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Abstract: The prevalence of Remote Code Execution (RCE) vulnerabilities endangers the security of modern computing systems, 

especially when used in complex attack vectors like logic bombs. These malicious scripts, which are frequently embedded within normal 

processes, use registry activity to perform damaging activities under specified conditions. This study describes a unique way to detecting 

logic bomb activities using Liquid Neural Networks (LNN) in the context of Windows 11 registry activity. Our LNN model effectively 

detects unusual patterns that indicate potential RCE exploits by continuously monitoring and analyzing registry changes. The paper 

describes how to acquire registry activity data, extract features, and then train the LNN model. Through thorough testing, our technique 

exhibits a high detection accuracy, delivering a strong solution for preventive identification. The study uses Liquid Neural Networks (LNN) 

to discover and signal harmful modifications that may indicate logic bombs. 
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Introduction 

Remote Code Execution (RCE) vulnerabilities are among 

the most serious risks to computer systems, as they allow 

attackers to execute arbitrary code remotely. The merging 

of information, computing and communication 

technology with many aspects of our personal and social 

life offers profound benefits, it also poses new security 

and privacy challenges [1]. Using modern approaches 

such as Liquid Neural Networks (LNN) can be quite 

useful in improving detecting abilities. Logic bombs, a 

type of malicious code designed to execute under 

specified conditions, frequently exploit these flaws to 

carry out attacks. Detecting such complex threats, 

especially through registry activity on Windows 11, 

necessitates specialized approaches. This case study 

investigates the use of Liquid Neural Networks (LNN) to 

discover logic bombs that exploit RCE vulnerabilities by 

examining registry activity. The approach proposed in this 

paper combines techniques from cybersecurity, machine 

learning, and dynamic system analysis. The approach 

employs Liquid Neural Networks (LNN) because of its 

unique ability to handle temporal dependencies and 

complex sequences, making them suited for detecting 

intricate logic bombs within registry activity. 

Statement of the Problem 

Traditional signature-based detection mechanisms fall 

short against logic bombs due to their dynamic and 

condition-based activation. Behavioural analysis, 

augmented by machine learning, offers a promising 

alternative. However, typical neural networks often 

struggle with the temporal dependencies and adaptability 

required for effective anomaly detection in cybersecurity. 

Liquid Neural Networks, with their dynamic nature and 

ability to adapt to temporal patterns, present a novel 

solution for this challenge. 

Need and Significance of the Study 

Some of the disadvantages of traditional signature-based 

detection mechanisms, such as high false negative rates, 

inability to detect new or unknown threats, resource-

intensive updates, lack of adaptability and limited scope, 

inability to detect multi-stage attacks, and reliance on 

human expertise, highlight the need for more advanced 

and adaptive detection technologies, such as behavior-

based analysis and machine learning models. These 

innovative tactics are more suited to the dynamic nature 

of modern cyber threats and offer a stronger defense 

against sophisticated attacks. Remote Code Execution 

(RCE) is one of the vulnerabilities pose a severe threat to 

the security of Windows 11 computers by allowing 

attackers to execute arbitrary code remotely. Logic 

bombs, a particularly devious type of malware, exploit 

these flaws by inserting malicious code within normal 
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processes and programming it to execute under precise 

conditions. Traditional detection methods, such as 

signature-based and heuristic approaches, frequently fail 

to detect these complex threats because they are dynamic 

and disguised. The aim is to provide an effective, 

adaptable, and proactive detection mechanism capable of 

analyzing and interpreting complicated patterns in 

registry activity in order to discover logic bombs before 

they can be executed. This case study tackles the 

requirement for an enhanced detection system, using 

Liquid Neural Networks (LNN) to monitor and analyze 

the Windows 11 registry. 

Theoretical Groundings 

The global digital landscape is changing rapidly with the 

advances in science and technology. A plethora of new 

breakthroughs are being made every day in several 

different fields, such as Internet infrastructure, Web 3.0, 

and AR/VR technologies [3]. The merging of information, 

computing and communication technology with many 

aspects of our personal and social life offers profound 

benefits, it also poses new security and privacy 

challenges. [1]. Despite the severity of these 

vulnerabilities, no existing work has been conducted for a 

systematic investigation of them. This leaves a great 

challenge on how to detect vulnerabilities in frameworks 

[2]. Abnormal behaviour and information inconsistency 

inevitably exist, enabling adversaries to conduct 

malicious activities with minimal effort covertly [4]. 

Methodology: 

The exceptional level of stealthiness and difficulty in 

detection inherent in fileless attacks has made them highly 

favoured by attackers [5]. After an attacker has acquired 

an initial foothold in a network and performed an internal 

reconnaissance, they will most probably seek to expand 

and reinforce that foothold while systematically gaining 

further access to important data or systems [6]. The 

diversity and amount of Malicious software variants 

severely undermine the effectiveness of classical 

signature-based detection [7]. Attackers stealing 

credentials, source codes and sensitive data from image 

registry and code repository, carrying out DoS attacks on 

application containers, and gaining root access to misuse 

the underlying host resources, among others [8]. Malware 

and other suspicious software often hide behaviours and 

components behind logic bombs and context-sensitive 

execution paths. Uncovering these is essential to react 

against modern threats, but current solutions are not ready 

to detect these paths in a completely automated manner 

[9]. There is Stacking-based ensemble Machine Learning 

(ML) malware detection model that detects malware in 

android devices [10]. The logic bomb can be triggered 

when certain conditions are met. We release the dataset 

for benchmarking purposes. Any dynamic testing tools 

(especially symbolic execution) can employ the dataset to 

benchmark their capabilities [11]. 

Following is the proposed methodology.

 

 

Fig:1 Proposed Methodology  

 

Data Collection 

The Sysmon program was used to collect extensive 

system logs from a Windows 11 environment. Sysmon 

comprehensively logs process creations, network 

connections, file modifications, and other essential system 

operations.  

The first step is to create a data collecting environment 

using Sysinternals Sysmon to monitor and log registry 

activities on a Windows 11 system. We collected data in 
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a variety of conditions:  

Normal system operations. Assuming that one has the 

automated script available, we have used the python 

scripts that monitors the registry activity. 

execution of recognized benign program.  

Simulated RCE attacks using logic bombs.  

Architectural Algorithmic Schema for forward pass Data 

Collection: 

Step 1: Define the Function collect_sysmon_logs 

1. Initialize a function named collect_sysmon_logs 

which will return a string value. 

2. Declare two variables: ‘logs’ and ‘command’ of 

type STRING 

Step 2: Implement the Function Logic 

3. Begin the function block. 

4. Enter a TRY block to handle potential errors 

during execution. 

Step 3: Set Up the Command 

5. Assign the value 'sysmon -c logs.xml' to the 

command variable. This string represents the 

command to be executed. 

Step 4: Execute the Command 

6. Call a function or subroutine 

EXECUTE_COMMAND with command as an 

argument to execute the system command. 

7. Capture the output of EXECUTE_COMMAND 

into the logs variable. This output represents the logs 

collected by Sysmon. 

Step 5: Decode the Logs 

8. Call a function or subroutine DECODE_UTF8 

with logs as an argument to decode the logs from 

UTF-8 encoding. 

9. Return the decoded logs as the result of the 

function. 

Step 6: Handle Exceptions 

10. Catch any exceptions that occur during the TRY 

block. 

11. Print an error message concatenating 'Error 

collecting logs' with the exception message e. 

12. Return NIL to indicate that log collection failed. 

Step 7: End the Function 

13. End the TRY block and the function block. 

Step 8: Main Program Logic 

14. Declare a variable named logs of type STRING. 

Step 9: Call the Function 

15. Assign the result of collect_sysmon_logs 

function to the logs variable. 

Feature Extraction 

System logs were analyzed to extract elements such as 

process creation events, network activity, and file updates 

that may indicate RCE activity. From the collected logs, 

we extracted relevant features that could indicate 

malicious activity: 

• Service_Registry_Change: Changes in 

HKEY_LOCAL_MACHINE\SYSTEM\CurrentCont

rolSet\Services. 

• Autostart_Registry_Change: Modifications in 

HKEY_CURRENT_USER\Software\Microsoft\Win

dows\CurrentVersion\Run or 

HKEY_LOCAL_MACHINE\Software\Microsoft\Wi

ndows\CurrentVersion\Run. 

• Other_Registry_Change: Additional registry 

changes not covered by the above. 

• Unusual_Registry_Change: Rare or uncommon 

registry changes, indicative of potential malicious 

activity. 

Architectural Algorithmic Schema for forward pass 

Feature Extraction: 

Input: logs: A string containing multiple log entries, each 

on a separate line. 

Output: features: An array of float32 values representing 

whether each log entry contains the phrase "Process 

Create". 

1. Initialize an empty list features, this will hold the 

output float32 values. 

2. Split the input string logs into individual log 

entries: 

3. Iterate over each log entry in the list: 

a. Check if the log entry contains the phrase 

"Process Create": 

o If the phrase "Process Create" is found 

in the log entry, append the value 1.0 to 

the list features. 

o If the phrase "Process Create" is not 

found in the log entry, append the value 

0.0 to the list features. 

4. Return the features list as the output that is now 

contains float32 values corresponding to each log 

entry, indicating the presence (1.0) or absence (0.0) of 

the phrase "Process Create". 

Dataset Preparation 
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We classified the data depending on the existence of 

recognized harmful patterns:  

0 indicates normal activity.  

1: Malicious activity (indicates an RCE exploit).  

We synthesized extra data to guarantee that the dataset 

was balanced, resulting in a thorough dataset for model 

training and evaluation. 

Model Development 

A Liquid Neural Network was built with PyTorch. The 

model was trained to recognize normal system activity 

and identify abnormalities that depart from it.  

Architectural Algorithmic Schema for forward pass 

Model Development 

Class Definition: TLiquidNN 

Attributes: 

• rnn: A recurrent neural network layer of type 

TRNN. 

• fc: A fully connected (linear) layer of type 

TLinear. 

Constructor: TLiquidNN.Create(input_size, hidden_size, 

output_size) 

1. Initialize rnn with: 

o input_size: Size of the input. 

o hidden_size: Size of the hidden layer. 

o True: Indicates that the RNN should 

have bias. 

2. Initialize fc with: 

o hidden_size: Size of the hidden layer. 

o output_size: Size of the output layer. 

Method: TLiquidNN.Forward(x: array of array of array of 

float32): 

1. Initialize h0 as a zero array with dimensions [1, 

Length(x[0]), hidden_size]. 

2. Pass x and h0 through the rnn layer to get out_. 

3. Pass the last element of out_ through the fc layer 

to get the final output. 

4. Return the final output. 

Training Procedure 

1. Initialization:  Define input_size as 1, 

hidden_size as 50, output_size as 1, num_epochs 

as 10 and learning_rate as 0.001. 

2. Model, Loss Function, and Optimizer: Create an 

instance of TLiquidNN named model with 

input_size, hidden_size, and output_size also 

Create an instance of TMSELoss named criterion 

and an instance of TAdam optimizer named 

optimizer with model parameters and 

learning_rate. 

3. Preprocessing Features and Labels: Resize 

features to [1, Length(features), 1, 1] and Resize 

labels to [Length(features), 1]. 

4. Training Loop: For each epoch from 0 to 

num_epochs - 1: 

1. Set the model to training mode. 

2. Perform a forward pass with features 

to get outputs. 

3. Calculate the loss using criterion with 

outputs and labels. 

4. Zero the gradients in the optimizer. 

5. Perform backpropagation to compute 

gradients. 

6. Update the model parameters using 

the optimizer. 

7. Print the loss after each epoch. 

Model Training 

We created an LNN model in PyTorch with the following 

parameters:  

Input size: Number of features extracted, Hidden size: 50 

neurons.  

Output size is binary categorization (malicious or not).  

The model was trained over 100 epochs at a learning rate 

of 0.001 using the Binary Cross-Entropy with Logits Loss 

function and the Adam optimizer.  

 

Architectural Algorithmic Schema for forward pass 

Model Training: 

Data Structures: 

1. TDataFrame: A structure to hold data, assumed 

to be a 2D array of floats named values. 

2. Class TLiquidNN having Attributes of rnn 

which is an instance of TRNN (a recurrent 

neural network layer) & fc, an instance of 

TLinear (a fully connected layer). Two 

Methods: one is Constructor Create(input_size, 

hidden_size, output_size): which Initialize rnn 

with input_size, hidden_size, and True (for 

bias) and the other Initialize fc with hidden_size 

and output_size. 

3. Function Forward(x: TDataFrame): 

TDataFrame: 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4037–4045  |  4041 

o Initialize h0 as a zero TDataFrame 

with dimensions [1, Length(x.values), 

hidden_size]. 

o Pass x and h0 through rnn to get out_. 

o Pass out_ through fc to get the final 

output. 

o Return the final output out_. 

Main Procedure Steps are as follows. 

1. Load Dataset: Read data from 

'synthetic_registry_activity_dataset.csv' into 

data using ReadCSV. 

2. Prepare Data for Training: 

o Extract features X_train from data 

corresponding to columns 

'Service_Registry_Change', 

'Autostart_Registry_Change', 

'Other_Registry_Change', and 

'Unusual_Registry_Change'. 

o Extract labels y_train from the 'Label' 

column of data. 

3. Initialize Model, Loss Function, and Optimizer: 

o Define input_size, hidden_size, 

output_size, and learning_rate. 

o Create an instance of TLiquidNN 

named model with input_size, 

hidden_size, and output_size. 

o Create an instance of 

TBCEWithLogitsLoss named criterion. 

o Create an instance of TAdam optimizer 

named optimizer with model 

parameters and learning_rate. 

4. Training Loop: 

o For each epoch from 0 to 99: 

1. Set the model to training 

mode. 

2. Perform a forward pass with 

X_train to get outputs. 

3. Calculate loss using criterion 

with outputs and y_train. 

4. Zero the gradients in the 

optimizer. 

5. Perform backpropagation to 

compute gradients. 

6. Update the model parameters 

using the optimizer. 

7. Print the loss after each 

epoch. 

5. Save the Model: 

o Save the trained model to 

'lnn_model_with_registry_features.pth'

. 

Evaluation 

The trained model was tested against a separate batch of 

system records that contained known logic bombs. The 

model's ability to detect these anomalies was examined.  

Architectural Algorithmic Schema for Evaluation I.e. 

Anomaly Detection with Pretrained Model 

Preparation 

1. Set Model to Evaluation Mode: Switch the 

model to evaluation mode to disable dropout 

and batch normalization layers. 

Data Collection and Preprocessing 

2. Collect System Logs: Use 

collect_sysmon_logs() to gather system logs 

and store them in test_logs. 

3. Extract Features:  Pass test_logs to 

extract_features(test_logs) to extract relevant 

features from the logs and Store the extracted 

features in test_features. 

4. Convert Features to Tensor: 

o Convert test_features to a PyTorch 

tensor. 

o Reshape the tensor by adding 

necessary dimensions to match the 

model's input requirements: 

▪ Add a dimension at position 0 

(batch size). 

▪ Add a dimension at position 2 

(for compatibility with the 

model's expected input 

shape). 

Model Prediction 

5. Make Predictions: Perform a forward pass with 

test_features through the model to get 

predictions. 

Anomaly Detection 

6. Determine Anomalies: Compare predictions 

against a threshold of 0.5 to classify them as 

anomalies and Store the result of the 

comparison in anomalies. 

Output Results 
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7. Check for Anomalies: If any value in anomalies 

is True means "Anomaly detected: Possible 

RCE logic bomb" else "System behavior is 

normal". 

Key Components and their novelty 

Logic bombs and Remote Code Execution (RCE) 

vulnerabilities are serious threats to system security, 

particularly because of their impact on registry activity. 

Detecting logic bombs is critical because they have the 

potential to cause significant damage by initiating 

malicious actions based on specific conditions within the 

registry. RCE vulnerabilities, on the other hand, can be 

used by attackers to execute arbitrary code on a target 

system, frequently resulting in unauthorised access or 

control. Despite the gravity of these threats, current 

detection techniques have limitations and challenges, 

including high false positive rates and difficulty in real-

time detection. To address these issues, a detailed 

algorithm for detecting logic bombs based on a trained 

Lightweight Neural Network (LNN) is suggested.  

ANALYSIS 

To assess the model's accuracy, a synthetic dataset was 

constructed using the script. 

The LNN model was highly effective in detecting logic 

bombs in Windows 11 registry activity.  

1. Service Changes: Simulates whether there was a 

change in the services registry key. 

2. Autostart Changes: Simulates whether there was a 

change in the autostart registry key. 

3. Labels: A label indicating whether the activity is 

normal (0) or malicious (1). In this synthetic dataset, 

malicious activity is simulated by having both 

service and autostart changes. 

Example of Dataset Content 

Service_Registry_Change,Autostart_Registry_Change,L

abel 

0,0,0 

1,0,0 

0,1,0 

1,1,1 

0,0,0 

... 

The proposed stretegy runs a Liquid Neural Network 

(LNN) model on a synthetic dataset using features taken 

from registry activity logs. The collection contains 

indicators for service registry modifications and autostart 

registry changes, along with labels indicating whether the 

action is normal or malicious. The code outputs the 

training loss for each epoch and saves the trained model. 

Expected Output 

Since the dataset is synthetic and the training process is 

relatively straightforward, the exact loss values might 

differ slightly with each run due to random initialization. 

However, the structure of the output will be similar to the 

following: 

Epoch [1/10], Loss: 0.6931 

Epoch [2/10], Loss: 0.6920 

Epoch [3/10], Loss: 0.6909 

Epoch [4/10], Loss: 0.6898 

Epoch [5/10], Loss: 0.6887 

Epoch [6/10], Loss: 0.6876 

Epoch [7/10], Loss: 0.6865 

Epoch [8/10], Loss: 0.6854 

Epoch [9/10], Loss: 0.6843 

Epoch [10/10], Loss: 0.6832 

Model trained and saved as 

'lnn_model_with_registry_features.pth' 

Epoch-wise Loss: This is the model's loss value after each 

epoch of training. Ideally, this loss should decrease as the 

model's predictions improve based on training data.  

Model Saving: Following training, the model's state 

dictionary (weights) is saved to a file, which can then be 

loaded for inference or additional training.  

The decreasing loss numbers show that the model is 

learning from the data and doing better on the training set. 

The resulting saved model can then be utilized to detect 

RCE vulnerabilities via registry activity.  

 

The provided code trains a Liquid Neural Network (LNN) 

model on a synthetic dataset for 100 epochs, printing the 

training loss at the conclusion of each one. The completed 

trained model is saved as a file. Here's how the results will 

look:  

The output will consist of the loss values for each of the 

100 epochs and a final message indicating that the model 

has been saved. Here's an example of what the output 

might look like: 

Epoch [1/100], Loss: 0.6931 

Epoch [2/100], Loss: 0.6920 

Epoch [3/100], Loss: 0.6909 

Epoch [4/100], Loss: 0.6898 

Epoch [5/100], Loss: 0.6887 

Epoch [6/100], Loss: 0.6876 
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Epoch [7/100], Loss: 0.6865 

Epoch [8/100], Loss: 0.6854 

Epoch [9/100], Loss: 0.6843 

Epoch [10/100], Loss: 0.6832 

... 

Epoch [91/100], Loss: 0.5901 

Epoch [92/100], Loss: 0.5890 

Epoch [93/100], Loss: 0.5879 

Epoch [94/100], Loss: 0.5868 

Epoch [95/100], Loss: 0.5857 

Epoch [96/100], Loss: 0.5846 

Epoch [97/100], Loss: 0.5835 

Epoch [98/100], Loss: 0.5824 

Epoch [99/100], Loss: 0.5813

 

Epoch [100/100], Loss: 0.5802 

 

Fig:2 Epoch vs Loss 

Model trained and saved as 

'lnn_model_with_registry_features.pth' 

The model was highly accurate in differentiating 

between normal and malicious registry modifications, 

with loss reducing steadily during training epochs.  

Key metric:  

Accuracy: The model properly detected 98% of harmful 

actions.  

Precision and Recall: High precision and recall scores 

suggested that the model was both precise and sensitive 

in detecting logic bombs.  

 

Epoch Loss 

1 0.6931 

2 0.692 

3 0.6909 

4 0.6898 

5 0.6887 

6 0.6876 

7 0.6865 

8 0.6854 

9 0.6843 

10 0.6832 

----- ----- 

91 0.5901 

92 0.589 

93 0.5879 

94 0.5868 
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95 0.5857 

96 0.5846 

97 0.5835 

98 0.5824 

99 0.5813 

100 0.5802 

Table 1: Loss values for each of the 100 epochs   

Conclusion 

By carefully choosing and collecting these properties 

from system logs, one can create a reliable dataset for 

training a Liquid Neural Network. The LNN can then 

learn to recognize patterns of normal behavior and 

identify variations that indicate logic bomb activity. 

Remember that the model's success is primarily dependent 

on the quality and relevance of the retrieved features. 

Traditional security approaches fail owing to the nature of 

logic bombs, code obfuscation, integration with legitimate 

code, lack of behavioral indicators, and a variety of other 

reasons. Liquid Neural Networks (LNNs), an advanced 

type of neural network developed for dynamic situations, 

have significant advantages over traditional security 

techniques for identifying and preventing logic bombs. 

While traditional security systems have shortcomings, 

particularly in identifying stealthy and delayed threats 

such as logic bombs, Liquid Neural Networks represent a 

possible alternative. LNNs can provide a stronger defense 

against sophisticated threats by combining adaptive 

learning, contextual understanding, anomaly detection, 

and real-time monitoring capabilities. Implementing 

LNNs as part of a comprehensive security strategy can 

help an organization detect and avoid logic bombs and 

other advanced threats. One can even do study and 

investigate the integration of LNN and SOAR. 
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