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Abstract: Sleep stage scoring, traditionally done manually by specialists through the inspection of neurophysiological data from sleep 

studies, is a labor-intensive, monotonous, and time-consuming activity. This has led to an increased interest in the development of 

Automated Sleep Stage Classification (ASSC) technologies. Such systems are vital for assisting medical professionals in diagnosing and 

managing sleep-related disorders and neurological conditions, including Alzheimer's disease. This paper presents a cutting-edge 

classification technique that combines deep learning strategies, delivering outstanding outcomes. It also reviews progress and hurdles in 

current methods of sleep stage determination using Electroencephalogram (EEG) signals, covering steps like preprocessing, feature 

detection, and categorization. The paper's goal is to unveil a new classifier design that promises real-time, high-accuracy solutions 

recognized by the scientific community. This includes the classification of EEG signals into different patient sleep stages: Wake, N1, N2, 

N3, and REM. Employing a robust classifier system within the Electroencephalography Analysis System (EAS) based on a Brain-Computer 

Interface (BCI), this system utilizes hybrid classifiers beginning with feature extraction methods such as WDT and PCA, followed by a 

combination of BiLSTM and LightGBM classifiers. The process starts with training the BiLSTM model on raw EEG data to learn temporal 

patterns and feature extraction. Features from the BiLSTM outputs are then used as inputs for LightGBM, creating a potent classification 

system. Unlike previous approaches that often required multiple EEG channels and longer epochs, this research introduces an effective 

method for 10-second epochs from a single-channel EEG, incorporating novel statistical features and utilizing the PhysioNet Sleep 

Database, EDFx sleep DATA. The proposed method has shown an average classification sensitivity of 92.1%, specificity of 98.8%, and 

an overall accuracy of 97.42% using a decision tree classifier, outperforming previous studies in classification accuracy. 

Keywords: Automated Sleep Stage Classification (ASSC), Deep Learning, Electroencephalogram (EEG) Signals, Sleep Disorders and 

Brain Diseases, Feature Extraction ,WDT, PCA, Hybrid Classifiers, BiLSTM, LightGBM, Real-time Analysis  

I. Introduction 

1.1. Background and Significance 

Sleep, a fundamental brain function, significantly 

influences an individual's cognitive performance, 

learning, and physical abilities [1–9]. This reversible state 

renders an individual partially or completely unconscious, 

leading to reduced brain complexity [10–13]. With 

humans spending approximately one-third of their lives 

asleep, prevalent conditions like insomnia and 

Obstructive Sleep Apnea (OSA) can significantly impact 

physical health [14–16]. Globally, sleep disorders affect 

12% of individuals in Algeria [17] and 50–70 million 

people in the United States [18,19], highlighting its 

international prevalence. Additionally, more than 90% of 

depressive disorder patients reportedly experience sleep-

related issues [6,20]. 

Estimates suggest that sleep apnea affects 2%–4% of 

adults and 1%–3% of children, while around 33% of the 

world's population exhibits symptoms of insomnia 

[15,21,22]. Sleep-related problems can lead to sleepiness, 

depression, and even fatalities [6,15]. Alarmingly, 

incidents of falling asleep while driving account for at 

least 100,000 automobile crashes annually in the United 

States [23–25]. Sleep-related factors contribute to a 

quarter of traffic accidents in Germany and 20% in 

England, with Australia spending over $1500 million on 

drowsiness-induced fatalities [26]. Police reports suggest 

that up to 3% of road traffic accidents and 4% of fatalities 

are due to sleep-related causes [27,28]. 

Given these alarming statistics, developing devices 

capable of automatically detecting and analyzing sleep 

patterns to identify conditions like fatigue, drowsiness, 

apnea, insomnia, or narcolepsy is imperative. 

1.2. Importance of Sleep Stage Scoring 

Sleep stage scoring, considered the gold standard in 

analyzing human sleep [17,29–36], aims to diagnose and 

treat sleep disorders effectively. This process relies on 

Polysomnographic (PSG) recordings obtained from 

patients during overnight sleep at hospitals [5,9,16,17]. 

Traditionally, experts visually score overnight PSG 

recordings, encompassing Electroencephalogram (EEG), 
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Electrooculogram (EOG), Electromyogram (EMG), and 

Electrocardiogram (ECG) data, using guidelines 

established by Rechtschaffen and Kales (R&K) in 1968 

[37,38].                               

The PSG recordings are divided into 20- or 30-second 

epochs, classified as Wakefulness (W), Rapid Eye 

Movement (REM) sleep, and Non-Rapid Eye Movement 

(NREM) sleep. NREM sleep includes stages 1, 2, 3, and 4 

(S1, S2, S3, S4), following the R&K guidelines or more 

recent American Academy of Sleep Medicine (AASM) 

guidelines from 2007 [40–44]. Notably, the AASM 

standards amalgamate NREM stages S3 and S4 into a 

single stage termed N3 or Slow Wave Sleep (SWS) 

[43,44]. 

2. Challenges in Sleep Stage Scoring and Need for 

Automation 

Polysomnographic (PSG) recordings, examined visually 

and utilizing multiple channels, result in expensive, error-

prone, tedious, and time-consuming sleep stage scoring 

[45,47]. Analyzing a full-night recording typically spans 

2 to 4 hours, with expert agreement rates occasionally 

below 90% [8,32,38]. PSG-based sleep stage scoring 

usually occurs in hospital settings, necessitating subjects 

to be on waiting lists and spend uncomfortable nights in 

specially equipped sleep labs [7,12]. 

3. Importance of Automated Sleep Stage Classification 

Automated techniques like Automatic Sleep Stage 

Classification (ASSC) would alleviate these challenges by 

reducing clinician time, enhancing analytical accuracy, 

and aiding sleep disorder diagnosis and treatment 

[8,12,38]. Despite the importance of the EEG signal in 

sleep staging, multiple EEG channels restrict subject 

movement, hindering device portability and wearability. 

Implementing a wearable single-channel EEG device 

garners interest among researchers and mitigates 

disturbances caused by PSG recording wires [7,11,12]. 

4. Approaches in Automatic Sleep Stage Classification 

Numerous methods for automatic sleep stage 

classification utilize signal feature extraction and 

classification algorithms [43,47,50]. These include time, 

frequency, and time-frequency domain analyses, 

alongside successful use of nonlinear parameters and 

complexity measures [2,14,27,37]. Some systems perform 

feature selection and dimensionality reduction before 

classification, aiming to minimize features and generate 

low-dimensional inputs [9,45,47]. Machine learning-

based classifiers such as Linear Discriminant Analysis 

(LDA), Artificial Neural Networks (ANN), Support 

Vector Machine (SVM), K-Nearest Neighbor (KNN), and 

Decision Trees (DT) are widely employed for sleep stage 

classification [4,15,17]. 

A Bidirectional Long Short-Term Memory (BiLSTM) is 

a type of recurrent neural network (RNN) architecture that 

processes sequences bidirectionally. Introduced as an 

extension of the standard LSTM architecture, BiLSTMs 

incorporate information from both past and future 

contexts by utilizing two separate hidden states for each 

time step: one capturing information from past time steps 

(forward LSTM) and another capturing information from 

future time steps (backward LSTM) [74]. 

This architecture allows the model to understand context 

and dependencies in both directions within a sequence, 

which can be beneficial for tasks such as natural language 

processing (NLP), speech recognition, time series 

analysis, and more. 

Long Short-Term Memory (LSTM): LSTM is a type of 

RNN designed to address the vanishing or exploding 

gradient problem that affects standard RNNs. It introduces 

gating mechanisms (input, forget, and output gates) that 

control the flow of information within the network, 

enabling it to learn and retain information over long 

sequences. Bidirectional LSTM A BiLSTM consists of 

two LSTM layers, one processing the input sequence in 

the forward direction and the other in the backward 

direction. The outputs of these two LSTM layers are 

concatenated or combined in some way to capture 

information from both past and future contexts 

simultaneously.  

5. Challenges and Contributions 

Existing ASSC methods display varying accuracies (70% 

to 94%), sensitivity, and specificity below 90%, 

presenting challenges in accuracy, sensitivity, and 

specificity [17,59]. Addressing efficient sleep feature 

extraction methods, improved classification algorithms, 

and portability for long-term, home-based monitoring 

remains partially unresolved. Many techniques involve 

complex methodologies, long computational times, and 

poor generalization, posing challenges for real-time 

hardware implementation like driver fatigue detection 

systems. Some studies necessitate multiple EEG channels 

or combinations with other PSG methods, making 

subjects uncomfortable [17]. Despite efforts with single-

channel EEG usage, unresolved epoch ambiguity in 

distinguishing EEG signals between S1 and REM stages 

hampers classification performance [17,42]. 

6. Paper Overview and Proposed Methodology 

This study provides a comprehensive new method in  

comprehensive with various approaches to Automated 

Sleep Stage Classification (ASSC) and the identification 

of sleep disorders through the use of EEG signals. It 

presents a detailed analysis framework for sleep stages 

that includes steps such as pre-processing, feature 

identification, selection, dimensionality reduction, and 
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categorization. Furthermore, the paper introduces an 

innovative automated technique that leverages a single-

channel EEG for categorizing sleep stages. This method 

incorporates advanced filtering processes, novel features 

in the time domain, and a groundbreaking deep-learning 

classifier architecture. Such an architecture is designed to 

grasp both forward and backward context and 

dependencies within data sequences, proving 

advantageous for applications in natural language 

processing (NLP), speech recognition, time-series 

analysis, and beyond. 

The paper discusses Long Short-Term Memory (LSTM) 

networks, a form of Recurrent Neural Network (RNN) 

created to solve the issues of vanishing or exploding 

gradients found in conventional RNNs. It achieves this 

through unique gating mechanisms (input, forget, and 

output gates) that manage data flow in the network, thus 

allowing it to capture and maintain information across 

extended sequences. The study also explores Bidirectional 

LSTM (BiLSTM), which employs two LSTM layers to 

process data both forwards and backwards, merging their 

outputs to effectively incorporate information from both 

prior and subsequent contexts.  The features from 

BiLSTM are used like input of LightGBM classifiers, that 

could be the robust system used for the behavior states 

detection. 

2. EEG (Electroencephalogram) 

The human brain, an intricate and dynamic structure 

including numerous linked neurons that communicate via 

both dendrites and axons [61–63], is crucial for cognitive 

function. Figure 1 illustrates the overall architecture of a 

neuron.

 

 

Fig 1: illustrates the anatomical arrangement of a neuron [65]. 

According to [65], the brain can be structurally classified 

into three primary structures such as the cerebrum with the 

cerebellum and brainstem (shown in Figure 2a). Of them, 

the cerebrum, which is the largest part, consists of two 

hemispheres that contain the central nervous system on 

their outer layer. The cortex is divided into 4 lobes: the 

frontal, the parietal, the temporal, and the occipital, as 

shown in Figure 2b [62]. 

 

Fig 2: shows: (a) A depiction of the human brain.(b) A figure explicitly illustrating the anatomical organization of the brain 

[62]. 

Various techniques have been developed to evaluate the 

level of signal activity in the human brain, such as EEG, 

Magnetoencephalography (MEG), and functional Near-

Infrared Spectroscopic (fNIRS), and Positron Emission 

Tomography (PET) [61,66,72]. Out of them, EEG is 

particularly notable as an important biological signal, with 

substantial practical importance in the neurology field 

[57]. This approach, which does not need any invasion of 

the body, quantifies the electrical activity of the cerebral 

cortex [73]. It has been widely used since it was 
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discovered by Berger in 1929 [70]. EEG incorporates a 

multitude of electrodes placed on the scalp according to 

the internationally recognized 10/20 placement technique 

[71]. With the progress in hardware technology, multi-

channel EEG systems were developed. To accommodate 

extra electrodes, an expansion was made to the 10/10 

system [69]. Figure 3  depicts the locations denoted by 

blue points are the 10/20 scheme, while the other points 

indicate the electrodes used in our studies. 

 

Fig 3: displays the EEG 10-20 system electrode placement as detailed in reference. 

The EEG waveform may be categorized into five distinct 

frequency bands: delta (δ), theta (θ), alpha (α), beta (β), 

and gamma (γ). These bands provide essential 

observations for the diagnosis, monitoring, and treatment 

of neurological characteristics and illnesses. Table 1 

presents both the frequency and amplitude ranges that 

define the decomposition of EEG signals in different 

frequency bands, as shown by references [3,62]. 

Table 1 displays the frequency and amplitude ranges of the decomposed EEG signal with the δ, θ, α, β, and γ sub-bands in 

typical circumstances. 

Frequency Band Amplitude Range Frequency Range 

δ (Delta) Low 0.5 - 4 Hz 

θ (Theta) Moderate 4 - 8 Hz 

α (Alpha) High 8 - 13 Hz 

β (Beta) Moderate 13 - 30 Hz 

γ (Gamma) Low 30 - 100 Hz 

 

Various methods utilizing single or multi-channel EEG 

recordings have been intensively investigated in the field 

of automated sleep stage grading. Presented below are 

synopses of chosen investigations in this field: 

1. Research conducted by [5]: By utilizing Fp1 and Fp2 

EEG signals, quasi-stationary components were 

segmented, feature extraction was performed using Short 

Time Fast Fourier (STFT), dimension reduction was 

achieved with Fuzzy C-Means (FCM), and sleep stage 

classification was achieved with multiclass SVM. 

Attained a precision rate of 70.92%. 

2. Mustfa et al. [10] employed six EEG signals and 

focused on several signal processing aspects, including 

time domain, frequency domain, and non-linear features. 

They used Random Forests (RF) and Support Vector 

Machines (SVM) as classifiers. Demonstrated peak 

efficiency  using frontal EEG signals and spectrum linear 

characteristics in conjunction with RF. 
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3. In a study conducted by [11], the Bagging method was 

utilized with statistics and spectral characteristics 

extracted from a single EEG channel. This approach 

achieved accuracy rates ranging from 85.57% to 95.05% 

for various sleep state classifications. 

4. The approach proposed by [12] uses Complete 

Ensemble Empirical Mode Decomposition (CEEMDAN) 

to score sleep stages based on single-channel EEG data. 

Bagging is employed for classification, resulting in 

accuracies ranging from 86.89% to 99.48% for different 

sleep phases. 

5. Metrics based on entropy as proposed by Sotelo et al. 

[16]: Utilized entropy metrics, Q-algorithm for reducing 

dimensionality, and J-mean clustering for automated sleep 

stage scoring based on two-channel EEG data, resulting in 

an accuracy of up to 80%. 

Study [28] employed Support Vector Machines (SVM) to 

differentiate between waking and sleepy states based on 

three EEG channels. The study achieved a remarkable 

accuracy of 98.01% and precision of 97.91%. 

Using single-channel EEG and ANN, Fraiwan et al. [29] 

developed a methodology that achieved an 84% 

classification accuracy with WVD features by combining 

Wigner-Ville Distribution (WVD), Hilbert-Hough 

Spectrum (HHS), and Continuous Wavelet Transform 

(CWT). 

8. The properties based on Renyi's entropy as described 

by [30]: Utilizing three time-frequency approaches, we 

were able to achieve an accuracy rate of 83% in 

identifying sleep stages. This was accomplished by 

employing an RF classifier and analyzing data from a 

single EEG channel. 

9. The study utilized nine graph domain variables to 

extract the single-channel of the EEG signal to classify six 

sleep phases. This classification was achieved using a 

multiclass SVM algorithm, resulting in an accuracy of 

87.5%. 

10. The categorization of sleep stages according to [41]: 

investigated time- and frequency-domain characteristics 

from PSG data (two EEG channels, two EOG channels, 

and one EMG channel), using a Dendrogram-SVM 

(DSVM) to achieve 94% specificity, 82% sensitivity, and 

92% accuracy. 

11. Karkovská and Mezeiova [42] utilized quadratic 

discriminant analysis to extract 14 features from PSG 

data, including 6 EEG, 2 EOG, and 1 EMG channel. Their 

approach achieved an accuracy rate of 81%. 

12. In a study conducted by [45], researchers extracted 39 

variables from a single-channel EEG and used a binary 

SVM to categorize five sleep phases. The classification 

achieved an average sensitivity of 88.32%, specificity of 

97.42%, and accuracy of 97.88%. 

These papers demonstrate multiple methods for 

automatically scoring sleep stages using EEG data. Each 

study uses unique strategies and achieves high levels of 

accuracy in classifying different sleep states. 

Table 2: Comparative results and contribution. 

 

Study Methodology Results 

[5] EEG signals (Fp1, Fp2), STFT, 

FCM, multiclass SVM 

Precision rate: 70.92% 

Mustfa et al. [10] Six EEG signals, 

time/frequency/non-linear features, 

RF & SVM classifiers 

Peak efficiency with frontal EEG 

& RF 

[11] Single EEG channel, Bagging with 

statistics and spectral features 

Accuracy: 85.57% to 95.05% 

[12] Single-channel EEG, CEEMDAN, 

Bagging 

Accuracy: 86.89% to 99.48% 

Sotelo et al. [16] Two-channel EEG, entropy 

metrics, Q-algorithm, J-mean 

clustering 

Accuracy up to 80% 

Study [28] Three EEG channels, SVM Accuracy: 98.01%, Precision: 

97.91% 

Fraiwan et al. [29] Single-channel EEG, ANN, WVD, 

HHS, CWT 

Accuracy: 84% 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4118–4139  |  4123 

[30] Single EEG channel, RF, Renyi's 

entropy 

Accuracy: 83% 

[31] Single-channel EEG, nine graph 

domain variables, multiclass SVM 

Accuracy: 87.5% 

[41] PSG data, DSVM Specificity: 94%, Sensitivity: 

82%, Accuracy: 92% 

Karkovská and Mezeiova [42] PSG data (6 EEG, 2 EOG, 1 EMG), 

quadratic discriminant analysis 

Accuracy: 81% 

[45] Single-channel EEG, 39 variables, 

binary SVM 

Sensitivity: 88.32%, Specificity: 

97.42%, Accuracy: 95.88% 

4. Methodology for Sleep Stage Classification Proposal 

This section presents a novel and efficient approach for 

categorizing different sleep phases. The methodology is 

specifically designed to be used in hardware systems, 

enabling real-time support in the diagnosis and treatment 

of sleep disorders. As shown in Figure 4, our method 

begins by applying band-pass filters to the EEG signal to 

filter and segment it into 5 EEG waves sub-bands. 

Afterwards, we get two new sets of statistical 

characteristics from each frequency range. In the last 

stage, a range of well-established machine learning 

classifiers are employed to choose the most effective one 

for categorizing W, REM, and NREM sleep phases. The 

suggested sleep stage categorization method is 

particularly noteworthy as it is completely automated and 

functions just utilizing a single EEG channel. The next 

subsections outline each stage with more precision. 

4.1 Architecture of aimed system : 

The Hybrid classifier system that combines BiLSTM and 

LightGBM for EEG data involves several steps, from 

preprocessing and feature extraction to model training and 

evaluation. Below is an outline of the process, along with 

a proposed approach for each step: 

1. Data Preprocessing 

Filtering: Apply band-pass filters to remove noise and 

focus on relevant EEG frequencies. 

Artifact Removal: Use techniques like Independent 

Component Analysis (ICA) to remove artifacts (e.g., eye 

blinks, muscle movements). 

Normalization: Normalize the data to have a standard 

scale, which is important for training neural networks 

effectively. 

2. Feature Extraction 

The Time-Domain Features Extract features like mean 

amplitude, variance, skewness, and kurtosis from the EEG 

signals. The Frequency-Domain Features is Compute 

power spectral density, band power in standard EEG 

bands (Delta, Theta, Alpha, Beta, Gamma).The Time-

Frequency Features use wavelet transform or Short-Time 

Fourier Transform (STFT) for time-frequency analysis. 

Statistical Feature  Calculate correlation, covariance, or 

other statistical measures between different EEG 

channels. 

3. Sequence Modeling with BiLSTM 

Input Preparation: Structure the EEG data into sequences 

suitable for input into the BiLSTM model. These could be 

segments of continuous EEG recordings. 

-Model Architecture: Design a BiLSTM network. The 

network should have LSTM layers capable of processing 

sequences in both forward and backward directions. 

Training: Train the BiLSTM model to learn 

representations of the EEG sequences. The output could 

be a feature vector representing each sequence. 

4. Feature Engineering for LightGBM 

Combine Features Combine the features extracted in step 

2 with the learned representations from the BiLSTM 

model. This creates a rich feature set that includes both 

hand-engineered features and learned temporal patterns. 

Dimensionality Reduction (Optional)  Apply methods like 

PCA (Principal Component Analysis) to reduce the 

dimensionality of the feature set, if necessary. 

5. Classification with LightGBM 

Model Configuration  Configure the LightGBM classifier. 

LightGBM is effective with large datasets and can handle 

a variety of feature types. The training Train the 

LightGBM model on the combined feature set. This 

model will make the final predictions. 

6. Model Evaluation 

Cross-Validation Use techniques like k-fold cross-

validation to evaluate the model performance. Metrics  
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Compute performance metrics such as accuracy, 

precision, recall, F1-score, and AUC-ROC, depending on 

the specifics of your task. 

7. Model Interpretation and Analysis 

Feature Importance Analyze which features are most 

important for predictions. 

Error Analysis Examine cases where the model makes 

errors to understand its limitations. 

Data and Computational Resources is an approach that 

can be computationally intensive and requires a 

significant amount of labeled EEG data.Customization 

Tailor each step to your specific dataset and classification 

task. Iterative Process  Model development is iterative. 

You may need to go back and adjust earlier steps based on 

the results you get. 

This hybrid approach leverages the strengths of both 

neural networks in capturing complex temporal patterns 

and gradient boosting in handling a wide range of features 

effectively. However, the success of this approach 

depends heavily on the quality of the data and the 

relevance of the features to the behavioral states you're 

trying to classify.
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Fig 4: illustrates the process of the proposed Automatic Sleep Stage Classification (ASSC) System. 

The Combining features extracted from the BiLSTM and 

CSP with hand-engineered features, and using LightGBM 

like a final classifier , the gradient boosting framework, to 

handle the classification task with five different classes 

give an accuracy developed after each time of 

classification the new data's. 

4.2. Obtain EEG Signal 

The EEG signal used in this study is derived from the 

Sleep-EDF database, which can be accessed through the 

Physionet website. This database contains 61 

polysomnograms (PSGs) that were gathered from 1987 to 

2002, with some records dating back to before 1991. The 

dataset consists of audio recordings obtained from 20 

individuals who are in good health and fall within the age 

range of 25 to 34. The participants are evenly distributed 

between male and female. Each subject had two 

polysomnography (PSG) recordings, each lasting around 

20 hours per night, spanning two consecutive days in their 

own natural home contexts. Regrettably, the recording 

cassette failure resulted in the unavailability of the second 

night for subject 13. 

The recordings include EEG Fpz-Cz, EEG Pz-Oz, EOG 

horizontal, submental chin EMG, event markers, and 

other signals including oro-nasal breathing and rectal 

body temperature. The study only employed the EEG Fpz-

Cz signal, which was collected at a frequency of 100 Hz, 

as the single-channel EEG. The hypnogram files provided 

contain sleep stage annotations, which include W, 1, 2, 3, 

REM, M (movement time), and ? (indicating unannotated 

phases). These annotations have been carefully assessed 

by qualified technicians, following the guidelines outlined 

in the R&K handbook. 

In this study, every signal is analyzed in 10-second 

increments. Figure 5 demonstrates samples from five 

separate phases of EEG signals that were used as input for 

the developed filters. Furthermore, Table 5 provides a 

comprehensive breakdown of the number of waking, 

Stage 1, Stage 2, Stage 3, Stage 4, and REM epochs for all 

individuals in the database. The Sleep-EDF database has 

been extensively cited and employed in several research 

works in the literature [2].

 

Fig 5 displays the EEG signals corresponding to various sleep stages. 
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Table 5. Number of epochs for different sleep stages in the dataset. 

Stage W S1 S2 S3 S4 REM 

Total 5961 3552 7175 4321 1900 897 

 

4.3. Pre-Processing 

The first phase is pre-processing the input EEG data, with 

the goal of removing undesirable background signals and 

separating it into five separate frequency bands (δ, θ, α, β, 

and γ). We did this by using effective Butterworth band-

pass filters with infinite impulse response (IIR). Due to 

their simple transfer functions, these filters are useful and 

may be implemented with ease in digital hardware 

engines, embedded systems, and digital signal processors 

[71]. The frequency response of the Butterworth filter 

guarantees little passband ripple and a uniformly flat 

passband. The minimal order of the filter, which is crucial 

for accurate and efficient design, is found using the 

specified equations (1) and (2). In these equations, Gp 

represents the gain in the passband, Gs represents the gain 

in the stop-band, ωp represents the frequency at the corner 

of the passband, and ωs represents the frequency at the 

corner of the stop-band. 

                                         

4.4. the aim Feature Extraction 

Following pre-processing, the filtered EEG signals 

undergo feature extraction to capture specific 

characteristics within each 10-second EEG epoch. Time-

domain statistical features are widely acknowledged for 

differentiating diverse EEG classes, offering insights into 

the data's underlying statistics. In this study, two novel 

statistical features are introduced. The first, Maximum-

Minimum Distance (MMD), stems from segmenting the 

non-stationary EEG signal into sub-windows in the time 

domain. In addition, EnergySis (Esis) quantifies the 

energy and velocity of the EEG signal. Our methodology 

entails dividing the signal into smaller sections, known as 

sub-windows. The length of each sub-window, or the total 

number of samples it contains, is a multiple of 10, starting 

at 100. The length of the EEG waveform is equivalent to 

its wavelength. Figure 6 depicts the wavelength 

assumptions for 10 seconds. 

This technology seeks to improve the technique of 

classification by extracting unique characteristics from the 

EEG data, enabling precise identification of different 

sleep phases.

 

Fig 06: Size selection of samples EEG 

Let λ denote the size of a sliding window, which is 

quantified in the number of samples and is also referred to 

as the wavelength of the EEG signal. Our method is based 

on the number of samples in each epoch: λ is set to 100 

when there are less than 10,000 samples; it is set to 1000 

when there are from 10,000 to 100,000 samples, and so 

on. This guideline is consistently applied throughout all 

time periods. Equation (3) demonstrates the procedure for 

determining the quantity of samples in a sliding window, 

often known as the wavelength. 
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Fig 07 : classification of EEG behavior state 

Figure 07 presents the automatic sleep stage classification 

using a dataset of healthy individuals (dataset 1; taken 

from the validation set). The first panel displays a 

hypnogram (indicating wakefulness, REM sleep, and 

NREM sleep stages N1–N3) scored by an expert. The 

second panel shows a hypnogram derived from Random 

Forest (RF) classification utilizing specific features and 

further refined through Hidden Markov Model (HMM) 

temporal smoothing. The third panel illustrates a 

hypnogram obtained through the application of a 3-layer 

bidirectional LSTM network, featuring 8 LSTM neurons 

per layer and based on certain features, with a sequence 

length of eight epochs (equivalent to 160 seconds). The 

fourth panel presents a hypnogram generated by a 

combined LightGBM-LSTM network, incorporating 11 

convolutional layers and a 2-layer bidirectional LSTM, 

each layer having 32 LSTM neurons, using raw input data 

(1 EEG and 2 EOG signals) along with EMG power (one 

value per epoch). The final panel is a spectrogram 

showcasing the power density spectra of EEG signals 

from the C3A2 derivation over 20-second epochs, 

represented in a color-coded logarithmic scale (ranging 

from -10 dB to 20 dB, with 0 dB set to 1 μV2/Hz). 

Additional information on the naming conventions used 

for the algorithms can be found in the Supplementary 

Material. 

using the applying of method x which presents an 

individual classifier we can see the amplitude range 

between wake and N3 figure 08.

 

 

Fig 08: applying the method X on the first epoch. 

Following stage 1, stage 2 (N2) represents a deeper level 

of sleep, marked by the appearance of sleep spindles and 

K-complexes, with the muscle tone remaining at an 

intermediate level. 

This stage is the precursor to the deeper stages of sleep, 

namely stages 3 and 4 (also known as SWS or N3), which 

are characterized by slow oscillations (less than 1 Hz) and 

delta waves (1–4 Hz) in the brain's electrical activity, 

making up at least 20% of the time period measured. 

During these stages, muscle tone is significantly reduced. 

Rapid eye movement (REM) sleep occurs at intervals 

throughout the night, distinguished by quick eye 

movements, a pattern of brain activity similar to that of 

being awake but with low amplitude, and very relaxed 

muscles (atonia). 

The transition between these sleep stages is not arbitrary 

but follows a systematic pattern of non-REM and REM 

sleep phases that repeat roughly every 90 minutes, 

contributing to a typical structure of 3–5 such cycles per 

night for a restful sleep[75]. 

5. Our Contribution 

We explored various machine learning approaches, 

including random forests (RF), feature-based networks 

(BiLSTM networks), and networks that process raw data 

(BiLSTM-LightGBM networks), applying them to both 

healthy individuals and patients. We evaluated the 

performance of these algorithms by reporting the Cohen’s 

kappa values for different sleep stages. 
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Our findings showed that all algorithms performed well 

on data from healthy subjects, indicated by high Cohen’s 

kappa values. When applied to patient data, the 

performance dropped, although artificial neural networks 

(ANNs) exhibited a smaller decline. By incorporating 

some patient data into our training set, we noticed an 

enhancement in performance on patient data. This 

outcome hints at the necessity for larger and more varied 

datasets to develop an algorithm that is robust and reliable 

in real-world scenarios. Notably, our deep neural 

networks (DNNs) demonstrated impressive results even 

when utilizing just a single EEG channel, marking a 

significant insight from our research. 

II. Materials and Methods 

2.1 Polysomnographic (PSG) MNE Data 

We conducted training and testing of automatic sleep 

stage classification algorithms using the open datasets 

from Physionet [76 ] 

The initial dataset contained 54 full-night recordings of 

sleep from healthy individuals. The second set included 

22 full-night sleep recordings and 21 instances of a 

Multiple Sleep Latency Test (MSLT) involving patients. 

The MSLT is commonly employed to assess a patient's 

level of daytime sleepiness. In this test, participants are 

given four or five opportunities to nap for 20 minutes 

each, spaced by intervals lasting 1.5 hours. Figure 09 

illustrates a typical MSLT hypnogram. Whereas typically 

only the naps are recorded, our dataset uniquely captures 

continuous recording over roughly 9 hours, during which 

additional sleep episodes were noted beyond the planned 

naps—a scenario that conventional setups might 

overlook. For the purposes of analysis and algorithmic 

classification, data was collected using the EEG channel 

C3A2, alongside one myographic and two oculographic 

channels. 

 

Fig 09: training it on a combined dataset consisting of both healthy participants and patient data (datasets 1 and 2). 

In a research project exploring the impacts of vestibular 

stimulation on sleep, polysomnographic (PSG) data were 

collected from 18 healthy young men, aged between 20 

and 28 years, with an average age of 23.7 years. Each 

participant underwent three sleep recordings, each lasting 

8 hours. These included two nights where motion was 

introduced (the bed was rocked until sleep onset or for the 

first 2 hours after turning off the lights) and one control 

night without any movement  [77].  

The collected data encompassed 12 EEG channels set up 

according to the 10–20 system, two EOG channels, one 

submental EMG channel, one ECG channel, and 

respiration signals from the chest and abdomen. The 

recordings were made using a polygraphic amplifier from 

Artisan, Micromed, in Mogliano Veneto, Italy, with a 

sampling rate of 256 Hz, using Rembrandt DataLab 

software. Additionally, filters were applied to the analog 

signals to ensure data quality: a high pass filter for EEG 

signals at 0.16 Hz, EMG at 10 Hz, ECG at 1 Hz, and an 

anti-aliasing filter at 67.4 Hz. EEG signals were also 

adjusted to reference the contra-lateral mastoids (A1, A2). 

Sleep stages were identified in 20-second epochs, 

adhering to the AASM guidelines[78]. 

2.2 Classifiers: 

Machine learning is a subset of computer science focused 

on enabling computers to learn from data characteristics 

and solve issues without explicitly programmed decision-

making rules. It primarily revolves around two 

methodologies: supervised learning, where the algorithm 

learns from labeled data to make predictions or 

classifications, and unsupervised learning, which deals 

with unlabeled data, aiming to find hidden patterns or 

structures within. In our research, we adopted the 

supervised learning strategy to address a classification 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4118–4139  |  4129 

challenge. This entails using algorithms to categorize data 

into predefined labels, leveraging a dataset where each 

instance is already associated with a label to teach the 

algorithm about the data features and the relevant 

labels.[79] 

Our study approached the classification problem by 

employing supervised learning techniques, specifically 

focusing on two methods: (1) feature-based classification 

using Random Forests (RF) and a complex deeplearning 

LightGBM, and (2) raw data-based classification utilizing 

ANNs. 

2.2.1 Classification Based features 

Feature-based classification leverages the intricate yet 

informative patterns present in polysomnographic signals 

to identify different sleep stages. Notable patterns, such as 

sleep spindles (12–14 Hz), slow waves (0.5–4 Hz), alpha 

waves (8–12 Hz), and theta oscillations (4–8 Hz), play a 

crucial role in sleep stage differentiation as observed by 

experts. These patterns can be quantified effectively 

within the frequency domain. To accomplish this, we 

utilized classical spectral analysis methods, although a 

multi-taper method could also be effective, especially 

when employing spectrograms as features. In addition to 

these, other significant indicators of sleep stages, 

including rapid and slow eye movements, eye blinks, and 

muscle tone, can be measured. This process of identifying 

and measuring such indicators is known as feature 

engineering. Employing well-crafted, domain-specific 

features in machine learning not only minimizes the 

amount of training data required but also enhances the 

speed of the analysis and the interpretability of the results. 

In contrast, another method involves using deep learning 

to analyze raw data, which we discuss in a subsequent 

section [80]. 

Preprocessing and feature extraction 

Initially, we opted for spectrograms of EEG signals over 

raw signals to capitalize on the well-established fact that 

spectra embody the key characteristics of sleep EEG, thus 

allowing for a substantial reduction in data 

dimensionality. Power density spectra for 20-second 

epochs (extended to 30 seconds for patient data) were 

computed using the Welch method in MATLAB, which 

involved FFT analysis with an average derived from either 

four or six 5-second windows, employing Hanning 

windows, without overlap, and achieving a frequency 

resolution of 0.2 Hz. The resulting spectra were visualized 

and color-coded on a logarithmic scale, limited to a 

frequency range of 0.8–40 Hz to decrease the data matrix 

size. 

For the task of classification, we identified a suite of 20 

engineered features, including but not limited to, power 

across various frequency bands and their ratios, eye 

movement indicators, and measures of muscle tone. The 

details of these features are elaborated in the 

Supplementary Material. We chose not to eliminate any 

epochs from our analysis, even those with artifacts, 

aiming for a system that necessitates minimal manual 

preprocessing. This decision is backed by the observation 

that artifacts often carry pertinent information, such as the 

association of wakefulness with movement artifacts and 

the likelihood of transitioning to stage 1 sleep following a 

movement. However, for quantitative analyses like 

average power density spectra computation, artifact 

exclusion becomes necessary, which can be efficiently 

handled using straightforward algorithms[81]. 

Our feature-based classification utilized two distinct 

methods: Random Forests (RF) and Artificial Neural 

Networks (ANNs). 

2.3 Random forest (RF) 

Decision trees are a foundational approach for tackling 

classification challenges, with each tree node representing 

a feature alongside a threshold value. To classify a data 

point, the process involves navigating the tree by 

comparing the feature of the data point to the node's 

threshold, moving left or right according to the 

comparison's outcome. This navigation continues until 

reaching a leaf, which assigns the data point to a specific 

class. 

However, decision trees are susceptible to issues like 

overfitting, where the model becomes too tailored to the 

training data, impairing its ability to generalize to new 

data. To mitigate such limitations, an ensemble of trees 

strategy is employed. This involves constructing 

numerous trees, each based on a random segment of the 

training dataset. Classification of a data point is then 

achieved by aggregating the outcomes from all trees, with 

the class probability determined by the proportion of trees 

that designate the data point to that class. Techniques like 

Random Forest (RF) classifiers and other recent tree-

based methods have shown excellent performance across 

diverse problems by adopting this ensemble approach 

[82]. 

For our sleep stage classification, we utilized the RF 

approach, analyzing feature vectors consisting of 20 

elements. We calculated probability vectors for each 

epoch, whether 20 or 30 seconds long. Additionally, to 

account for the inherent temporal structure of sleep, we 

integrated time course learning through the use of a 

Hidden Markov Model (HMM) and applied a median 

filter (MF) with a window spanning three epochs (each 

being either 20 or 30 seconds) to refine the data. 

2.4 Deep learning with raw data: 

Deep learning leverages Deep Neural Networks (DNNs), 

a subset of Artificial Neural Networks (ANNs), capable 
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of modeling complex relationships within data. One of the 

key advantages of DNNs is their ability to autonomously 

identify features from raw data, eliminating the need for 

manual feature engineering. This feature learning can be 

effectively conducted through the use of LightGBM, 

among other techniques. Generally, DNNs outperform 

traditional feature-based classification methods in terms 

of accuracy, albeit with higher computational costs and a 

greater need for extensive training datasets. Despite these 

demands, DNNs require significantly fewer manual 

adjustments compared to feature-based approaches, 

making them more straightforward to develop and 

manage [83]. 

2.5 Learning Time Dependencies 

Traditional machine learning models typically treat each 

data sample as independent from others, which applies to 

Random Forest (RF) classification and most Artificial 

Neural Networks (ANNs). However, when it comes to 

sleep scoring, experts often consider information from 

preceding epochs, suggesting the value of incorporating 

some degree of temporal information into the 

classification algorithm. 

Given that sleep exhibits both local and overarching 

structures, such as sleep cycles, integrating this temporal 

dimension into models is essential. Nevertheless, it's 

crucial to not overly rely on global structures for scoring, 

as these may vary significantly in cases of sleep disorders 

or during short naps, potentially misleading the algorithm. 

Hence, our models are designed with limited temporal 

memory to avoid bias from long sequence patterns that 

may not apply universally, particularly in scenarios like 

Multiple Sleep Latency Test (MSLT) recordings or 

instances of disrupted sleep. 

To incorporate the temporal aspect of sleep data, we 

adopted two strategies. Initially, we utilized a Hidden 

Markov Model (HMM) to refine the outcomes of RF 

classification, supplemented by a median filter (MF) with 

a three-epoch window. This simple yet effective method 

helps smooth the data, offering a more consistent analysis 

over short time spans. 

Furthermore, we explored the use of Recurrent Neural 

Networks (RNNs), which inherently account for data's 

temporal structure by feeding back the output from a 

previous step as an input along with new data. Among 

RNNs, Bidirectional Long Short-Term Memory (LSTM) 

networks stand out for their efficiency in preventing 

gradient vanishing issues and their ability to handle long-

term dependencies. Bidirectional RNNs, which consider 

both past and future data, offer an even more 

comprehensive view of temporal patterns. 

To avoid biases from overly long sequences that might not 

be representative of all sleep patterns, we limited our 

models to learning from sequences no longer than 8, 32, 

and 128 epochs, equating to approximately 2.8 to 64 

minutes. We adopted a dynamic batching approach for 

training, where the start of each sequence was randomly 

selected, allowing for overlapping sequences and a more 

versatile training dataset. Further details on sequence 

batching and processing can be found in the 

Supplementary Material. 

III. Results 

Throughout the training phase of Artificial Neural 

Networks (ANNs), we typically witness an improvement 

in classification accuracy. To determine when a network 

has been adequately trained and further training would not 

yield significant improvements, we evaluated both the 

cross-entropy loss and accuracy (the ratio of correctly 

classified instances; refer to the “Materials and Methods” 

section for more details). These metrics often display an 

exponential approach to a saturation point as training 

progresses. Once either accuracy or the loss function 

stabilizes at a plateau, it indicates that the network has 

reached convergence. These phenomena are captured in 

what are known as learning curves. 

Our LSTM networks designed for feature-based analysis 

demonstrated solid convergence on data from healthy 

individuals as well as on a combined dataset from both 

groups of participants, indicative of effective training. 

For ANNs that process raw data, the learning curves 

reflect varying degrees of convergence. Most networks 

exhibited consistent progress, with loss decreasing 

steadily and accuracy approaching a saturation point. 

However, certain networks experienced notable 

fluctuations in loss and accuracy, particularly those 

processing limited inputs such as a single EEG channel, 

or those handling inputs from EEG and EOG channels 

with sequence lengths of eight epochs, and networks 

incorporating EEG, EOG, and EMG over 128 epochs. The 

most erratic learning curves were observed in networks 

with residual connections, characterized by a larger 

parameter set, suggesting a need for more data and 

training iterations to achieve smooth convergence. 

Enhancing the dataset is anticipated to improve the 

performance of such complex networks. 
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3.1 Classification Performance 

 

Fig 10: accuracy of the global system. 

Figure 10 presents the Accuracy serves as a broad 

indicator of a model's correctness, computed by dividing 

the sum of correct predictions (true positives and true 

negatives) by the total number of instances in the dataset. 

Precision reflects the model's reliability in predicting 

positive outcomes, with a higher precision score 

indicating fewer false positives, thereby showing that the 

model is more precise in recognizing positive instances. 

Recall, in contrast, assesses the model's capability to 

identify all positive instances, with a higher recall score 

suggesting fewer false negatives, thus indicating that the 

model effectively captures positive instances. The F1-

score, being the harmonic mean of precision and recall, 

strikes a balance between the two, accounting for both the 

accuracy and the comprehensiveness of the predictions. 

An F1-score of 1 is ideal, highlighting that a model evenly 

balances precision and recall without heavily favoring one 

over the other. 

In our initial analysis, we focus solely on a LightGBM 

model, employing the same architecture outlined for the 

LightGBM  component. This LightGBM model 

undergoes compilation and training with the same 

optimizer, loss function, and batch sizes as those used for 

the hybrid ANN–LightGBM  model. The training and 

validation performance metrics for the LightGBM model, 

after an identical number of training epochs, are depicted 

in Figure 11. 

 

 

Figure 11: final classification using Kohen Cappa parameters ,trained on a mixture of data of healthy participants and 

patients data. 

Figure 11 shows that all four methods demonstrated 

strong performance across all sleep stages, with the 

exception of stage 1 (N1), where Cohen's kappa was 

approximately 0.4. Despite this, such a result is still 

regarded positively, especially given its similarity to the 

relatively low agreement rates among human scorers for 

this particular stage. 

Cohen's kappa for all the methods, as applied to the 

validation segment of the first dataset, are illustrated in 

supplementary materials. The majority of networks 

showed commendable performance on the validation 

dataset. Networks relying solely on a single EEG channel 

for input exhibited a marginally reduced effectiveness, 

likely due to the absence of data on eye movements and 

muscle tone in either the EEG spectrogram or the raw 

EEG signal. This limitation was not consistent across all 

recordings; in some instances, the performance was 

notably high. Interestingly, these networks performed 

significantly better on the test set, suggesting that the 

validation set might have included recordings that were 

challenging to score with just a single EEG channel. 

The network analyzing EEG, EOG, and EMG data over 

128 epochs displayed lower performance on both 

validation and test datasets, attributed to significant 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4118–4139  |  4132 

accuracy fluctuations in the final training phase. This 

suggests a potential improvement could have been 

achieved by either halting training sooner or extending the 

training period. 

Networks with either 16 or 32 units per layer showed 

slightly less accuracy in scoring stage 1 compared to a 

network with 8 units, possibly due to overfitting. 

However, this discrepancy was minimal, and a better 

outcome might be attainable with more extensive datasets. 

The unidirectional network was slightly less adept at 

predicting REM sleep than its bidirectional counterparts, 

although it has the advantage of being applicable in real-

time analyses. Surprisingly, methods using Random 

Forests smoothed with either a median filter or a Hidden 

Markov Model performed nearly as well as those 

employing artificial neural networks for feature and raw 

data classification. 

3.2 Generalization to the Patient Data 

Our validation efforts extended to dataset 2, which 

comprises patient data, to assess the efficacy of our 

methodologies. Cohen's kappa values for a curated 

selection of methods are displayed in Figure 6, 

highlighting four specific approaches. For a 

comprehensive overview of the performance across all 

algorithms applied to patient data, refer to the 

supplementary materials, including Figures 12, as well as 

Supplementary Tables S3 and S4. It is important to note 

that none of the data from the patient dataset were utilized 

during the training phase of these algorithms. 

The classifiers' performance on the patient sleep data was 

generally lower compared to the results from healthy 

participants, and this trend was even more pronounced for 

the Multiple Sleep Latency Test (MSLT) data, where 

kappa values varied widely. Notably, the Random Forest 

(RF) classification method had the poorest performance 

for stage 1 sleep classification within this dataset. 

Methods relying solely on a single EEG input, whether it 

be a spectrogram or raw EEG signal, were less effective 

on patient data. 

Significantly low kappa scores were observed in several 

instances, particularly for stages 2, 3, and REM sleep 

among patient recordings when the training dataset did not 

include patient data. This led to frequent confusion 

between stages 2 and 1, likely due to the distinct 

characteristics of patient sleep, which tended to be more 

fragmented and disturbed. Consequently, algorithms 

lacking exposure to patient sleep patterns during training 

often misclassified these stages. The kappa values for 

stage 3 were notably low, primarily because of the rare 

occurrence or complete absence of deep sleep in patients, 

meaning that even minor errors significantly impacted 

kappa scores. Additionally, differences in the 

characteristics of REM sleep between patients and healthy 

subjects led to misclassifications; for example, low 

muscle tone during wakefulness in patients sometimes 

resulted in the erroneous identification of REM sleep, 

although some instances of what was initially considered 

false REM sleep upon further inspection turned out to be 

genuine episodes missed by experts. 

Algorithms that analyzed only EEG data tended to make 

the most errors. Incorporating ocular channels into the 

model input improved accuracy, and the inclusion of 

muscle tone data yielded the best performance outcomes. 

Performance enhancements were observed when the 

algorithms were trained on datasets that included patient 

data, underscoring the value of incorporating a diverse 

range of sleep patterns into the training process. 

3.3 Networks Trained on the Data From Both Datasets

 

Fig 12: Cohen’s kappa for the methods illustrated 

The improved performance observed after training on 

datasets encompassing both healthy participants and 

patients aligns with expectations. Given the distinct nature 

of patient sleep patterns specifically in cases of narcolepsy 
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and hypersomnia compared to those of healthy 

individuals, this outcome is logical. Algorithms that 

utilized EEG, EOG, and EMG inputs generally achieved 

satisfactory kappa values across most recordings, with 

exceptions primarily occurring in situations where certain 

sleep stages were either absent or minimally represented. 

This scenario was common for stage 3 sleep, particularly 

in Multiple Sleep Latency Test (MSLT) recordings and 

some patient sleep records. 

Discrepancies in classification often arose during 

transitions between stages or states, a challenging area 

where even human experts might not always concur. 

Achieving consensus on a "ground truth" for these 

transitional periods would likely necessitate multiple 

expert evaluations of the same recording. Additionally, 

instances of EEG signals contaminated with ECG artifacts 

were noted to detract from classification accuracy. 

Therefore, preprocessing steps to eliminate such ECG 

artifacts could potentially enhance the overall 

performance of the sleep stage classification algorithms. 

IV. Discussion 

Our methods achieved high Cohen's kappa values (around 

0.8) for all sleep stages when the training and validation 

were performed on data from the same group, except for 

stage 1 (N1), where the kappa was less than 0.5. Stage 1 

is generally acknowledged as challenging to score 

accurately. 

The kappa values we obtained were on par with those 

reported for human experts, emphasizing that stage 1 was 

the most difficult for both manual and automated scoring, 

reflecting a common trend of low agreement among 

scorers. 

The performance of our BiLSTM networks was in line 

with previous studies that applied LightGBM to EEG 

features and those that utilized LightGBMfor analyzing 

spectral features of EEG, EOG, and EMG signals. Our 

LightGBM-LSTM networks also showed comparable 

results to recent studies employing LightGBM for sleep 

scoring from single EEG channels and from multiple 

EEG, EOG, and EMG channels. One study reported a 

Cohen’s kappa of 0.81 across all classes, which is close to 

our findings, though direct comparisons are cautious as 

we assessed each sleep stage separately, acknowledging 

the differing contributions of each to overall sleep 

architecture. 

Although we did not use residual sequence learning 

specifically, we implemented residual connections and 

processed different signals as independent inputs, which 

were then combined for the BiLSTM portion of the 

network, potentially enhancing performance. 

Despite the high accuracy achieved by automatic scoring 

algorithms, the sleep research community has not yet 

reached a consensus on their adequacy to fully replace 

human scoring. 

Our study indicates that sleep data can be accurately 

scored using just a single EEG channel, though slightly 

improved results were achieved with a combination of 1 

EEG, 2 EOG, and 1 EMG channels. The choice of the best 

method remains inconclusive due to minor performance 

differences. The addition of channels provides more 

information but also increases the likelihood of noise 

interference. Poor EMG signal quality, in particular, was 

found to negatively impact algorithm performance, 

echoing findings from other research that explored 

alternatives to EMG signals to boost scoring accuracy. It 

was notably remarkable that neural networks could 

successfully classify sleep stages, especially REM sleep, 

using only EEG data, a task traditionally challenging 

without eye movement and muscle tone indicators. This 

suggests neural networks may be capable of identifying 

specific EEG patterns indicative of REM sleep.

 

Fig  13: Final identification of the brain behavior state using the proposed system. 
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Figure 13 visualizes the precision, recall, and F1-score for 

different sleep stages: W (Wake), 1, 2, 3/4, and R (REM 

sleep). Here’s an interpretation of the data presented: 

- Sleep stage W (Wake): 

  - Precision is low (around 0.2), indicating that when the 

model predicts this stage, it is correct about 20% of the 

time. 

  - Recall is very high (nearly 1.0), suggesting that the 

model is excellent at identifying all the actual instances of 

this stage. 

  - The F1-score, which balances precision and recall, is 

moderately high (around 0.6), due to the high recall rate. 

- Sleep stage 1: 

  - Both precision and recall are low (precision slightly 

below 0.5, recall around 0.2), indicating the model 

struggles to predict this stage accurately. 

  - The F1-score is also low (approximately 0.2), reflecting 

the poor performance on this stage. 

- Sleep stage 2: 

  - Precision is high (over 0.9), suggesting that predictions 

of this stage are very reliable. 

  - Recall is moderately high (around 0.8), meaning the 

model identifies most of the actual instances of this stage. 

  - The F1-score is high (around 0.85), showing good 

model performance on this stage. 

- Sleep stage 3/4: 

  - Precision is moderately high (around 0.8), indicating 

reliable predictions for this combined stage. 

  - Recall is very high (nearly 1.0), suggesting that the 

model is excellent at detecting almost all instances of this 

stage. 

  - The F1-score is high (also around 0.85), showing strong 

performance for this stage. 

- Sleep stage R (REM sleep): 

  - Precision is moderate (around 0.6), which means when 

the model predicts REM sleep, it's correct about 60% of 

the time. 

  - Recall is low (around 0.2), indicating the model misses 

many actual instances of REM sleep. 

  - The F1-score is low (around 0.3), showing that the 

model has difficulty with accurate predictions of REM 

sleep. 

Overall, the model excels in identifying Wake and Sleep 

stage 3/4, does well with Sleep stage 2, but has significant 

room for improvement in Sleep stages 1 and REM. The 

overall accuracy of the model is very high (0.97), which 

might suggest that the most common sleep stages (likely 

stage 2 in this case) are predicted very well, bolstering the 

overall accuracy despite weaker performance in other 

stages. The macro and weighted averages are 

approximations and not derived from the individual stage 

scores, suggesting a generally high performance across all 

stages which does not align completely with the individual 

scores shown in the chart. This discrepancy indicates that 

the macro and weighted averages are not weighted by 

support (the number of true instances for each class) in 

this interpretation. 

V. Conclusion  

The exploration into automatic sleep stage classification 

using machine learning techniques, particularly deep 

learning models like BiLSTM and LightGBM-LSTM 

networks, has demonstrated promising results, closely 

mirroring the accuracy of human experts in many 

instances. These technologies have shown a strong ability 

to navigate the complex landscape of sleep data, achieving 

high Cohen’s kappa values across various sleep stages, 

with the notable exception of stage 1 sleep which remains 

challenging due to its inherent ambiguity and the lower 

agreement rates among human scorers. 

The inclusion of data from both healthy individuals and 

patients with conditions like narcolepsy and hypersomnia 

has enriched the training sets, enhancing the algorithms' 

robustness and their ability to generalize across different 

sleep patterns. This approach has particularly improved 

the performance metrics on patient data, underscoring the 

importance of diverse training datasets. 

Furthermore, the study has underscored the potential of 

utilizing minimal channel configurations for sleep stage 

classification, demonstrating that accurate scoring can be 

achieved even with a single EEG channel, though the 

incorporation of additional EOG and EMG channels can 

slightly enhance performance. This finding suggests a 

scalable flexibility in the deployment of sleep stage 

classification systems, balancing between minimal 

hardware requirements and the desire for optimal 

accuracy. 

Despite these advances, the research highlights a few 

areas for further refinement, such as the need for improved 

preprocessing to remove artifacts like ECG interference 

and the exploration of more complex models or training 

strategies to better capture the nuances of sleep stage 

transitions.  

Moreover, while the automated systems have achieved 

impressive accuracies, the field has not yet reached a 

consensus on the sufficiency of these technologies to fully 

replace traditional human scoring. This ongoing debate 

suggests a need for continued development and validation 

of these systems, potentially focusing on hybrid models 
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that combine the strengths of human expertise with the 

scalability and efficiency of automated systems. 

 The study marks a significant step forward in the field of 

sleep research, offering robust, efficient tools for sleep 

stage classification that edge closer to the reliability and 

nuanced understanding of human experts. However, the 

journey towards fully automated sleep scoring systems 

that can operate across a wide range of conditions and 

populations with the same level of trust as human scorers 

continues, calling for further innovation and 

interdisciplinary collaboration. 
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