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Abstract: Graph Neural Networks (GNN) utilization in the case of molecular property prediction is considered a significant advancement 

in computational chemistry and drug discovery. Initial approaches to molecular property prediction especially solubility prediction depend 

on empirical rules or physicochemical descriptors, which lack generalization and predictive accuracy. The proposed model Graph 

Convolutional Network (GCN) which is a variant of GNN learns representations of molecular graphs, enabling accurate prediction of 

molecular properties directly from raw molecular structures. The molecular graphs are created from the Simplified Molecular Input Line 

Entry System (SMILES) data which are molecular sequences of drug target compounds. In the proposed work, GCN uses graph pooling, 

which effectively reduces the node dimensionality. This work shows how the whole graph can be considered as input and how different 

pooling techniques can be used to handle large and complex graph data and also the effectiveness of GCN for solubility prediction. The 

proposed GCN model is hyperparameter tuned by using Grid Hyperparameter optimization on ESoL dataset which is a regressive type 

dataset achieving a low RMSE value of 0.43 outperforming machine learning and many deep learning models. 
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1. Introduction 

Drug discovery is the process of finding and creating new 

medications aimed at treating diseases and enhancing 

human health. This process encompasses multiple stages, 

such as identifying and validating targets, discovering lead 

compounds, conducting preclinical tests, carrying out 

clinical trials, and obtaining regulatory approval. Target 

Identification is the first step in drug discovery. It is the 

process of identifying potential targets that play a key role 

in the disease process. These targets are often identified 

through a variety of methods, including genetic studies, 

molecular biology techniques, analysis of disease 

mechanisms, and bioinformatics. 

SMILES (Simplified Molecular Input Line Entry System) is 

a compact and human-readable notation for representing 

chemical structures using ASCII strings. It provides a 

concise and standardized way to encode molecular 

structures, facilitating data exchange and manipulation in 

cheminformatics. SMILES not only represents the 

connectivity of atoms in a molecule but also captures 

stereochemical and isotopic information. This 

representation is extensively used in various fields such as 

drug discovery, chemical database management, and 

computational chemistry due to its simplicity and 

versatility. In QSAR (Quantitative Structure-Activity 

Relationship) modelling, SMILES representations play a 

crucial role in encoding molecular structures for predictive 

modelling. QSAR approaches utilizing SMILES typically 

involve converting molecular structures into numerical 

descriptors or fingerprints derived from the SMILES 

strings, which are then used as input features for machine 

learning models to predict biological activities or properties 

of interest, such as drug potency or toxicity. By leveraging 

SMILES representations, QSAR enables the development 

of predictive models that correlate molecular structure with 

biological activity, facilitating the design and optimization 

of new chemical compounds with desired properties. 

SMILES representations can be computed using two 

primary approaches: sequence-based and graph-based 

methods. Sequence-based approaches treat SMILES strings 

as linear sequences of characters, where each character 

represents an atom, bond, or special symbol (e.g., branching 

or aromaticity). These approaches involve parsing the 

SMILES strings character by character and converting them 

into numerical representations, such as one-hot encoding or 

embedding vectors, which can be used as input features for 

machine learning models. While sequence-based methods 

are straightforward and easy to implement, they may not 

fully capture the structural relationships and spatial 

arrangements of atoms within molecules. graph-based 

approaches represent molecules as graphs, where atoms are 
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represented as nodes and bonds as edges connecting the 

nodes. In this representation, the molecular structure is 

captured in terms of its topology, bond connectivity, and 

atom properties. Graph-based methods leverage graph 

neural networks (GNNs) or other graph-based models to 

directly operate on the molecular graph data, enabling the 

models to learn and exploit the spatial relationships and 

structural features of molecules more effectively. By 

considering the entire molecular graph, graph-based 

approaches can capture complex interactions and 

dependencies between atoms and bonds, leading to more 

accurate and informative representations for machine 

learning tasks. 

Molecular fingerprints are representations of molecular 

structures used in cheminformatics and computational 

chemistry. They encode structural information about 

molecules into a fixed-length binary or numerical vector, 

which can be used for tasks such as similarity search, virtual 

screening, and quantitative structure-activity relationship 

(QSAR) modelling. Molecular descriptors, which capture 

different aspects of molecules, are categorized into one-

dimensional (1-D), two-dimensional (2-D), and three-

dimensional (3-D) descriptors. Structural keys encode 

molecule structures into binary strings based on predefined 

structural features like substructures or fragments, 

exemplified by MACCS keys and PubChem fingerprints. 

Path-based fingerprints follow linear paths within 

molecules, with examples like Daylight fingerprints, while 

circular fingerprints consider circular atom environments up 

to a specified radius or diameter. These approaches offer 

versatile means of representing molecular structures, crucial 

for diverse cheminformatics tasks and machine learning 

applications. 

Understanding the solubility of drug targets is paramount in 

drug discovery and development processes. Solubility refers 

to the ability of a substance to dissolve in a given solvent, 

typically water in pharmaceutical contexts. In the context of 

drug targets, solubility data provide crucial insights into the 

potential bioavailability and pharmacokinetic behaviour of 

candidate compounds. Poorly soluble compounds may face 

challenges in formulation development, leading to issues 

such as low bioavailability and inconsistent drug delivery. 

Hence, predicting the solubility of target compounds early 

in the drug discovery process is essential for selecting 

promising candidates for further development. ESOL 

(Estimated SOLubility) predicted log solubility in mols per 

litre is a widely used tool for estimating the solubility of 

organic compounds in water. It provides a quantitative 

measure of solubility, aiding researchers in prioritizing 

compounds with favourable solubility profiles for further 

experimentation and optimization. Integrating solubility 

predictions into drug design workflows allows researchers 

to expedite the drug discovery process, thereby speeding up 

the development of safe and effective therapies. 

2. Literature Survey 

"Semi-Supervised Classification with Graph Convolutional 

Networks"[1] by Thomas N. Kipf and Max Welling (2017): 

This seminal paper introduces graph convolutional 

networks (GCNs), which extend the convolutional operation 

to graph-structured data. They propose a spectral-based 

approach and demonstrate its effectiveness on semi-

supervised node classification tasks. 

"GraphSAGE: Inductive Representation Learning on Large 

Graphs"[2] by William L. Hamilton et al. (2017): This work 

introduces GraphSAGE, a framework for inductive 

representation learning on large graphs. GraphSAGE 

performs neighbourhood aggregation to generate node 

embeddings, enabling scalable and efficient learning on 

graphs of varying sizes. 

"Graph Attention Networks"[3] by Petar Velickovic et al. 

(2018): This paper presents graph attention networks 

(GATs), which leverage self-attention mechanisms to weigh 

the importance of neighbour nodes during message passing. 

Graph Attention Networks (GATs) achieve cutting-edge 

performance on a variety of graph-related tasks, such as 

node classification and link prediction. 

"How Powerful Are Graph Neural Networks?"[4] by 

Keyulu Xu et al. (2019): This work investigates the 

expressive power of graph neural networks (GNNs), 

including GCNs, in terms of their ability to approximate 

graph functions. They analyze the limitations of existing 

GNN architectures and propose techniques to enhance their 

expressive capacity. 

"Hierarchical Graph Representation Learning with 

Differentiable Pooling" [5] by Rex Ying et al. (2018): This 

paper introduces differentiable pooling techniques for 

hierarchical graph representation learning. They propose a 

framework that learns to coarsen graphs hierarchically while 

preserving important structural information, enabling 

scalable graph classification. 

"DiffPool: Graph Pooling via Learning Differentiable 

Graph Structures" [6] by Ying et al. (2018): This work 

presents DiffPool, a differentiable pooling mechanism that 

learns to pool nodes based on their representations and the 

underlying graph structure. DiffPool enables end-to-end 

learning of graph representations and outperforms 

traditional pooling methods on graph classification tasks. 

"Understanding Graph Convolutional Networks for Node 

Classification"[7] by Jie Zhou et al. (2018): This paper 

provides a comprehensive analysis of graph convolutional 

networks (GCNs) for node classification tasks. It 

investigates the behaviour of different GCN architectures 

and explores the impact of various factors, such as graph 

structure and initialization schemes, on their performance. 

"Deep Graph Convolutional Encoder-Decoder Networks for 
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Representation Learning of Chemical Molecules"[8] by Y. 

Li et al. (2018): This study focuses on applying graph 

convolutional networks (GCNs) to the task of molecular 

representation learning. They propose a deep graph 

convolutional encoder-decoder network for generating 

meaningful molecular embeddings, which can be used for 

molecular property prediction and chemical reaction 

prediction. 

"Mean Field Graph Convolutional Neural Networks"[9] by 

Stefan W. R. Selsam et al. (2019): This paper introduces 

mean field graph convolutional neural networks 

(MFGCNs), which extend traditional GCNs by 

incorporating mean field theory from statistical physics. 

MFGCNs capture long-range dependencies in graphs more 

effectively and achieve competitive performance on various 

graph-based tasks. 

"Graph U-Nets"[10] by Hongyang Gao et al. (2019): This 

work proposes Graph U-Nets, a novel architecture that 

combines the strengths of graph convolutional networks 

(GCNs) and traditional U-Net architectures for various 

graph-level tasks such as graph classification and 

segmentation. Graph U-Nets leverage skip connections and 

hierarchical pooling to capture both local and global graph 

features effectively. 

"Weisfeiler and Leman Go Neural: Higher-order Graph 

Neural Networks"[11] by Bastian Rieck, Christian Bock, 

and Heiko Strathmann (2020): This paper introduces higher-

order graph neural networks (HOGNs), which extend 

traditional graph neural networks (GNNs) to capture higher-

order interactions between nodes in a graph. The motivation 

behind HOGNs is inspired by the Weisfeiler-Lehman (WL) 

graph isomorphism test, a powerful graph theoretic method 

for distinguishing non-isomorphic graphs. HOGNs, 

particularly the proposed Weisfeiler-Lehman Neural 

Networks (WLNNs), offer efficient and scalable learning of 

higher-order graph representations, as demonstrated 

through empirical evaluations showcasing their 

effectiveness on various graph-related tasks. 

“TRANSFORMER-CNN: FAST AND RELIABLE TOOL 

FOR QSAR” [12] by Pavel Karpov et al. (2020): This work 

demonstrates how a Convolutional Neural Network (CNN) 

can be constructed using transformers, employing a 10-

block self-attention mechanism in the encoders, and 

evaluates the reliability of transformers in the QSAR 

approach. 

“malC: A novel deep learning architecture for malware 

classification” [13] by V Harinadh et al. (2024): This work 

shows that accuracy increases for unbalanced datasets by 

using the deep neural network.  

3. About Dataset 

The Delaney dataset, also known as the "Delaney's 

solubility dataset," is a widely used benchmark dataset in 

cheminformatics and computational chemistry. It was 

compiled by John Delaney and originally published in 2004. 

The dataset consists of experimentally measured aqueous 

solubility data for a diverse set of chemical compounds. 

Aqueous solubility refers to the ability of a compound to 

dissolve in water. The dataset includes molecular structures 

represented in SMILES notation along with corresponding 

experimental solubility values. It has been extensively 

utilized for the development and validation of quantitative 

structure-activity relationship (QSAR) models and other 

predictive models in the field of computational chemistry 

and cheminformatics. The dataset consists of 10 attributes 

(columns) and multiple instances (rows), where each row 

represents a unique chemical compound. The attributes 

include both numerical and categorical data related to 

molecular properties and solubility. Feature extraction 

involves transforming raw data into a format that is suitable 

for modelling. In this dataset, features can be extracted from 

attributes like molecular weight, the number of hydrogen 

bond donors, the number of rings, and more. These features 

are useful for constructing predictive models for solubility. 

4. Methodology 

Graph Neural Networks (GNNs) are a type of neural 

network model specifically designed to work with graph-

structured data. Unlike traditional neural networks, which 

are intended for fixed-dimensional data such as images or 

sequences, GNNs can process data with arbitrary graph 

structures. This capability makes them ideal for tasks that 

involve relational data or data with intricate dependencies. 

In molecular datasets, where molecules are naturally 

represented as graphs with atoms mapped to nodes and 

bonds as edges, GNNs are used for various cheminformatics 

tasks. By leveraging the structural information encoded in 

molecular graphs, GNNs can effectively capture complex 

interactions between atoms and bonds, enabling tasks such 

as molecular property prediction, molecular similarity 

assessment, and molecular generation. GNN-based models 

can learn meaningful representations of molecules directly 

from their graph structures, allowing for more accurate and 

interpretable predictions compared to traditional methods. 

Additionally, GNNs can be combined with other deep 

learning techniques, such as attention mechanisms and 

reinforcement learning, to further enhance their 

performance and versatility in analyzing molecular datasets. 

In order to model convolutional network on the graphs it 

requires a convolutional layer followed by graph pooling 

layer. At the step of convolutional layer among different 

approaches Graph Convolutional ha been used. And for the 

next layer graph pooling, which is a crucial component in 

graph neural networks (GNNs) for effectively aggregating 

information from multiple nodes in a graph while reducing 

dimensionality. It plays a vital role in enhancing the 
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discriminative power of GNNs by capturing hierarchical 

features and global structural patterns in the graph. Various 

pooling techniques have been developed to address different 

aspects of graph data. Top-K pooling selects the top K nodes 

based on certain criteria, prioritizing the most informative 

nodes in the graph. SAGPooling (Self-Attention Graph 

Pooling) employs self-attention mechanisms to dynamically 

assign importance scores to nodes and aggregates 

information accordingly, enabling adaptive pooling based 

on node relevance. EdgePooling focuses on preserving 

important structural information by selectively removing 

less relevant edges, thereby reducing the graph size while 

maintaining its connectivity. MaxPooling aggregates 

information from neighboring nodes by taking the 

maximum value over node features, providing a simple yet 

effective way to capture local features in the graph. These 

pooling techniques offer diverse strategies for summarizing 

graph data, catering to different tasks and modeling 

requirements in molecular datasets. 

In the context of ESOL dataset GraphConv paired with 

Maxpooling yields the lowest Root Mean Square 

Error(RMSE) score compared to others ,This outcome is 

due to Maxpooling simplicity and efficiency which makes it 

less prone to overfitting and computational complexity 

issues compared to other pooling techniques. By prioritizing 

the extraction of local features and maintaining 

computational efficiency, MaxPooling in conjunction with 

the GraphConv layer can provide a robust and effective 

framework for modelling molecular datasets like ESOL, 

ultimately resulting in superior predictive performance as 

indicated by the lower RMSE score. Different approaches 

have been used by using the transformer convolutional and 

graph convolutional at convolutional layer point and also 

different pooling such as Topk pooling and Graph pooling 

has been used. 

4.1 Architecture 

The ESOL dataset contains SMILES representation of the 

compound and the ESOL predicted log solubility in mols 

per litre. We use the SMILES representation of the 

compound and predict the ESOL log solubility using our 

Model architecture.  

 

Cc1occc1C(=O)Nc2ccccc2  

         Fenfuram 

After converting the dataset to molecular objects, the next 

step involved extracting molecular descriptors using the 

DeepChem library. Specifically, the ConvMolFeaturizer 

from DeepChem was employed to generate default node and 

edge representations for each molecule. The node 

representation was constructed by concatenating various 

features, resulting in a feature length of 30. These features 

included atom type, formal charge, hybridization, hydrogen 

bonding properties, aromaticity, degree, number of 

hydrogens, and chirality (optional). Additionally, partial 

charge (optional) was also considered. Similarly, the edge 

representation was constructed by concatenating features 

such as bond type, same ring indicator, conjugation status, 

and stereo configuration, resulting in a feature length of 11. 

This comprehensive feature extraction process ensured that 

each molecule was represented by a rich set of descriptors 

capturing its structural and chemical properties, thereby 

enabling downstream modelling tasks such as predictive 

modelling and property prediction in cheminformatics. 

 

SMILES representations 

converted into molecular graphs and  

 

 

 

 

 

 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 444–451 |  448 

 

Fig.1 Architecture of GCN with Transformer Convolution and TopK Pooling. 

enriched with molecular descriptors, the dataset is primed 

for utilization in deep learning models. Based on the 

convolutional layer and pooling layer two different 

architectures have been proposed which are evaluated based 

on RMSE value. 

4.1.1 TransformerConv 

The TransformerConv integrates the self-attention 

mechanism from transformers with traditional graph 

convolutional operations. This layer is designed to 

dynamically weigh the importance of neighboring nodes for 

each node in the graph, allowing it to capture both local and 

global contextual information effectively. By leveraging 

self-attention, TransformerConv can learn to prioritize the 

most relevant features and relationships within the 

molecular graph, enhancing the model's ability to 

understand complex molecular structures. This makes it 

particularly suitable for tasks that require interpretation of 

the spatial and chemical properties inherent in molecular 

data.  

We employ Transformer Convolutional (TransformerConv) 

layers to process the input SMILES strings as shown in Fig. 

1. TransformerConv layers are adapted to learning intricate 

patterns by combining the strengths of convolutional neural 

networks and transformer models. These layers enable the 

model to focus on  relevant features of the molecular 

structure, enhancing its ability to understand spatial and 

contextual information. 

To further refine the features extracted by the 

TransformerConv layers, we utilize Top-k Pooling twice. 

The TopKPooling layer is a graph pooling technique used 

to reduce the size of the graph while preserving its most 

informative parts. It works by selecting the top k of nodes 

based on a learnable scoring function, which determines the 

importance of each node. By retaining only, the most 

significant nodes, TopKPooling effectively compresses the 

graph, focusing the model's attention on the most crucial 

elements of the molecular structure. This selective pooling 

not only reduces computational complexity but also 

enhances the model's ability to generalize by removing less 

relevant information. Applied after convolutional layers, 

TopKPooling ensures that the model retains critical 

structural and functional details, contributing to more 

accurate predictions of molecular properties such as log 

solubility. 

Following the pooling stages, the reduced and refined 

feature set is passed to a fully connected neural network. 

This network serves as the final prediction layer, where the 

intricate patterns and relationships identified by the previous 

layers are synthesized to produce the estimated log 

solubility. By employing a series of dense layers, the model 

learns to map the abstracted features to the target solubility 

value accurately.
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Fig2. The Architecture of GCN with GraphConvolutional and GraphPooling. 

 

We can see that this architecture performs better than the 

pre-trained models such as D-MPNN The Directed Message 

Passing Neural Network (D-MPNN) enhances molecular 

property prediction by utilizing directed edges to capture the 

directionality  

of molecular bonds, providing a more accurate 

representation of chemical interactions. N-Gram models, 

commonly used in natural  

language processing, predict the next item in a sequence 

based on  

the previous n items. PreTrainGNN refers to the pre-training 

of graph neural networks on large datasets before fine-

tuning them on specific tasks, improving their performance 

by leveraging learned representations of molecular graphs. 

GROVER (Graph Representation frOm self-superVised 

mEssage passing tRansformer) is a self-supervised learning 

framework for molecular graphs that combines message-

passing neural networks with transformer architectures. 

GraphMVP (Graph-based Multi-View Prediction) employs 

multiple views of molecular graphs to capture different 

structural and chemical properties, improving prediction 

accuracy. MolCLR (Molecular Contrastive Learning of 

Representations) uses contrastive learning to pre-train graph 

neural networks on molecular data, distinguishing between 

similar and dissimilar molecular structures. 

 As shown in the below Table. 1 GCN with Transformer 

Conv and TopK pooling has achieved the lowest RMSE 

value than previous models after the hyperparameter tuned 

by using Optuna framework.  

Table. 1: Comparison of RMSE values for various GNN’s 

Model ESOL(RMSE) 

D-MPNN 1.050 

N-Gram 1.083 

PreTrainGNN 1.100 

GROVER 0.983 

GraphMVP 1.029 

MolCLR 1.271 

TransformerConv+TopkPooling 0.944 

 

4.1.2 GraphConv 

Graph convolutional neural networks are particularly well-

suited for leveraging the structural information encoded in 

molecular graphs. These models operate directly on the 

graph topology, utilizing both node features (representing 

atoms) and edge features (representing bonds) to convolve 

and create node embeddings for the subsequent layers. In 

the Fig.2 proposed architecture of GCN with all the layers 

is shown. The GraphConv layer is utilized to gather insights 

from neighbouring atoms, integrating them into the node 

attributes. This involves leveraging both node and edge 

attributes to understand the intricate structural connections 

within the graph.  
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                                    𝑥𝑖́ =  𝑊1𝑥𝑖 + 𝑊2 ∑ 𝑒𝑗,𝑖 . 𝑥𝑗𝑗∈𝑁(𝑖)   

Where xi represents node features and eij represents edge 

features if edge between i and j nodes.  

 A pooling layer is utilized to down-sample the graph 

representation, preserving essential features while reducing 

computations and enhancing efficiency. A GraphPool layer 

aggregates data from the local neighbourhoods of a graph, 

performing max pooling on the feature vectors of atoms 

within these neighbourhoods. Many Graph Convolutional 

networks process feature vectors for each graph node. In the 

context of a molecule, each node may represent an atom, 

and the network manipulates atomic feature vectors that 

capture the local chemical environment of the atom.  

To represent the entire molecule as a single vector, we use 

GraphGather, which pools the node-level feature vectors to 

generate a graph-level feature vector. 

We utilize the GraphConv, GraphPool, and GraphGather 

layers to achieve a vector representation of the molecule. By 

performing two down-sampling operations on the graph and 

applying the GraphGather layer, we create and aggregate 

representations of the graphs, resulting in a comprehensive 

vector representation of the entire molecule. This vector is 

then fed into a multilayer perceptron for the prediction task. 

The MLP typically consists of one or more hidden layers, 

each comprising multiple neurons. These hidden layers 

enable the model to learn complex nonlinear relationships 

between the input features and the target labels. The number 

of hidden layers and neurons per layer is chosen based on 

the complexity of the regression task and the available 

computational resources. Each neuron in the hidden layers 

of the MLP applies an activation function to its input to 

introduce nonlinearity into the model. We use the ReLU 

activation function in our Model .  

The training of a Multilayer Perceptron (MLP) involves 

using an appropriate loss function to measure the difference 

between predicted class probabilities and the true labels. For 

binary classification, binary cross-entropy loss is typically 

used, while categorical cross-entropy loss is used for multi-

class classification. This loss function guides the 

optimization process during training. In our case, we 

employ L1 Loss, which is commonly used in classification 

tasks. To improve the training efficiency by dynamically 

adjusting the learning rates and incorporating bias 

correction Adam optimisation technique is used. 

5. Results & Analysis 

This study analyzes the performance of various state-of-the-

art machine learning (ML) and deep learning (DL) 

techniques in predicting aqueous solubility. The proposed 

model is compared with several ML and DL algorithms that 

rely on molecular graph  

structures, using a dataset of over 1,128 compounds. 

Throughout this study, we calculated and evaluated the Root 

Mean Squared  

Error (RMSE) of different existing ML and DL models 

against the  

proposed Graph Convolutional Neural Network model. 

From the Table. 2 RMSE value of 0.43 for GCN model 

which is less RMSE value when compared to the existing 

ML and DL models. Some of the machine learning 

algorithms which included are MLR,1D-CNN and among 

the machine learning models we observed Random Forest 

has low RMSE value and among Deep learning algorithms 

included GAT, AGNN, SGC, GCN from which GCN has 

the least RSME value. 

Table. 2: Comparing ML and Dl models to GCN 

Algorithms RMSE 

1D-CNN 0.971 

TransformerConv+TopkPooling 0.944 

MLR 0.82 

GAT 0.71 

SGC 0.87 

AGNN 0.76 

RF 0.64 

GCN 0.43 

 

 

Fig. 3: Comparison graph of existing models and proposed 

GCN’s. 

The proposed GCN with Transformer Convolutional and 

TopK pooling has been examined on FreeSolv dataset 

which is also a regression dataset for solubility prediction. 

The model acheived RMSE value of 1.52 on a few trials. 

GCN with GraphConvolutional and GraphPooling achieved 

RMSE value of 2.34. On analysis, it was found that GCN 

with GraphConvolutional and GraphPooling works 

efficiently if there are efficient training samples, whereas 
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GCN with TransformerConvolutional and TopKpooling 

shows a good performance irrespective of the number of 

training samples.  

 

Fig. 4 RMSE value comparison for FreeSolv and Esol 

datasets by using GCN with Transformer Convolutional 

and TopK pooling. 

At trail 175 and 189 the proposed GCN has achieved the 

lowest RMSE value for FreeSolv dataset and Esol dataset 

respectievely.  

6. CONCLUSION 

This work aims to investigate the problem of predicting 

aqueous solubility of drug compounds. To achieve this, 

Graph Convolutional Networks (GCNs) were chosen and 

implemented using the Quantitative Structure-Activity 

Relationship (QSAR) approach. The implemented GCN 

achieved an RMSE value of 0.43, which is lower compared 

to existing graph neural network models. Here we have used 

the grid-based hyperparameter to fine-tune the model. Grid 

Search evaluates different combinations of specified 

hyperparameters and their values, calculates the 

performance for each combination, and selects the optimal 

hyperparameters. Hence using the grid-based 

hyperparameter tuning with the QSAR approach made the 

GCN model achieve a RMSE value of 0.43 which is less 

when compared to some other graph neural networks. 

Depending upon the variation in datasets sizes among the 

two different variants of GCN, the GCN with Transformer 

Convolutional and TopK pooling works efficiently. Many 

new technologies are coming up to solve the aqueous 

solubility prediction problem. Where, Sequence-based 

learning and Natural Language Processing techniques can 

also be used to check the drugs' solubility. 
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