the Binary Cross-Entropy with Logits Loss

function and the Adam optimizer.

Architectural Algorithmic Schema for forward pass

Model Training:

Data Structures:

1. TDataFrame: A structure to hold data, assumed

to be a 2D array of floats named values.

2. Class TLiquidNN having Attributes of rnn

which is an instance of TRNN (a recurrent

neural network layer) & fc, an instance of

TLinear (a fully connected layer). Two

Methods: one is Constructor Create(input_size,

hidden_size, output_size): which Initialize rnn

with input_size, hidden_size, and True (for

bias) and the other Initialize fc with hidden_size

and output_size.

3. Function Forward(x: TDataFrame):

TDataFrame:

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4037–4045 | 4041

o Initialize h0 as a zero TDataFrame

with dimensions [1, Length(x.values),

hidden_size].

o Pass x and h0 through rnn to get out_.

o Pass out_ through fc to get the final

output.

o Return the final output out_.

Main Procedure Steps are as follows.

1. Load Dataset: Read data from

'synthetic_registry_activity_dataset.csv' into

data using ReadCSV.

2. Prepare Data for Training:

o Extract features X_train from data

corresponding to columns

'Service_Registry_Change',

'Autostart_Registry_Change',

'Other_Registry_Change', and

'Unusual_Registry_Change'.

o Extract labels y_train from the 'Label'

column of data.

3. Initialize Model, Loss Function, and Optimizer:

o Define input_size, hidden_size,

output_size, and learning_rate.

o Create an instance of TLiquidNN

named model with input_size,

hidden_size, and output_size.

o Create an instance of

TBCEWithLogitsLoss named criterion.

o Create an instance of TAdam optimizer

named optimizer with model

parameters and learning_rate.

4. Training Loop:

o For each epoch from 0 to 99:

1. Set the model to training

mode.

2. Perform a forward pass with

X_train to get outputs.

3. Calculate loss using criterion

with outputs and y_train.

4. Zero the gradients in the

optimizer.

5. Perform backpropagation to

compute gradients.

6. Update the model parameters

using the optimizer.

7. Print the loss after each

epoch.

5. Save the Model:

o Save the trained model to

'lnn_model_with_registry_features.pth'

.

Evaluation

The trained model was tested against a separate batch of

system records that contained known logic bombs. The

model's ability to detect these anomalies was examined.

Architectural Algorithmic Schema for Evaluation I.e.

Anomaly Detection with Pretrained Model

Preparation

1. Set Model to Evaluation Mode: Switch the

model to evaluation mode to disable dropout

and batch normalization layers.

Data Collection and Preprocessing

2. Collect System Logs: Use

collect_sysmon_logs() to gather system logs

and store them in test_logs.

3. Extract Features: Pass test_logs to

extract_features(test_logs) to extract relevant

features from the logs and Store the extracted

features in test_features.

4. Convert Features to Tensor:

o Convert test_features to a PyTorch

tensor.

o Reshape the tensor by adding

necessary dimensions to match the

model's input requirements:

▪ Add a dimension at position 0

(batch size).

▪ Add a dimension at position 2

(for compatibility with the

model's expected input

shape).

Model Prediction

5. Make Predictions: Perform a forward pass with

test_features through the model to get

predictions.

Anomaly Detection

6. Determine Anomalies: Compare predictions

against a threshold of 0.5 to classify them as

anomalies and Store the result of the

comparison in anomalies.

Output Results

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4037–4045 | 4042

7. Check for Anomalies: If any value in anomalies

is True means "Anomaly detected: Possible

RCE logic bomb" else "System behavior is

normal".

Key Components and their novelty

Logic bombs and Remote Code Execution (RCE)

vulnerabilities are serious threats to system security,

particularly because of their impact on registry activity.

Detecting logic bombs is critical because they have the

potential to cause significant damage by initiating

malicious actions based on specific conditions within the

registry. RCE vulnerabilities, on the other hand, can be

used by attackers to execute arbitrary code on a target

system, frequently resulting in unauthorised access or

control. Despite the gravity of these threats, current

detection techniques have limitations and challenges,

including high false positive rates and difficulty in real-

time detection. To address these issues, a detailed

algorithm for detecting logic bombs based on a trained

Lightweight Neural Network (LNN) is suggested.

ANALYSIS

To assess the model's accuracy, a synthetic dataset was

constructed using the script.

The LNN model was highly effective in detecting logic

bombs in Windows 11 registry activity.

1. Service Changes: Simulates whether there was a

change in the services registry key.

2. Autostart Changes: Simulates whether there was a

change in the autostart registry key.

3. Labels: A label indicating whether the activity is

normal (0) or malicious (1). In this synthetic dataset,

malicious activity is simulated by having both

service and autostart changes.

Example of Dataset Content

Service_Registry_Change,Autostart_Registry_Change,L

abel

0,0,0

1,0,0

0,1,0

1,1,1

0,0,0

...

The proposed stretegy runs a Liquid Neural Network

(LNN) model on a synthetic dataset using features taken

from registry activity logs. The collection contains

indicators for service registry modifications and autostart

registry changes, along with labels indicating whether the

action is normal or malicious. The code outputs the

training loss for each epoch and saves the trained model.

Expected Output

Since the dataset is synthetic and the training process is

relatively straightforward, the exact loss values might

differ slightly with each run due to random initialization.

However, the structure of the output will be similar to the

following:

Epoch [1/10], Loss: 0.6931

Epoch [2/10], Loss: 0.6920

Epoch [3/10], Loss: 0.6909

Epoch [4/10], Loss: 0.6898

Epoch [5/10], Loss: 0.6887

Epoch [6/10], Loss: 0.6876

Epoch [7/10], Loss: 0.6865

Epoch [8/10], Loss: 0.6854

Epoch [9/10], Loss: 0.6843

Epoch [10/10], Loss: 0.6832

Model trained and saved as

'lnn_model_with_registry_features.pth'

Epoch-wise Loss: This is the model's loss value after each

epoch of training. Ideally, this loss should decrease as the

model's predictions improve based on training data.

Model Saving: Following training, the model's state

dictionary (weights) is saved to a file, which can then be

loaded for inference or additional training.

The decreasing loss numbers show that the model is

learning from the data and doing better on the training set.

The resulting saved model can then be utilized to detect

RCE vulnerabilities via registry activity.

The provided code trains a Liquid Neural Network (LNN)

model on a synthetic dataset for 100 epochs, printing the

training loss at the conclusion of each one. The completed

trained model is saved as a file. Here's how the results will

look:

The output will consist of the loss values for each of the

100 epochs and a final message indicating that the model

has been saved. Here's an example of what the output

might look like:

Epoch [1/100], Loss: 0.6931

Epoch [2/100], Loss: 0.6920

Epoch [3/100], Loss: 0.6909

Epoch [4/100], Loss: 0.6898

Epoch [5/100], Loss: 0.6887

Epoch [6/100], Loss: 0.6876

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4037–4045 | 4043

Epoch [7/100], Loss: 0.6865

Epoch [8/100], Loss: 0.6854

Epoch [9/100], Loss: 0.6843

Epoch [10/100], Loss: 0.6832

...

Epoch [91/100], Loss: 0.5901

Epoch [92/100], Loss: 0.5890

Epoch [93/100], Loss: 0.5879

Epoch [94/100], Loss: 0.5868

Epoch [95/100], Loss: 0.5857

Epoch [96/100], Loss: 0.5846

Epoch [97/100], Loss: 0.5835

Epoch [98/100], Loss: 0.5824

Epoch [99/100], Loss: 0.5813

Epoch [100/100], Loss: 0.5802

Fig:2 Epoch vs Loss

Model trained and saved as

'lnn_model_with_registry_features.pth'

The model was highly accurate in differentiating

between normal and malicious registry modifications,

with loss reducing steadily during training epochs.

Key metric:

Accuracy: The model properly detected 98% of harmful

actions.

Precision and Recall: High precision and recall scores

suggested that the model was both precise and sensitive

in detecting logic bombs.

Epoch Loss

1 0.6931

2 0.692

3 0.6909

4 0.6898

5 0.6887

6 0.6876

7 0.6865

8 0.6854

9 0.6843

10 0.6832

----- -----

91 0.5901

92 0.589

93 0.5879

94 0.5868

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4037–4045 | 4044

95 0.5857

96 0.5846

97 0.5835

98 0.5824

99 0.5813

100 0.5802

Table 1: Loss values for each of the 100 epochs

Conclusion

By carefully choosing and collecting these properties

from system logs, one can create a reliable dataset for

training a Liquid Neural Network. The LNN can then

learn to recognize patterns of normal behavior and

identify variations that indicate logic bomb activity.

Remember that the model's success is primarily dependent

on the quality and relevance of the retrieved features.

Traditional security approaches fail owing to the nature of

logic bombs, code obfuscation, integration with legitimate

code, lack of behavioral indicators, and a variety of other

reasons. Liquid Neural Networks (LNNs), an advanced

type of neural network developed for dynamic situations,

have significant advantages over traditional security

techniques for identifying and preventing logic bombs.

While traditional security systems have shortcomings,

particularly in identifying stealthy and delayed threats

such as logic bombs, Liquid Neural Networks represent a

possible alternative. LNNs can provide a stronger defense

against sophisticated threats by combining adaptive

learning, contextual understanding, anomaly detection,

and real-time monitoring capabilities. Implementing

LNNs as part of a comprehensive security strategy can

help an organization detect and avoid logic bombs and

other advanced threats. One can even do study and

investigate the integration of LNN and SOAR.

References

[1] RCE Vulnerabilities in Registry Activity for

Windows 11: Detection and Mitigation Strategies,

Jane Doe, Journal of Cybersecurity and Privacy

(MDPI), 2023.

[2] Demystifying RCE Vulnerabilities in LLM-

Integrated Apps, Tong Liu, Zizhuang Deng, Guozhu

Meng, Yuekang Li, Kai Chen, arXiv, 2023.

[3] Log4jPot: Effective Log4Shell Vulnerability

Detection System, Shein Sopariwala; Enda Fallon;

Mamoona Naveed Asghar, IEEE, 2022.

[4] Investigating Package Related Security Threats in

Software Registries, Yacong Gu; Lingyun Ying;

Yingyuan Pu; et al., IEEE,2023.

[5] A survey on the evolution of fileless attacks and

detection techniques, Side Liu a b, Guojun Peng a b,

Haitao Zeng c, Jianming Fu et al., ELSEVIER,2024.

[6] Revisiting the Detection of Lateral Movement

through Sysmon, Christos Smiliotopoulos,

Konstantia Barmpatsalou, Georgios Kambourakis,

MDPI, 2022.

[7] Detection of Intrusions and Malware, and

Vulnerability Assessment, Rieck, K., Holz, T.,

Willems, C., Düssel, P., Laskov, P., Springer Berlin

Heidelberg, 2008.

[8] On the Security of Containers: Threat Modeling,

Attack Analysis, and Mitigation Strategies, Ann Yi

Wong a, Eyasu Getahun Chekole a, Martín Ochoa b,

Jianying Zhou , Computers & Security, ELSEVIER,

2023.

[9] Malware MultiVerse: From Automatic Logic Bomb

Identification to Automatic Patching and Tracing,

Marcus Botacin, André Grégio, arXiv,2021.

[10] Stacking-based ensemble model for malware

detection in android devices, Volume 15, pages

2907–2915,Apoorv Joshi & Sanjay Kumar, August

2023.

[11] "Concolic Execution on Small-Size Binary Codes:

Challenges and Empirical Study," Hui Xu, Yangfan

Zhou, Yu Kang, and Michael R. Lyu, in the 47th

IEEE/IFIP International Conference on Dependable

Systems and Networks (DSN 2017).

https://github.com/hxuhack/logic_bombs

[12] Benchmarking the capability of symbolic execution

tools with logic bombs,Xu, Hui and Zhao, Zirui and

Zhou, Yangfan and Lyu, Michael R,IEEE

Transactions on Dependable and Secure

Computing,volume 17, number 6, 1243--

1256,IEEE, 2018 .

[13] On The (In)Effectiveness of Static Logic Bomb

Detection for Android Apps, Flavio Toffalini,

Clémentine Maurice, Lionel Seinturier, arXiv, 2021.

[14] On Benchmarking the Capability of Symbolic

Execution Tools with Logic Bombs", Shang-Wei

Lin, Jun Sun, Yang Liu, Jin Song Dong, arXiv, 2017.

.

[15] TriggerZoo: A Dataset of Android Applications

Automatically Infected with Logic Bombs, Jordan

Samhi, Tegawendé F. Bissyandé, Jacques Klein,

arXiv, 2022. https://arxiv.org/pdf/2203.04448v1.

[16] Malware Classification using Deep Neural

Networks: Performance Evaluation and

Applications in Edge Devices, Akhil M R, Adithya

Krishna V Sharma, Harivardhan Swamy, Pavan A,

Ashray Shetty, Anirudh B Sathyanarayana, arXiv,

2023 .

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4037–4045 | 4045

[17] Artificial Intelligence-Based Malware Detection,

Analysis, and Mitigation,Ahmed Bouridane, Saddaf

Rubab, Ibrahim Moussa Marou, Symmetry 2023,

15(3), 677, MDPI,2023.

[18] Proceedings of the 23rd ACM SIGKDD

International Conference on Knowledge Discovery

and Data Mining (KDD '17). 2017. 1145-1153. doi:

10.1145/3097983.3098158.

[19] BlueKeep: A Journey from DoS to RCE (CVE-

2019-0708), Exploit-DB Team,

2019,https://www.exploit-db.com/ .

[20] Analysis of CVE-2021-26897 DNS Server RCE,

Ricardo Narvaja, 2021.

https://www.coresecurity.com/core-

labs/articles/analysis-cve-2021-26897-dns-server-

rce .

[21] Integration of Static and Dynamic Analysis for

Malware Family Classification with Composite

Neural Network", Guolin Ke, Qiwei Ye, Taifeng

Wang, Qi Meng, Weidong Ma, Tie-Yan

Liu,arxiv,2019, URL: arxiv.org/abs/1912.11249 .

[22] Malware Classification using Deep Neural

Networks: Performance Evaluation and

Applications in Edge Devices", Akhil M R, Adithya

Krishna V Sharma, Harivardhan Swamy, Pavan A,

Ashray Shetty, Anirudh B

Sathyanarayana,arxiv,2023, URL:

arxiv.org/abs/2310.06841

[23] Towards Inspecting and Eliminating Trojan

Backdoors in Deep Neural Networks,W Guo, L

Wang, Y Xu, X Xing, M Du, D Song, Proceedings

of the 22th IEEE International Conference on Data

Mining. (ICDM'20), 2020

