

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 344–355 | 344

Hybrid Neural Network with Weighted Modified Cuckoo Search

Optimization for Software Defect Prediction: A Soft Computing

Approach

Devi Priya Gottumukkala1, Prasad Reddy P V G D 2, S. Krishna Rao3

Submitted:13/03/2024 Revised: 28/04/2024 Accepted: 05/05/2024

Abstract: Defects in software significantly impact quality, reliability, and maintenance. Early detection and prediction using data mining

and classification techniques offers an effective means of identifying potential defects before they manifest in production environments,

but accurate prediction requires handling complex datasets. This paper proposes a soft computing model called Hybrid Neural Network

with Weighted Modified Cuckoo Search Optimization (WMCSO) to detect the defect in the software. The proposed model first performs

the clustering process with the Modified Fuzzy C–means algorithm (MFCM) to retrieve the important new attributes from the dataset.

The software defect prediction and classification are performed using the HNN, and the WMCSO model is used to fine-tune the weights

of the HNN. The HNN-WMCSO method is evaluated based on the evaluation of prediction rate and execution time. The experimental

analysis stated that the proposed model exhibits improved performance relative to the current method in regard to an efficient prediction

rate.

Keywords: Software Defect Prediction (SDP), Fuzzy C-means (FCM), Cuckoo Search (CS), Machine Learning, Hybrid Neural Network

(HNN)

1. Introduction

Software Defect Prediction (SDP) is considered effective

for reducing costs in software development and

maintenance to achieve high-quality software [1].

Prolonged software failures can cause automated defects,

impacting developers and stakeholders. Defect prediction

techniques improve quality, reduce costs, and enhance

product development time by proactively addressing issues

[2]. A defect predictor with high performance consists of

static attributes and an effective learning process. SDP

employs various metrics to evaluate features and attributes

in software based on lines of code (LOC) and information

change to predict defect proneness. This predictive

approach supports software activities by detecting likely

defects during the initial stages of development, enabling

teams to focus on critical areas and improve software

quality [3]. Software defects are considered one of the

central factors precipitating the failure of massive

engineering projects, which causes massive financial

burdens. The software quality maintenance is evaluated

with different prediction techniques [4]. Unsupervised

learning can be used in conjunction with supervised

techniques. Clustering can be used to identify

homogeneous groups of data that can be further attached to

the original data for supervised learning, enhancing the

efficacy of defect prediction models [5].

Conventional SDP comprises an optimized prediction

model for accurately estimating the fault instances within a

software module. The goal is to achieve precise defect

prediction, despite the presence of noisy data. By

employing advanced techniques and methodologies, the

model aims to provide an accurate prediction of defects,

contributing to improved software quality and

reliability[6].Machine learning algorithms have been

proposed to anticipate potential defects in software

systems[7-9].Ensemble-based SDP is a composite strategy

integrating several prediction models to enhance the

accuracy and reliability of defect prediction [10-11].Using

unsupervised algorithms before classification in SDP brings

several benefits and helps improve the overall predictive

performance[12].

Using deep learning instead of traditional machine learning

approaches in SDP offers several potential advantages.

Neural networks in deep learning (DL) are adept at

capturing complex patterns and representations from raw

data, making it suitable for complex and high-dimensional

software datasets [13]. DL Models have the capability to

autonomously extract pertinent features from raw software

metrics, dispensing with the manual creation of features.

This ability can be especially beneficial when dealing with

unstructured data, such as source code [14].

1 Research Scholar, Department of CS&SE, TDR-HUB, Andhra

University, Visakhapatnam, India. Email: mantena2377@gmail.com

ORCID ID: 0009-0002-2447-4449
2 Senior Professor, Department of CS&SE, Andhra University,

Visakhapatnam, India. Email: prasadreddy.vizag@gmail.com
3 Professor, Dept. of CSE, Sir C.R.R.College of Engineering, ELURU,

A.P, India. Email: skrao71@gmail.com

https://ieeexplore.ieee.org/author/37086755063
https://link.springer.com/chapter/10.1007/978-981-19-4863-3_56#auth-S__Krishna-Rao
mailto:mantena2377@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 344–355 | 345

Weight optimization is crucial in deep learning models,

as it optimizes parameters like weights and biases to

minimize loss or error function. The goal is to find weights

that enable accurate predictions and generalization to

unseen data [15]. Genetic algorithms (GA) optimize neural

network weights due to their flexibility and Capacity to

discern near-optimal solutions amidst intricate search

spaces, unlike gradient-based algorithms that struggle with

local minima especially in high-dimensional spaces with

numerous parameters (weights) to optimize [16]. This

research aimed to formulate an efficient SDP strategy. The

specific contribution of the research is presented as follows:

1. To perform the SDP, this research proposed HNN-

WMCSO. The model uses SDP through the HNN.

2. The collected data is computed based on the clustering

process performed with the FCM-based approach to

generate a more informative feature space. The

Modified Fuzzy C Means Clustering (MFCM)

technique is implemented for execution, followed by

the classification process.

3. The classification model uses the HNN for the

learning and testing process. To increases the

efficiency of the neural network optimization

algorithm is integrated with Weighted modified CS

model.

4. The simulation analysis stated that the proposed model

achieves the reduced processing time with the

 increased prediction rate.

The structure of this document is as follows: The

relevant works for software fault prediction are included in

Section 2. Section 3 presents the software defect prediction

methodology and findings, while Section 4 presents the

comparative analysis. Finally, Section 5 presents the

general conclusion model.

2. Related Works

In [17] developed the back-propagation neural network

(BPNN) algorithm for improving the training of Forward-

propagation neural networks. The classic BP method has

certain shortcomings, including a sluggish convergence rate

and an easy tendency to become caught in local minima. In

order to develop BP in attaining quick meeting point rates

and avoiding local minima problems, their work suggested

a search method dubbed CS. The effectiveness of the model

is evaluated in comparison to existing hybrid variations and

an artificial bee colony utilizing the BP method. The

simulation results exhibits that the advised hybrid technique

greatly enhances the computational efficiency of the BP

training process.

Artificial Bee Colony and published a new Artificial Neural

Network (ANN) In [18]. The ABC technique, which is used

to verify the optimal weights for which a neural network

should result, is employed in training the neural network.

The false positive rate(FPR) and false negative rate(FNR),

multiplied by the cost coefficients, are used to maximize

the artificial bee colony. Five prominent sets from the

NASA Metrics Data Program repository were studied using

our methodology. Accuracy, probability of detection,

probability of false alarm, profit, area under curve, and

normalized expected cost of misclassification were the

main performance characteristics of the classification

strategy used in this procedure for the offered findings. To

avoid any features of randomness, the ensemble was quite

randomly combined, and then their approach was

performed ten times. This was done by using n-fold cross-

validation each of these times.

A novel hybrid version of the hitherto Salp Swarm

Algorithm and Simulated Annealing, SSA-SA, based

BPNN is proposed in [19]. The objective is to optimize

parameters using BPNN estimator in SDE.

They evaluate the hybrid SSA-SA performance on a

variety of SDE benchmark datasets. They tested the SSA-

SA outcomes with respect to its competency to the SSA-

BPNN and conventional BPNN. The hybrid algorithm is

accomplished in parameter optimization in SDE and

assessment criteria.

A unique SDP model built upon the GA-BP algorithm in

light of the drawbacks of traditional BP (back propagation,

or BP, for short) neural networks, which have the issue of

easily falling into local optimization when building SDP

models, which ultimately impacts the performance was

reviewed in [20]. First, the Back Propagation neural

network's weights and thresholds are optimized using the

GA optimization capability. Then the GA-BP is applied to

build the model. The program WEKA is used to convert

the public dataset NASA MDP and clean it after that. The

experimental results show that the proposed software fault

prediction approach is efficient.

In [21] suggested the use of an SVM-based mixed CS

under-sampled SDP model. First, the non-defective

sample is chosen synchronously, and the SVM parameters

are optimized with dynamic regional search (HMOCS).

The non-defective modules are then chosen using three

under-sampled approaches for decision region range. The

three indicators— FPR, probability of detection (pd), and

G-mean—are used in the simulation to assess how well the

suggested algorithm is working. The Promise database are

also chosen in order to validate the suggested SDP model.

The suggested strategy is effective in resolving the

problem of SDP when compared to the output of eight

prediction models.

An innovative SDP framework across different stages was

developed in [22]. First, a pre-processing stage was applied

to the incoming data. The prepared data are used to extract

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 344–355 | 346

statistical characteristics, along with any relationships.

Furthermore, enhanced PCA (Principal Component

Analysis) is used to choose the required properties. Next,

an enhanced CNN is used to predict flaws using the

selected characteristics. The SALO method is used to

correctly tune the CNN weights.

 The five distinct datasets from the NASA Promise

repository and the characteristics are chosen using a GA.

The model is then trained applying various methods,

including: Feed forward Neural Network (FNN) and

Recurrent Neural Network (RNN), before the group of the

chosen attributes is created using PSO in [23]. Finally,

different classification metrics are calculated. According to

their research, deep neural networks produce the greatest

accuracy results. Findings from the experiments

demonstrate that the proposed solution is a good approach

for predicting software faults.

In [24] combined two algorithms wolf swarm algorithm

and the particle swarm method to realize their

complimentary benefits in accordance with the advantages.

The model's fitness function is derived from the loss

function, the hybrid technique is used to search for model

hyper parameter optimization, and the swarm intelligence

population's cooperative search ability is utilized to

identify the globally ideal solution in a number of adjacent

solution areas. The model utilizing the hybrid algorithm

has higher and better indicators. In this research, the

assessment of performance regarding to confusion matrix

are used to evaluate the model. The model's performance

has increased much more after auto encoder processing.

3. Proposed HNN-WMCSO for the defect prediction

The software defect detection comprises of the three

modules. Initially, the data related to defects are collected

and retained in the database for further processing. In the

clustering stage the collected data is clustered to be

organized into meaningful clusters, which may help

identify underlying patterns or separate different classes

more effectively and provides a more informative feature

space. Additional features are incorporated into the

original data for the subsequent classification model. The

MFCM approach is utilized to achieve effective data

prediction. Hybrid neural networks are used by the

classification model for testing and learning. Modified

Cuckoo Search model with weight factors is merged with

the neural network optimization technique to boost its

efficiency. The process involved in the proposed model is

illustrated in the figure 1.

 Fig. 1. Process in HNN - WMCSO model

3.1 Modified Fuzzy C-means Clustering

MFCM determines clusters in terms of the possibility that

a data point belongs to that cluster with the membership

function itself. where h is a probability that a data point is a

member of a cluster. It means that the clustering depends

on outcomes of membership function and tolerance

measures for the desired accuracy. Membership functions

with extremely low values are not computed during the

needed iterations in order to gain the wished clustering

outcome.

 One of the major application limitations of FCM is its

computational cost. The cluster centroid and membership

variables are changed periodically until convergence in

FCM because of its iterative technique and sensitivity to

initialization. The iterative procedure can be exceedingly

time-consuming and computationally expensive when the

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 344–355 | 347

dataset is huge if there are many clusters. To address this

issue and achieve more accurate weight measurements, a

modified approach called MFCM is adopted. The MFCM

algorithm validates clusters using partitioned coefficients

and partition entropy values to assess the quality of the

resulting clusters. Partition coefficients and partition

entropy are two such measures commonly used for this

purpose. In the MFCM model, the initial cluster is selected

based on the dependent value of the membership function.

The MFCM then establishes initial cluster centers through

arbitrary membership functions. The MFCM clustered

assigned with each category based on membership fuzzy

function aims to minimize the overall fuzziness of the

clustering while also minimizing the distances between

data points and cluster centroids as stated in equation (1)

 (1)

In above equation (1), is the data point, centroid of

cluster is represented as , constant value is represented

as (often set to 2 in fuzzy clustering algorithms) and

weight factor associated with data point is stated as

for cluster stated in equation (2), where is a

coefficient associated with the distance between data point

 and cluster centroid

(2)

Each data point for each cluster is given a degree of

membership by the membership function, which indicates

how much the data point is related to that cluster. The

membership function is presented in equation (3)

 (3)

The centroid cluster values are computed as in equation (4)

 (4)

Based on the two iterations count the changes in

coefficient values are repeated based on the sensitivity

threshold value in equation (5)

 (5)

Above equation (5) verifies whether the maximum change

in coefficient values between successive iterations is less

than the sensitivity threshold ϕ. The clustering solution

may not be considerably improved by more iterations if

this criterion is met, which indicates that the algorithm is

converging. The algorithm can therefore come to an end.

than the sensitivity threshold ϕ. The clustering solution

may not be considerably improved by more iterations if

this criterion is met, which indicates that the algorithm is

converging. The algorithm can therefore come to an end.

3.2 Hybrid Neural Networks

Hybrid Neural Network (HNN) provides the resemblance

of the biological counterparts for the estimation of

effective tasks.

The process involved in HNN comprises of neurons with

biological components to perform intended tasks in effective

manner. The process of HNN is shown in figure 2.

Input Layer: This level includes the same quantity of neurons

as that of inputs. However, here, the neurons are passive

elements. It means that the input layer neurons do not

transform the signal for the next layers .

Hidden Layer: This level also includes several neurons of any

number. Although the hidden layer’s neurons are active and

they modulate the signal. Thus, it is easy to identify that the

hidden layers make processing possible.

Output Layer: As the name suggests, this level includes the

same number of neurons as the output. Unlike the other two

layers, the output layer neurons symbolize the final output of

the neural network due to the activation.

3.2.1 Training Phase

The input layer of HNN consists of M neurons, where M

represents the count of inputs. In the hidden layers, there are

NH neurons, and in the output layer, there are N neurons,

each corresponding to one class. The Hybrid neural network

model for the training with back propagation algorithm are

presented in figure 3.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 344–355 | 348

Fig 2: Structure of HNN

Fig 3: Process in HNN

The components in the Hybrid Neural Network are

presented as shown:

 Step 1: Generate hidden and output layer neurons

through arbitrary weights between the interval [0,1]. The

weight unity values are computed for the input layer of

neurons.

Step 2: With the training dataset the BT determines the

classification with the consideration of equation (6)

 (6)

In the above equation (6), the targeted output is

represented as for the network output stated as

those can be stated as

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 344–355 | 349

for the output network. The output of network is stated as

follows in equation (7)

 (7)

In equation (7)

In the above equation (7) the activation function is

evaluated dependent on the hidden and output layer of the

network.

Step 3: The neurons weights are evaluated,

, the changes in the weights are stated as

 as in equation (8)

 (8)

In above equation (8) the learning rate of network is

stated as .

Step 4: The process gets repeated until BP achieves the

minimal least value, then continues Step 2 for the criteria.

.

3.2.2 Training Phase with enhanced Weight Optimization

Through Modified Cuckoo Search Algorithm

(MCSA)

In the training phase, the NN process is incorporated

through the use of optimization approach to achieve the

optimization weights in the training process. The

proposed model uses the MCSA for the superior

classification performance and effective recognition, as

shown in Figure 4. Once training is done next in the trial

stage, the trained NN with processed weights is used, and

the output is calculated for the classification for the test

dataset.

The process in the MCSA comprises an effective meta-

heuristics-based CS algorithm for breeding process

implementation. The process comprises the multitude of

nests for the egg solution, with the superior replacement

in the nest. To find the most appropriate set of weights

that minimizes the objective function, the neural

network's weights are iteratively modified throughout the

training phase utilizing both backpropagation and the

MCSA. The objective of this procedure is to enhance the

neural network's ability to solve the specified problem.

Step 1: Initialization Step

 The population (mi, where i=1, 2, n) of host nest is

started randomly.

Step 2: Generation of Cuckoo

By integrating CS with levy flight, the novel value is

generated those are engendered for the examination of

objective function to ascertaining the solution.

Step 3: Fitness Evaluation Step

The fitness operation is evaluated by consideration of

equation (8) and equation (9) with the present value in

equation (9)

 (9)

 In above equation (9) represents fitness highest

popularity value.

At which, denotes the chosen population and

presents the sum of population

Step 4: Update

 In the update phase the levy flights are employed with

the cosine transform for the selected arbitrarily nest

quality. The selected quality nest is evaluated for the

superior function through replacement of novel Cuckoo

solution. The previous solution is evaluated with the

employed CS based levy flights as stated in equation (10)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 344–355 | 350

Fig 4. Steps in Modified Cuckoo Search

 (10)

Through consideration of above equation (10) the levy

equation is evaluated for the gaussian distribution as

stated in equation (11)

 (11)

where, , the constants are stated as

, and present generation symbolizes is represented as

K.

Step 5: Reject Worst Nest

The worst nests are eliminated using the potential values

and unique values are developed with computation of

fitness function to achieve the best solution with ranking

process. Through optimal solution estimation best

solution is detected and marked.

Step 6: Stopping Criterion

 The maximal process of loop is computed based on the

optimization function.

3.3 Assessment criteria:

The effectiveness of proposed SDP approach is assessed

using some of the metrics, such as execution time and

prediction rate. An assessment criterion is utilized to

measure the effectiveness of SDP technique and to

validate the theoretical and practical progressions of these

systems. The prediction is then compared with that of the

existing algorithm.

 3.3.1 Execution Time

Execution time refers indicates the amount of time a

responsible system spends executing the given task, and it

includes the time a system spends in executing run-time

or system services. Therefore, the programs or

algorithm’s execution time is established by measuring

the elapsed time from inception and termination of

execution. The following is an expression of the formula

for determining execution time:

3.3.2 Prediction rate/ Accuracy

Prediction rate or accuracy, is a statistic measure to assess

how well categorization systems work. It displays the

proportion of all labels in the dataset that are correctly

classified. The following formula can be used to

determine the prediction rate or accuracy:

Table 1: Train accuracy

WMCSO

Iterations

Max Accuracy

NN

Iterations =

5

NN

Iterations =

20

NN

Iterations =

50

10 0.77 0.78 0.95

20 0.76 0.91 0.97

30 0.76 0.93 0.94

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 344–355 | 351

Table 2: Test accuracy

WMCSO

Iterations

Max Accuracy

NN

Iterations =

5

NN

Iterations =

20

NN

Iterations =

50

10 0.73 0.92 0.91

20 0.72 0.86 0.97

30 0.81 0.86 0.97

Table 1 presents the training accuracy of the suggested

method. The method was tested with varying numbers of

WMCSO iterations (10, 20, and 30) and NN iterations

(5,20,50). For instance, with 10 iterations, the maximum

accuracy ranged from 0.77 to 0.95, increasing with more

neural network (NN) iterations. As the number of

iterations increased to 20 and 30, the maximum

accuracies improved notably, reaching up to 0.97 for 50

NN iterations. This indicates that increasing both the

number of WMCSO iterations and NN iterations

enhances the performance of the suggested method, with

the maximum accuracy gained when utilizing 50 NN

iterations under WMCSO 30 iterations.

Table 2 illustrates the testing accuracy achieved by the

recommended method. The best accuracy of 0.97 was

obtained for WMCSO with 20 and 30 iterations when

using 50 NN iterations, although the maximum accuracies

varied as the number of iterations climbed to 20 and 30.

Findings indicate that the planned method works best with

WMCSO with 20 and 30 iterations, especially when using

50 NN iterations, which yields maximum accuracies of

0.97.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 344–355 | 352

 Fig 5: Assessing differences in train and test accuracy levels

Figure 5 shows analyzing train and test accuracy

disparities of the model with no of NN hidden layers=1.

Table 3: Train Accuracy

WMCSO

Iterations

Train accuracy (NN Hidden Layers)

1 2 4

10 0.95 0.95 0.96

20 0.97 0.96 0.97

30 0.94 0.97 0.97

Table 4: Test Accuracy

WMCSO

Iterations

Test accuracy (NN Hidden Layers)

1 2 4

10 0.91 0.90 0.92

20 0.97 0.97 0.97

30 0.97 0.98 0.98

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 344–355 | 353

 Fig 6: Train accuracy

 Fig 7: Test accuracy

The train and test accuracies for the model with different

no of NN hidden layers are given in Table 3, 4, Figure 6,

and 7. The model has been executed for 10, 20, and 30

iterations with the WMCSO algorithm and neural network

hidden layers configurations like 1, 2, and 4. For all the

iteration count of the WMCSO algorithm, the model

achieved the highest train accuracy for 2 or 4 NN hidden

layers. Train accuracy slightly varied for the number of

iterations, and the highest one is 0.97 for WMCSO 20

iterations no with 1 or 4 NN hidden layers. Test accuracy

increased with the Iteration number, and the greatest one

is 0.98 when using 2 or 4 NN hidden layers for no of

WMCSO iterations 30.

Table 5: Measure of Computation Time

WMCSO

Iteration

Time (s)

NN Iteration

= 5

NN Iteration

= 20

NN Iteration

= 50

10 30.64 72.70 124.41

20 57.66 108.40 256.66

30 69.84 154.55 397.70

Table 5 and 6 shows the computational time in seconds

associated with different configurations of the model.

Table 5 focuses on the impact of varying numbers of NN

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 344–355 | 354

iterations with one hidden layer, while Table 2 explores

the effect of different numbers of NN hidden layers. Both

tables show that increasing the complexity of the model

(either by adding more iterations or hidden layers) leads

to higher execution times.

Table 6: Measurement of Time with Hidden Layer

WMCSO

Iteration

Time (s) (NN Hidden Layers)

1 2 4

10 124.41 241.56 435.67

20 256.66 456.76 678.70

30 397.70 567.80 754.50

4. Comparative Analysis

Table 7 and 8 compares the time measures and accuracy of

the suggested model HNN-WMCSO and existing model

HNN. As shown in the tables, the proposed HNN-WMCSO

performs better than the existing HNN in all the iterations.

For both models, the accuracy is seen to improve as the

number of iterations increases. However, the rate of

improvement was higher for the planned HNN-WMCSO.

On the other hand, the proposed HNN-WMCSO requires

more computational time than the existing HNN in all

iterations. As the intensity increases, the gap in

computational time requirements for the two models

becomes significantly larger. Thus, the results indicate that

integrating the WMCSO method with the hierarchical

neural network model achieves a higher level of accuracy.

However, the computational time needed for this model

was also high.

Table 7: Comparison of accuracy

WMCSO

Iterations

Existing HNN

Proposed HNN-

WMCSO

10 0.87 0.92

20 0.90 0.97

30 0.91 0.98

Table 8: Comparison of Time Measures

WMCSO

Iterations

Existing HNN

Proposed HNN-

WMCSO

10 234.6 435.67

20 447.87 678.70

30 544.34 754.50

5. Conclusion

 This study presents a novel approach, termed

Hybrid Neural Network with Weighted Modified Cuckoo

Search Optimization (HNN-WMCSO), for SDP utilizing

a soft computing framework. The research model

recombines several computational approaches, such as

neural networks and optimization algorithms. This, in

turn, may provide a closer-to-ideal solution to the issue of

properly predicting defects, ensuring both accuracy and

reliability in software systems. Specifically, using MFCM

for data pre-processing, HNN for defect prediction, and

WMCSO for optimizing neural network weights, the

HNN-WMCSO research model illustrates a better form of

performance, especially at prediction accuracy, when

contrasted with other models. The empirical analysis

demonstrates that the suggested approach is effective as it

helps improve software quality and reliability by

capturing defects early before their manifestation in

production setups. In general, the current research

emphasizes the role of using a hybrid SC-based approach

to enhance efforts to address the complexities apparent in

SDP. This enhances the use of more reliable software

systems in the future.

References

[1] Matloob, F., Ghazal, T. M., Taleb, N., Aftab, S.,

Ahmad, M., Khan, M. A., ... & Soomro, T. R. (2021).

Software defect prediction using ensemble learning: A

systematic literature review. IEEE Access, 9, 98754-

98771.

[2] Thota, M. K., Shajin, F. H., & Rajesh, P. (2020).

Survey on software defect prediction

techniques. International Journal of Applied Science

and Engineering, 17(4), 331-344.

[3] Pachouly, J., Ahirrao, S., Kotecha, K., Selvachandran,

G., & Abraham, A. (2022). A systematic literature

review on software defect prediction using artificial

intelligence: Datasets, Data Validation Methods,

Approaches, and Tools. Engineering Applications of

Artificial Intelligence, 111, 104773.

[4] Alsawalqah, H., Hijazi, N., Eshtay, M., Faris, H.,

Radaideh, A. A., Aljarah, I., & Alshamaileh, Y.

(2020). Software defect prediction using

heterogeneous ensemble classification based on

segmented patterns. Applied Sciences, 10(5), 1745.

[5] Li, N., Shepperd, M., & Guo, Y. (2020). A systematic

review of unsupervised learning techniques for

software defect prediction. Information and Software

Technology, 122, 106287.

[6] Zheng, W., Shen, T., Chen, X., & Deng, P. (2022).

Interpretability application of the Just-in-Time

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 344–355 | 355

software defect prediction model. Journal of Systems

and Software, 188, 111245.

[7] Stradowski, S., & Madeyski, L. (2022). Machine

learning in software defect prediction: A business-

driven systematic mapping study. Information and

Software Technology, 107128.

[8] Aljamaan, H., & Alazba, A. (2020, November).

Software defect prediction using tree-based

ensembles. In Proceedings of the 16th ACM

international conference on predictive models and data

analytics in software engineering (pp. 1-10).

[9] Azzeh, M., Elsheikh, Y., Nassif, A. B., & Angelis, L.

(2023). Examining the performance of kernel methods

for software defect prediction based on support vector

machine. Science of Computer Programming, 226,

102916.

[10] Ali, U., Aftab, S., Iqbal, A., Nawaz, Z., Bashir, M. S.,

& Saeed, M. A. (2020). Software defect prediction

using variant based ensemble learning and feature

selection techniques. International Journal of Modern

Education & Computer Science, 12(5).

[11] Sharma, T., Jatain, A., Bhaskar, S., & Pabreja, K.

(2023). Ensemble Machine Learning Paradigms in

Software Defect Prediction. Procedia Computer

Science, 218, 199-209.

[12] Ning Li , Martin Shepperd , Yuchen Guo (2020). A

systematic review of unsupervised learning techniques

for software defect prediction. Information and

Software Technology. Volume 122, 106287.

[13] Qiao, L., Li, X., Umer, Q., & Guo, P. (2020). Deep

learning based software defect prediction.

Neurocomputing, 385, 100-110.

[14] Gorkem Giray, Kwabena Bennin, Omer Koksal,

[15] Onder Babur, Bedir Tekinerdogan(2023). On the use

of deep learning in software defect prediction. Journal

of systems and software. Volume 195, 111537.

[16] Tong Yu, Hong Zhu (2020). Hyper-Parameter

Optimization: A Review of Algorithms and

Applications.cs-arXiv:2003.05689.

[17] Shifei Ding, Li Xu, Chunyang Su, Hong Zhu

(2010). Using Genetic Algorithms to Optimize

Artificial Neural Networks. Journal of

Convergence Information Technology 5(8):54-62.

[18] Nazri Mohd. Nawi, Abdullah Khan, and

Mohammad Zubair Rehman (2013). A New Back-

Propagation Neural Network Optimized with

Cuckoo Search Algorithm. B. Murgante et al.

(Eds.): ICCSA 2013, Part I, LNCS 7971, pp. 413–

426, 2013.

[19] Omer Faruk Arar, Kurşat Ayan (2015). Software

defect prediction using cost-sensitive neural

network.Applied Soft Computing.Volume 33,

Pages 263-277

[20] Sofian Kassaymeh, Mohamad Al-Laham ,

Mohammed Azmi Al-Betar, Mohammed

Alweshah, Salwani Abdullah, Sharif Naser

Mahkadmeh (2022). Backpropagation Neural

Network optimization and software defect

estimation modelling using a hybrid Salp Swarm

optimizer-based Simulated Annealing Algorithm.

Knowledge-Based Systems. Volume 244, 23 May

2022, 108511.

[21] Mengtian Cui, Yameng Huang, Jing Luo (2019).

Software Defect Prediction Model Based on GA-BP

Algorithm. Cyberspace Safety and Security: 11th

International Symposium, CSS 2019.

[22] Xingjuan Cai, Yun Niu, Shaojin Geng, Jiangjiang

Zhang, Zhihua Cui, Jianwei Li, Jinjun Chen (2019).

An under-sampled software defect prediction

method based on hybrid multi-objective cuckoo

search. Concurrency and computation practice and

experience. Volume 32, issue 5 e5478.

[23] Dr. S Balasubramaniam, Dr. Shantappa G Gollagi

(2022). Software defect prediction via optimal

trained convolutional neural network. Advances in

Engineering Software.Volume 169, 103138.

[24] Safial Islam Ayon (2019). Neural Network based

Software Defect Prediction using Genetic Algorithm

and Particle Swarm Optimization. 1st International

Conference on Advances in Science, Engineering

and Robotics Technology (ICASERT).

[25] Zhen Li, Tong Li, YuMei Wu, Liu Yang, Hong

Miaoand DongSheng Wang (2021). Software Defect

Prediction Based on Hybrid Swarm Intelligence and

Deep Learning. Computational Intelligence and

Neuroscience. 2021; 2021: 4997459.

https://www.sciencedirect.com/journal/information-and-software-technology
https://www.sciencedirect.com/journal/information-and-software-technology
https://www.sciencedirect.com/journal/information-and-software-technology/vol/122/suppl/C
https://arxiv.org/search/cs?searchtype=author&query=Yu%2C+T
https://arxiv.org/search/cs?searchtype=author&query=Zhu%2C+H
https://arxiv.org/list/cs/recent
https://www.researchgate.net/profile/Shifei-Ding
https://www.researchgate.net/profile/Li-Xu-159
https://www.researchgate.net/scientific-contributions/Chunyang-Su-2162922661
https://www.researchgate.net/scientific-contributions/Hong-Zhu-70764492
https://www.researchgate.net/journal/Journal-of-Convergence-Information-Technology-2233-9299
https://www.researchgate.net/journal/Journal-of-Convergence-Information-Technology-2233-9299
https://www.sciencedirect.com/journal/applied-soft-computing
https://www.sciencedirect.com/journal/applied-soft-computing/vol/33/suppl/C
https://www.sciencedirect.com/journal/knowledge-based-systems
https://www.sciencedirect.com/journal/knowledge-based-systems/vol/244/suppl/C
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
https://onlinelibrary.wiley.com/authored-by/Cai/Xingjuan
https://onlinelibrary.wiley.com/authored-by/Niu/Yun
https://onlinelibrary.wiley.com/authored-by/Geng/Shaojin
https://onlinelibrary.wiley.com/authored-by/Zhang/Jiangjiang
https://onlinelibrary.wiley.com/authored-by/Zhang/Jiangjiang
https://onlinelibrary.wiley.com/authored-by/Cui/Zhihua
https://onlinelibrary.wiley.com/authored-by/Li/Jianwei
https://onlinelibrary.wiley.com/authored-by/Chen/Jinjun
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
https://www.sciencedirect.com/journal/advances-in-engineering-software/vol/169/suppl/C
https://www.researchgate.net/profile/Safial-Ayon
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
https://pubmed.ncbi.nlm.nih.gov/?term=Li%20Z%5BAuthor%5D
https://pubmed.ncbi.nlm.nih.gov/?term=Li%20T%5BAuthor%5D
https://pubmed.ncbi.nlm.nih.gov/?term=Wu%20Y%5BAuthor%5D
https://pubmed.ncbi.nlm.nih.gov/?term=Yang%20L%5BAuthor%5D
https://pubmed.ncbi.nlm.nih.gov/?term=Miao%20H%5BAuthor%5D
https://pubmed.ncbi.nlm.nih.gov/?term=Miao%20H%5BAuthor%5D
https://pubmed.ncbi.nlm.nih.gov/?term=Wang%20D%5BAuthor%5D
javascript:void(0);
javascript:void(0);
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8727112/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8727112/
javascript:void(0);
javascript:void(0);

