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Abstract: Defects in software significantly impact quality, reliability, and maintenance. Early detection and prediction using data mining 

and classification techniques offers an effective means of identifying potential defects before they manifest in production environments, 

but accurate prediction requires handling complex datasets. This paper proposes a soft computing model called Hybrid Neural Network 

with Weighted Modified Cuckoo Search Optimization (WMCSO) to detect the defect in the software. The proposed model first performs 

the clustering process with the Modified Fuzzy C–means algorithm (MFCM) to retrieve the important new attributes from the dataset. 

The software defect prediction and classification are performed using the HNN, and the WMCSO model is used to fine-tune the weights 

of the HNN. The HNN-WMCSO method is evaluated based on the evaluation of prediction rate and execution time. The experimental 

analysis stated that the proposed model exhibits improved performance relative to the current method in regard to an efficient prediction 

rate.  

Keywords: Software Defect Prediction (SDP), Fuzzy C-means (FCM), Cuckoo Search (CS), Machine Learning, Hybrid Neural Network 
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1. Introduction 

Software Defect Prediction (SDP) is considered effective 

for reducing costs in software development and 

maintenance to achieve high-quality software [1]. 

Prolonged software failures can cause automated defects, 

impacting developers and stakeholders. Defect prediction 

techniques improve quality, reduce costs, and enhance 

product development time by proactively addressing issues 

[2]. A defect predictor with high performance consists of 

static attributes and an effective learning process. SDP 

employs various metrics to evaluate features and attributes 

in software based on lines of code (LOC) and information 

change to predict defect proneness. This predictive 

approach supports software activities by detecting likely 

defects during the initial stages of development, enabling 

teams to focus on critical areas and improve software 

quality [3]. Software defects are considered one of the  

central factors precipitating the failure of massive 

engineering projects, which causes massive financial 

burdens. The software quality maintenance is evaluated 

with different prediction techniques [4]. Unsupervised 

learning can be used in conjunction with supervised 

techniques. Clustering can be used to identify 

homogeneous groups of data that can be further attached to 

the original data for supervised learning, enhancing the 

efficacy of defect prediction models [5].  

Conventional SDP comprises an optimized prediction 

model for accurately estimating the fault instances within a 

software module. The goal is to achieve precise defect 

prediction, despite the presence of noisy data. By 

employing advanced techniques and methodologies, the 

model aims to provide an accurate prediction of defects, 

contributing to improved software quality and 

reliability[6].Machine learning algorithms have been 

proposed to anticipate potential defects in software 

systems[7-9].Ensemble-based SDP is a composite strategy 

integrating several prediction models to enhance the 

accuracy and reliability of defect prediction [10-11].Using 

unsupervised algorithms before classification in SDP brings 

several benefits and helps improve the overall predictive 

performance[12]. 

Using deep learning instead of traditional machine learning 

approaches in SDP offers several potential advantages. 

Neural networks in deep learning (DL) are adept at 

capturing complex patterns and representations from raw 

data, making it suitable for complex and high-dimensional 

software datasets [13]. DL Models have the capability to 

autonomously extract pertinent features from raw software 

metrics, dispensing with the manual creation of features. 

This ability can be especially beneficial when dealing with 

unstructured data, such as source code [14].  
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Weight optimization is crucial in deep learning models, 

as it optimizes parameters like weights and biases to 

minimize loss or error function. The goal is to find weights 

that enable accurate predictions and generalization to 

unseen data [15]. Genetic algorithms (GA) optimize neural 

network weights due to their flexibility and Capacity to 

discern near-optimal solutions amidst intricate search 

spaces, unlike gradient-based algorithms that struggle with 

local minima especially in high-dimensional spaces with 

numerous parameters (weights) to optimize [16]. This 

research aimed to formulate an efficient SDP strategy. The 

specific contribution of the research is presented as follows: 

1. To perform the SDP, this research proposed HNN-

WMCSO. The model uses SDP through the HNN.  

2. The collected data is computed based on the clustering 

process performed with the FCM-based approach to 

generate a more informative feature space. The 

Modified Fuzzy C Means Clustering (MFCM) 

technique is implemented for execution, followed by 

the classification process. 

3. The classification model uses the HNN for the 

learning and testing process. To increases the 

efficiency of the neural network optimization 

algorithm is integrated with Weighted modified CS 

model. 

4. The simulation analysis stated that the proposed model 

achieves the reduced processing time with the 

 increased prediction rate.  

The structure of this document is as follows: The 

relevant works for software fault prediction are included in 

Section 2. Section 3 presents the software defect prediction 

methodology and findings, while Section 4 presents the 

comparative analysis. Finally, Section 5 presents the 

general conclusion model. 

2. Related Works 

In [17] developed the back-propagation neural network 

(BPNN) algorithm for improving the training of Forward-

propagation neural networks. The classic BP method has 

certain shortcomings, including a sluggish convergence rate 

and an easy tendency to become caught in local minima. In 

order to develop BP in attaining quick meeting point rates 

and avoiding local minima problems, their work suggested 

a search method dubbed CS. The effectiveness of the model 

is evaluated in comparison to existing hybrid variations and 

an artificial bee colony utilizing the BP method. The 

simulation results exhibits that the advised hybrid technique 

greatly enhances the computational efficiency of the BP 

training process. 

Artificial Bee Colony and published a new Artificial Neural 

Network (ANN) In [18]. The ABC technique, which is used 

to verify the optimal weights for which a neural network 

should result, is employed in training the neural network. 

The false positive rate(FPR) and false negative rate(FNR), 

multiplied by the cost coefficients, are used to maximize 

the artificial bee colony. Five prominent sets from the 

NASA Metrics Data Program repository were studied using 

our methodology. Accuracy, probability of detection, 

probability of false alarm, profit, area under curve, and 

normalized expected cost of misclassification were the 

main performance characteristics of the classification 

strategy used in this procedure for the offered findings. To 

avoid any features of randomness, the ensemble was quite 

randomly combined, and then their approach was 

performed ten times. This was done by using n-fold cross-

validation each of these times. 

A novel hybrid version of the hitherto Salp Swarm   

Algorithm and Simulated Annealing, SSA-SA, based 

BPNN is proposed in [19]. The objective is to optimize 

parameters using BPNN estimator in SDE.  

They evaluate the hybrid SSA-SA performance on a 

variety of SDE benchmark datasets. They tested the SSA-

SA outcomes with respect to its competency to the SSA-

BPNN and conventional BPNN. The hybrid algorithm is 

accomplished in parameter optimization in SDE and 

assessment criteria. 

A unique SDP model built upon the GA-BP algorithm in 

light of the drawbacks of traditional BP (back propagation, 

or BP, for short) neural networks, which have the issue of 

easily falling into local optimization when building SDP 

models, which ultimately impacts the performance was 

reviewed in [20]. First, the Back Propagation neural 

network's weights and thresholds are optimized using the 

GA optimization capability. Then the GA-BP is applied to 

build the model. The program WEKA is used to convert 

the public dataset NASA MDP and clean it after that. The 

experimental results show that the proposed software fault 

prediction approach is efficient. 

In [21] suggested the use of an SVM-based mixed CS 

under-sampled SDP model.  First, the non-defective 

sample is chosen synchronously, and the SVM parameters 

are optimized with dynamic regional search (HMOCS). 

The non-defective modules are then chosen using three 

under-sampled approaches for decision region range. The 

three indicators— FPR, probability of detection (pd), and 

G-mean—are used in the simulation to assess how well the 

suggested algorithm is working. The Promise database are 

also chosen in order to validate the suggested SDP model. 

The suggested strategy is effective in resolving the 

problem of SDP when compared to the output of eight 

prediction models. 

An innovative SDP framework across different stages was 

developed in [22]. First, a pre-processing stage was applied 

to the incoming data. The prepared data are used to extract 
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statistical characteristics, along with any relationships. 

Furthermore, enhanced PCA (Principal Component 

Analysis) is used to choose the required properties. Next, 

an enhanced CNN is used to predict flaws using the 

selected characteristics. The SALO method is used to 

correctly tune the CNN weights. 

    The five distinct datasets from the NASA Promise 

repository and the characteristics are chosen using a GA. 

The model is then trained applying various methods, 

including: Feed forward Neural Network (FNN) and 

Recurrent Neural Network (RNN), before the group of the 

chosen attributes is created using PSO in [23]. Finally, 

different classification metrics are calculated. According to 

their research, deep neural networks produce the greatest 

accuracy results. Findings from the experiments 

demonstrate that the proposed solution is a good approach 

for predicting software faults. 

In [24] combined two algorithms wolf swarm algorithm 

and the particle swarm method to realize their 

complimentary benefits in accordance with the advantages. 

The model's fitness function is derived from the loss 

function, the hybrid technique is used to search for model 

hyper parameter optimization, and the swarm intelligence 

population's cooperative search ability is utilized to 

identify the globally ideal solution in a number of adjacent 

solution areas. The model utilizing the hybrid algorithm 

has higher and better indicators. In this research, the 

assessment of performance regarding to confusion matrix 

are used to evaluate the model. The model's performance 

has increased much more after auto encoder processing. 

3. Proposed HNN-WMCSO for the defect prediction 

The software defect detection comprises of the three 

modules. Initially, the data related to defects are collected 

and retained in the database for further processing. In the 

clustering stage the collected data is clustered to be 

organized into meaningful clusters, which may help 

identify underlying patterns or separate different classes 

more effectively and provides a more informative feature 

space. Additional features are incorporated into the 

original data for the subsequent classification model. The 

MFCM approach is utilized to achieve effective data 

prediction. Hybrid neural networks are used by the 

classification model for testing and learning. Modified 

Cuckoo Search model with weight factors is merged with 

the neural network optimization technique to boost its 

efficiency. The process involved in the proposed model is 

illustrated in the figure 1. 

                         

     Fig. 1.  Process in HNN - WMCSO model  

3.1 Modified Fuzzy C-means Clustering  

MFCM determines clusters in terms of the possibility that 

a data point belongs to that cluster with the membership 

function itself. where h is a probability that a data point is a 

member of a cluster. It means that the clustering depends 

on outcomes of membership function and tolerance 

measures for the desired accuracy. Membership functions 

with extremely low values are not computed during the 

needed iterations in order to gain the wished clustering 

outcome.  

     One of the major application limitations of FCM is its 

computational cost. The cluster centroid and membership 

variables are changed periodically until convergence in 

FCM because of its iterative technique and sensitivity to 

initialization. The iterative procedure can be exceedingly 

time-consuming and computationally expensive when the 
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dataset is huge if there are many clusters. To address this 

issue and achieve more accurate weight measurements, a 

modified approach called MFCM is adopted. The MFCM 

algorithm validates clusters using partitioned coefficients 

and partition entropy values to assess the quality of the 

resulting clusters. Partition coefficients and partition 

entropy are two such measures commonly used for this 

purpose. In the MFCM model, the initial cluster is selected 

based on the dependent value of the membership function. 

The MFCM then establishes initial cluster centers through 

arbitrary membership functions. The MFCM clustered 

assigned with each category based on membership fuzzy 

function aims to minimize the overall fuzziness of the 

clustering while also minimizing the distances between 

data points and cluster centroids as stated in equation (1) 

                       (1)   

In above equation (1),  is the  data point, centroid of 

cluster  is represented as , constant value is represented 

as  (often set to 2 in fuzzy clustering algorithms) and 

weight factor associated with data point  is stated as  

for cluster  stated in equation (2), where  is a 

coefficient associated with the distance between data point 

 and cluster centroid  

                                        
(2)

 

Each data point for each cluster is given a degree of 

membership by the membership function, which indicates 

how much the data point is related to that cluster. The 

membership function is presented in equation (3)  

                                      (3) 

The centroid cluster values are computed as in equation (4) 

                                                 (4)    

Based on the two iterations count the changes in 

coefficient values are repeated based on the sensitivity 

threshold value in equation (5) 

 

                 (5) 

Above equation (5) verifies whether the maximum change 

in coefficient values between successive iterations is less 

than the sensitivity threshold ϕ. The clustering solution 

may not be considerably improved by more iterations if 

this criterion is met, which indicates that the algorithm is 

converging. The algorithm can therefore come to an end. 

than the sensitivity threshold ϕ. The clustering solution 

may not be considerably improved by more iterations if 

this criterion is met, which indicates that the algorithm is 

converging. The algorithm can therefore come to an end. 

3.2 Hybrid Neural Networks 

Hybrid Neural Network (HNN) provides the resemblance 

of the biological counterparts for the estimation of 

effective tasks.  

The process involved in HNN comprises of neurons with 

biological components to perform intended tasks in effective 

manner. The process of HNN is shown in figure 2.  

Input Layer: This level includes the same quantity of neurons 

as that of inputs. However, here, the neurons are passive 

elements. It means that the input layer neurons do not 

transform the signal for the next layers .  

Hidden Layer: This level also includes several neurons of any 

number. Although the hidden layer’s neurons are active and 

they modulate the signal. Thus, it is easy to identify that the 

hidden layers make processing possible.  

Output Layer: As the name suggests, this level includes the 

same number of neurons as the output. Unlike the other two 

layers, the output layer neurons symbolize the final output of 

the neural network due to the activation. 

3.2.1 Training Phase  

The input layer of HNN consists of M neurons, where M 

represents the count of inputs. In the hidden layers, there are 

NH neurons, and in the output layer, there are N neurons, 

each corresponding to one class. The Hybrid neural network 

model for the training with back propagation algorithm are 

presented in figure 3.  
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Fig 2: Structure of HNN 

 

Fig 3: Process in HNN 

 

The components in the Hybrid Neural Network are 

presented as shown: 

 Step 1: Generate hidden and output layer neurons 

through arbitrary weights between the interval [0,1]. The 

weight unity values are computed for the input layer of 

neurons.  

Step 2: With the training dataset the BT determines the 

classification with the consideration of equation (6) 

                          (6) 

In the above equation (6), the targeted output is 

represented as  for the network output stated as   

those can be stated as  
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for the output network. The output of network is stated as 

follows in equation (7) 

 

                         (7) 

 

In equation (7) 

  

In the above equation (7) the activation function is 

evaluated dependent on the hidden and output layer of the 

network.  

Step 3: The neurons weights are evaluated, 

, the changes in the weights are stated as 

 as in equation (8) 

                                       (8) 

In above equation (8) the learning rate of network is 

stated as . 

Step 4: The process gets repeated until BP achieves the 

minimal least value, then continues Step 2 for the criteria. 

.  

3.2.2 Training Phase with enhanced Weight Optimization 

Through Modified Cuckoo Search Algorithm 

(MCSA) 

In the training phase, the NN process is incorporated 

through the use of optimization approach to achieve the 

optimization weights in the training process. The 

proposed model uses the MCSA for the superior 

classification performance and effective recognition, as 

shown in Figure 4. Once training is done next in the trial 

stage, the trained NN with processed weights is used, and 

the output is calculated for the classification for the test 

dataset. 

The process in the MCSA comprises an effective meta-

heuristics-based CS algorithm for breeding process 

implementation. The process comprises the multitude of 

nests for the egg solution, with the superior replacement 

in the nest. To find the most appropriate set of weights 

that minimizes the objective function, the neural 

network's weights are iteratively modified throughout the 

training phase utilizing both backpropagation and the 

MCSA. The objective of this procedure is to enhance the 

neural network's ability to solve the specified problem. 

Step 1: Initialization Step 

 The population (mi, where i=1, 2, n) of host nest is 

started randomly. 

Step 2: Generation of Cuckoo 

By integrating CS with levy flight, the novel value is 

generated those are engendered for the examination of 

objective function to ascertaining the solution.   

Step 3: Fitness Evaluation Step 

The fitness operation is evaluated by consideration of 

equation (8) and equation (9) with the present value in 

equation (9)  

                                                         (9) 

 In above equation (9)  represents fitness highest 

popularity value.  

At which,  denotes the chosen population and 

presents the sum of population 

Step 4: Update  

 In the update phase the levy flights are employed with 

the cosine transform for the selected arbitrarily nest 

quality. The selected quality nest is evaluated for the 

superior function through replacement of novel Cuckoo 

solution. The previous solution is evaluated with the 

employed CS based levy flights as stated in equation (10) 
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Fig 4. Steps in Modified Cuckoo Search  

          (10) 

Through consideration of above equation (10) the levy 

equation is evaluated for the gaussian distribution as 

stated in equation (11) 

                         (11) 

where, , the constants are stated as 

,  and present generation symbolizes is represented as 

K.  

Step 5: Reject Worst Nest  

The worst nests are eliminated using the potential values 

and unique values are developed with computation of 

fitness function to achieve the best solution with ranking 

process. Through optimal solution estimation best 

solution is detected and marked.   

Step 6: Stopping Criterion  

 The maximal process of loop is computed based on the 

optimization function. 

3.3 Assessment criteria: 

The effectiveness of proposed SDP approach is assessed 

using some of the metrics, such as execution time and 

prediction rate. An assessment criterion is utilized to 

measure the effectiveness of SDP technique and to 

validate the theoretical and practical progressions of these 

systems. The prediction is then compared with that of the 

existing algorithm. 

 3.3.1 Execution Time 

Execution time refers indicates the amount of time a 

responsible system spends executing the given task, and it 

includes the time a system spends in executing run-time 

or system services. Therefore, the programs or 

algorithm’s execution time is established by measuring 

the elapsed time from inception and termination of 

execution. The following is an expression of the formula 

for determining execution time: 

 

3.3.2 Prediction rate/ Accuracy 

Prediction rate or accuracy, is a statistic measure to assess  

how well categorization systems work. It displays the 

proportion of all labels in the dataset that are correctly 

classified. The following formula can be used to 

determine the prediction rate or accuracy: 

 

Table 1: Train accuracy 

 

WMCSO 

Iterations 

Max Accuracy 

NN 

Iterations = 

5 

NN 

Iterations = 

20 

NN 

Iterations = 

50 

10 0.77 0.78 0.95 

20 0.76 0.91 0.97 

30 0.76 0.93 0.94 
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Table 2: Test accuracy 

 

WMCSO 

Iterations 

Max Accuracy 

NN 

Iterations = 

5 

NN 

Iterations = 

20 

NN 

Iterations = 

50 

10 0.73 0.92 0.91 

20 0.72 0.86 0.97 

30 0.81 0.86 0.97 

Table 1 presents the training accuracy of the suggested 

method. The method was tested with varying numbers of 

WMCSO iterations (10, 20, and 30) and NN iterations 

(5,20,50). For instance, with 10 iterations, the maximum 

accuracy ranged from 0.77 to 0.95, increasing with more 

neural network (NN) iterations. As the number of 

iterations increased to 20 and 30, the maximum 

accuracies improved notably, reaching up to 0.97 for 50 

NN iterations. This indicates that increasing both the 

number of WMCSO iterations and NN iterations 

enhances the performance of the suggested method, with 

the maximum accuracy gained when utilizing 50 NN 

iterations under WMCSO 30 iterations. 

Table 2 illustrates the testing accuracy achieved by the 

recommended method. The best accuracy of 0.97 was 

obtained for WMCSO with 20 and 30 iterations when 

using 50 NN iterations, although the maximum accuracies 

varied as the number of iterations climbed to 20 and 30. 

Findings indicate that the planned method works best with 

WMCSO with 20 and 30 iterations, especially when using 

50 NN iterations, which yields maximum accuracies of 

0.97. 
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                              Fig 5: Assessing differences in train and test accuracy levels

Figure 5 shows analyzing train and test accuracy 

disparities of the model with no of NN hidden layers=1.  

Table 3: Train Accuracy  

 

WMCSO 

Iterations 

Train accuracy (NN Hidden Layers) 

1 2 4 

10 0.95 0.95 0.96 

20 0.97 0.96 0.97 

30 0.94 0.97 0.97 

 

Table 4: Test Accuracy  

 

WMCSO 

Iterations 

 

Test accuracy (NN Hidden Layers) 

1 2 4 

10 0.91 0.90 0.92 

20 0.97 0.97 0.97 

30 0.97 0.98 0.98 
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     Fig 6: Train accuracy 

 

                                 Fig 7: Test accuracy

                   

The train and test accuracies for the model with different 

no of NN hidden layers are given in Table 3, 4, Figure 6, 

and 7. The model has been executed for 10, 20, and 30 

iterations with the WMCSO algorithm and neural network 

hidden layers configurations like 1, 2, and 4. For all the 

iteration count of the WMCSO algorithm, the model 

achieved the highest train accuracy for 2 or 4 NN hidden 

layers. Train accuracy slightly varied for the number of 

iterations, and the highest one is 0.97 for WMCSO 20 

iterations no with 1 or 4 NN hidden layers. Test accuracy 

increased with the Iteration number, and the greatest one 

is 0.98 when using 2 or 4 NN hidden layers for no of 

WMCSO iterations 30. 

 

 

Table 5: Measure of Computation Time 

 

WMCSO 

Iteration 

Time (s) 

 

NN Iteration 

= 5 

 

NN Iteration 

= 20 

 

NN Iteration 

= 50 

10 30.64 72.70 124.41 

20 57.66 108.40 256.66 

30 69.84 154.55 397.70 

 

Table 5 and 6 shows the computational time in seconds 

associated with different configurations of the model. 

Table 5 focuses on the impact of varying numbers of NN 
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iterations with one hidden layer, while Table 2 explores 

the effect of different numbers of NN hidden layers. Both 

tables show that increasing the complexity of the model 

(either by adding more iterations or hidden layers) leads 

to higher execution times. 

Table 6: Measurement of Time with Hidden Layer 

 

WMCSO 

Iteration 

 

Time (s) (NN Hidden Layers) 

1 2 4 

10 124.41 241.56 435.67 

20 256.66 456.76 678.70 

30 397.70 567.80 754.50 

4.  Comparative Analysis 

Table 7 and 8 compares the time measures and accuracy of 

the suggested model HNN-WMCSO and existing model 

HNN. As shown in the tables, the proposed HNN-WMCSO 

performs better than the existing HNN in all the iterations. 

For both models, the accuracy is seen to improve as the 

number of iterations increases. However, the rate of 

improvement was higher for the planned HNN-WMCSO. 

On the other hand, the proposed HNN-WMCSO requires 

more computational time than the existing HNN in all 

iterations. As the intensity increases, the gap in 

computational time requirements for the two models 

becomes significantly larger. Thus, the results indicate that 

integrating the WMCSO method with the hierarchical 

neural network model achieves a higher level of accuracy. 

However, the computational time needed for this model 

was also high. 

Table 7: Comparison of accuracy 

 

WMCSO 

Iterations 

 

Existing HNN  

 

Proposed HNN-

WMCSO 

10 0.87 0.92 

20 0.90 0.97 

30 0.91 0.98 

Table 8:  Comparison of Time Measures 

 

WMCSO 

Iterations 

 

Existing HNN  

 

Proposed HNN-

WMCSO 

10 234.6 435.67 

20 447.87 678.70 

30 544.34 754.50 

5. Conclusion 

 This study presents a novel approach, termed 

Hybrid Neural Network with Weighted Modified Cuckoo 

Search Optimization (HNN-WMCSO), for SDP utilizing 

a soft computing framework. The research model 

recombines several computational approaches, such as 

neural networks and optimization algorithms. This, in 

turn, may provide a closer-to-ideal solution to the issue of 

properly predicting defects, ensuring both accuracy and 

reliability in software systems. Specifically, using MFCM 

for data pre-processing, HNN for defect prediction, and 

WMCSO for optimizing neural network weights, the 

HNN-WMCSO research model illustrates a better form of 

performance, especially at prediction accuracy, when 

contrasted with other models. The empirical analysis 

demonstrates that the suggested approach is effective as it 

helps improve software quality and reliability by 

capturing defects early before their manifestation in 

production setups. In general, the current research 

emphasizes the role of using a hybrid SC-based approach 

to enhance efforts to address the complexities apparent in 

SDP. This enhances the use of more reliable software 

systems in the future. 

References 

[1] Matloob, F., Ghazal, T. M., Taleb, N., Aftab, S., 

Ahmad, M., Khan, M. A., ... & Soomro, T. R. (2021). 

Software defect prediction using ensemble learning: A 

systematic literature review. IEEE Access, 9, 98754-

98771. 

[2] Thota, M. K., Shajin, F. H., & Rajesh, P. (2020).    

Survey on software defect prediction 

techniques. International Journal of Applied Science 

and Engineering, 17(4), 331-344. 

[3] Pachouly, J., Ahirrao, S., Kotecha, K., Selvachandran, 

G., & Abraham, A. (2022). A systematic literature 

review on software defect prediction using artificial 

intelligence: Datasets, Data Validation Methods, 

Approaches, and Tools. Engineering Applications of 

Artificial Intelligence, 111, 104773. 

[4] Alsawalqah, H., Hijazi, N., Eshtay, M., Faris, H., 

Radaideh, A. A., Aljarah, I., & Alshamaileh, Y. 

(2020). Software defect prediction using 

heterogeneous ensemble classification based on 

segmented patterns. Applied Sciences, 10(5), 1745. 

[5] Li, N., Shepperd, M., & Guo, Y. (2020). A systematic 

review of unsupervised learning techniques for 

software defect prediction. Information and Software 

Technology, 122, 106287. 

[6] Zheng, W., Shen, T., Chen, X., & Deng, P. (2022). 

Interpretability application of the Just-in-Time 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 344–355 |  355 

software defect prediction model. Journal of Systems 

and Software, 188, 111245. 

[7] Stradowski, S., & Madeyski, L. (2022). Machine 

learning in software defect prediction: A business-

driven systematic mapping study. Information and 

Software Technology, 107128. 

[8] Aljamaan, H., & Alazba, A. (2020, November). 

Software defect prediction using tree-based 

ensembles. In Proceedings of the 16th ACM 

international conference on predictive models and data 

analytics in software engineering (pp. 1-10). 

[9] Azzeh, M., Elsheikh, Y., Nassif, A. B., & Angelis,   L. 

(2023). Examining the performance of kernel methods 

for software defect prediction based on support vector 

machine. Science of Computer Programming, 226, 

102916. 

[10] Ali, U., Aftab, S., Iqbal, A., Nawaz, Z., Bashir, M.  S., 

& Saeed, M. A. (2020). Software defect prediction 

using variant based ensemble learning and feature 

selection techniques. International Journal of Modern 

Education & Computer Science, 12(5). 

[11] Sharma, T., Jatain, A., Bhaskar, S., & Pabreja, K. 

(2023).  Ensemble Machine Learning Paradigms in 

Software Defect Prediction. Procedia Computer 

Science, 218, 199-209. 

[12] Ning Li , Martin Shepperd , Yuchen Guo (2020). A 

systematic review of unsupervised learning techniques 

for software defect prediction. Information and 

Software Technology. Volume 122, 106287. 

[13] Qiao, L., Li, X., Umer, Q., & Guo, P. (2020). Deep 

learning based software defect prediction.  

Neurocomputing, 385, 100-110. 

[14] Gorkem Giray, Kwabena Bennin, Omer Koksal,  

[15] Onder Babur, Bedir Tekinerdogan(2023). On the use 

of deep learning in software defect prediction. Journal 

of systems and software. Volume 195, 111537. 

[16] Tong Yu, Hong Zhu (2020). Hyper-Parameter 

Optimization: A Review of Algorithms and 

Applications.cs-arXiv:2003.05689.  

[17] Shifei Ding, Li Xu, Chunyang Su, Hong Zhu 

(2010). Using Genetic Algorithms to Optimize 

Artificial Neural Networks. Journal of 

Convergence Information Technology 5(8):54-62. 

[18] Nazri Mohd. Nawi, Abdullah Khan, and       

Mohammad Zubair Rehman (2013). A New Back-

Propagation Neural Network Optimized with 

Cuckoo Search Algorithm. B. Murgante et al. 

(Eds.): ICCSA 2013, Part I, LNCS 7971, pp. 413–

426, 2013. 

[19] Omer Faruk Arar, Kurşat Ayan (2015). Software   

defect prediction using cost-sensitive neural 

network.Applied Soft Computing.Volume 33,  

Pages 263-277 

[20] Sofian Kassaymeh, Mohamad Al-Laham ,  

Mohammed Azmi Al-Betar, Mohammed 

Alweshah, Salwani Abdullah, Sharif Naser 

Mahkadmeh (2022). Backpropagation Neural 

Network optimization and software defect 

estimation modelling using a hybrid Salp Swarm 

optimizer-based Simulated Annealing Algorithm. 

Knowledge-Based Systems. Volume 244, 23 May 

2022, 108511. 

[21] Mengtian Cui, Yameng Huang, Jing Luo (2019). 

Software Defect Prediction Model Based on GA-BP 

Algorithm. Cyberspace Safety and Security: 11th 

International Symposium, CSS 2019. 

[22] Xingjuan Cai, Yun Niu, Shaojin Geng, Jiangjiang 

Zhang, Zhihua Cui, Jianwei Li, Jinjun Chen (2019). 

An under-sampled software defect prediction 

method based on hybrid multi-objective cuckoo 

search. Concurrency and computation practice and 

experience. Volume 32, issue 5 e5478. 

[23] Dr. S Balasubramaniam, Dr. Shantappa G Gollagi 

(2022). Software defect prediction via optimal 

trained convolutional neural network. Advances in 

Engineering Software.Volume 169, 103138. 

[24] Safial Islam Ayon (2019). Neural Network based 

Software Defect Prediction using Genetic Algorithm 

and Particle Swarm Optimization. 1st International 

Conference on Advances in Science, Engineering 

and Robotics Technology (ICASERT). 

[25] Zhen Li,  Tong Li, YuMei Wu, Liu Yang, Hong 

Miaoand DongSheng Wang (2021). Software Defect 

Prediction Based on Hybrid Swarm Intelligence and 

Deep Learning. Computational Intelligence and  

Neuroscience. 2021; 2021: 4997459.                                                            

 

 

 

 

 

 

https://www.sciencedirect.com/journal/information-and-software-technology
https://www.sciencedirect.com/journal/information-and-software-technology
https://www.sciencedirect.com/journal/information-and-software-technology/vol/122/suppl/C
https://arxiv.org/search/cs?searchtype=author&query=Yu%2C+T
https://arxiv.org/search/cs?searchtype=author&query=Zhu%2C+H
https://arxiv.org/list/cs/recent
https://www.researchgate.net/profile/Shifei-Ding
https://www.researchgate.net/profile/Li-Xu-159
https://www.researchgate.net/scientific-contributions/Chunyang-Su-2162922661
https://www.researchgate.net/scientific-contributions/Hong-Zhu-70764492
https://www.researchgate.net/journal/Journal-of-Convergence-Information-Technology-2233-9299
https://www.researchgate.net/journal/Journal-of-Convergence-Information-Technology-2233-9299
https://www.sciencedirect.com/journal/applied-soft-computing
https://www.sciencedirect.com/journal/applied-soft-computing/vol/33/suppl/C
https://www.sciencedirect.com/journal/knowledge-based-systems
https://www.sciencedirect.com/journal/knowledge-based-systems/vol/244/suppl/C
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
https://onlinelibrary.wiley.com/authored-by/Cai/Xingjuan
https://onlinelibrary.wiley.com/authored-by/Niu/Yun
https://onlinelibrary.wiley.com/authored-by/Geng/Shaojin
https://onlinelibrary.wiley.com/authored-by/Zhang/Jiangjiang
https://onlinelibrary.wiley.com/authored-by/Zhang/Jiangjiang
https://onlinelibrary.wiley.com/authored-by/Cui/Zhihua
https://onlinelibrary.wiley.com/authored-by/Li/Jianwei
https://onlinelibrary.wiley.com/authored-by/Chen/Jinjun
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
https://www.sciencedirect.com/journal/advances-in-engineering-software/vol/169/suppl/C
https://www.researchgate.net/profile/Safial-Ayon
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
https://pubmed.ncbi.nlm.nih.gov/?term=Li%20Z%5BAuthor%5D
https://pubmed.ncbi.nlm.nih.gov/?term=Li%20T%5BAuthor%5D
https://pubmed.ncbi.nlm.nih.gov/?term=Wu%20Y%5BAuthor%5D
https://pubmed.ncbi.nlm.nih.gov/?term=Yang%20L%5BAuthor%5D
https://pubmed.ncbi.nlm.nih.gov/?term=Miao%20H%5BAuthor%5D
https://pubmed.ncbi.nlm.nih.gov/?term=Miao%20H%5BAuthor%5D
https://pubmed.ncbi.nlm.nih.gov/?term=Wang%20D%5BAuthor%5D
javascript:void(0);
javascript:void(0);
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8727112/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8727112/
javascript:void(0);
javascript:void(0);

