
 

 

International Journal of 

INTELLIGENT SYSTEMS AND APPLICATIONS IN 
ENGINEERING 

ISSN:2147-67992147-6799                                       www.ijisae.org Original Research Paper 

 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 481–487  |  481 

Detecting Deepfakes: Exploring Machine Learning Models for Audio, 

Video, and Image Analysis 

Nilakshi Jain1, Shwetambari Borade2, Bhavesh Patel3, Vineet Kumar4, Mustansir Godhrawala5, Shubham 

Kolaskar6, Yash Nagare7, Pratham Shah8, Jayan Shah9  

 

Submitted: 13/03/2024    Revised: 24/04/2024     Accepted: 01/05/2024 

Abstract: The rapid evolution of deepfake technology has created substantial hurdles for the detection of altered media. This study 

investigates the field of deepfake detection with an emphasis on the use of machine learning techniques in the fields of image, video, and 

audio analysis. The effectiveness of several machine learning models—Random Forests, Gradient Boosting Machines, Support Vector 

Machines, Neural Networks, and Convolutional Neural Networks, among others—in identifying deepfakes is compared and contrasted. 

The analysis outlines the benefits and drawbacks of each model and offers performance insights derived from real-world case studies and 

research findings. The paper also addresses recent developments in deepfake detection techniques, including ensemble learning approaches 

and ResNet topologies, which present interesting directions for further research and development in the fight against the spread of 

manipulated media. 
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1. Introduction 

Machine learning techniques have advanced at a quick pace, 

revolutionizing several fields, including media manipulation, 

where the advent of deepfake technology has presented notable 

hurdles. Deepfake is the term for the artful, frequently malevolent 

manipulation of audio and visual content using deep learning 

algorithms. Strong detection techniques are desperately needed to 

counteract the negative impacts of deepfake content on society, 

since it is becoming more and more prevalent on the internet. In 

order to counteract the spread of manipulated media, we apply 

machine learning methods to the field of deepfake identification in 

this work. 

Deepfake video and audio detection is a challenging task because 

of the intricate nature of producing extremely realistic forgeries. 

Because conventional techniques frequently fail to differentiate 

between authentic and altered content, improved machine learning 

techniques are being investigated. Researchers have made great 

progress in creating detection systems that can recognize minute 

artifacts suggestive of deepfake manipulation by utilizing deep 

neural networks. These algorithms distinguish between real and 

fake media by examining a variety of characteristics, including 

speech patterns, face expressions, and audiovisual discrepancies. 

Furthermore, deepfake technology has potential repercussions in 

fields like identity theft, cybersecurity, and political propaganda, 

going beyond simple amusement or disinformation. Therefore, it 

is essential to create trustworthy deepfake detection techniques in 

order to protect digital media integrity and maintain public 

confidence in online information. In this work, we provide an 

overview of the most recent machine learning algorithms used in 

deepfake detection, emphasizing their benefits, drawbacks, and 

potential future study areas. By gaining a thorough grasp of these 

strategies, we hope to support the continuous endeavours to 

counter the spread of misleading media in the digital era. 
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2. Literature Survey 

Deepfake technology has developed quickly in recent years, 

making it harder and harder to tell the difference between altered 

and true media. Therefore, the necessity for efficient and 

trustworthy techniques to identify deepfakes in audio, video, and 

picture analysis is increasing. The use of machine learning models 

has shown promise in solving this issue. The present discourse 

aims to conduct a comparative analysis of various machine 

learning models that are utilized in the three domains of audio, 

video, and picture analysis to detect deepfakes. 

Techniques like speech synthesis, voice conversion, and audio 

splicing can be used to construct audio deepfakes. Machine 

learning models can be trained on characteristics taken from the 

audio signal, such as pitch, spectral envelope, and formants, to 

identify audio deepfakes. To lower the dimensionality of the 

feature space, feature selection methods like principal component 

analysis (PCA) and linear discriminant analysis (LDA) can be 

applied. To distinguish between authentic and fraudulent audio, 

supervised machine learning methods like random forests and 

support vector machines (SVM) can be trained on labeled datasets. 

To find anomalies in the audio signal, unsupervised machine 

learning techniques like clustering and anomaly detection can be 

applied. Several successful case studies have demonstrated the 

effectiveness of machine learning models for audio deepfake 

detection.  

Techniques like lip synchronization, motion transfer, and face 

swapping can be used to make video deepfakes. Machine learning 

algorithms are able to assess variables like body motions, face 

expressions, and inconsistencies in the video frames in order to 

detect video deepfakes. To distinguish between authentic and false 

films, supervised machine learning techniques like recurrent neural 

networks (RNN) and convolutional neural networks (CNN) can be 

trained on labeled datasets. The generation of synthetic films and 

the detection of anomalies in the generated frames can also be 

accomplished with unsupervised machine learning methods like 

generative adversarial networks (GAN). Machine learning 

algorithms have proven to be useful for detecting video deepfakes 

in a number of successful case studies.  

Techniques including object removal, face morphing, and image 

editing can be used to construct image deepfakes. Machine 

learning algorithms can examine characteristics like texture, color, 

and form to identify image deepfakes. To find local features in the 

image, feature extraction methods such accelerated robust feature 

(SURF) and scale-invariant feature transform (SIFT) can be 

applied. Using labeled datasets, supervised machine learning 

algorithms, including k-nearest neighbors (KNN) and decision 

trees, can be trained to distinguish between real and fraudulent 

photos. It is also possible to employ unsupervised machine 

learning techniques like autoencoders and clustering to find 

abnormalities in the image characteristics. Machine learning 

algorithms have proven to be useful at detecting image deepfakes 

in a number of successful case studies. 

Robust identification methods are required to stop the spread of 

deepfake news and stop worldwide threats. Through the 

application of state-of-the-art Machine Learning (ML) and Deep 

Learning (DL) techniques, this work proposes a robust deepfake 

picture identification system. Real-time deepfake detection is 

made possible by the [1] method, which uses ResNet18's feature 

vector and SVM classifier to attain an accuracy of 89.5%. 

Convolutional Support Vector Machines (SVM) and K-Nearest 

Neighbors (KNN) are used for classification, Error Level Analysis 

(ELA) is used for pixel-level modification detection, and neural 

networks (CNNs) are employed for feature extraction. In order to 

strengthen the resilience of the model, further research will look 

into other CNN architectures on video datasets and obtain real-

world deepfake datasets. This innovative approach empowers a 

more astute public against potential fake victimization by enabling 

quick image authenticity assessment. 

This [2] analysis explores the evolving landscape of deepfake 

technology and its connection with image forensics. It focuses on 

sophisticated machine learning techniques such as CNNs, GANs, 

and autoencoders, exposing both important obstacles and 

encouraging progress. Although the accuracies of these techniques 

are outstanding, ethical considerations highlight the necessity for 

reliable detection tools. These techniques are useful for 

recognizing picture modifications in addition to detection. 

Evaluation techniques emphasize the significance of a 

comprehensive approach to deepfake difficulties by combining 

subjective judgments and objective evaluations. This report 

highlights the progress made in addressing the challenges posed by 

synthetic media and offers a thorough review of deepfake 

detection. Continual cooperation, ingenuity, and multidisciplinary 

methods are critical in the fight against deepfake usage. 

This paper [3] proposes a neural network-based method to classify 

videos, distinguishing between Deepfake and original content with 

high confidence. Following a review of current algorithms, the 

design of the project is presented, along with the context and 

reasoning behind its use. ResNext CNN is used for frame-level 

feature detection during the model's training on the Celeb-DF 

dataset. The provided performance results show an average 

accuracy of 91% when comparing video frames using LSTM. In 

an effort to slow the transmission of false information via altered 

digital media, the model can be included into a mobile app to 

authenticate media material offline, in light of the alarming surge 

in fake news on social media. 

This paper [4] introduces the Celeb-DF dataset, designed for 

advancing DeepFake detection methods by addressing visual 

quality disparities between existing datasets and real-world 

DeepFake videos. By means of Celeb-DF performance 

evaluations, it highlights the necessity for enhancements in the 

existing detection techniques. Future work will focus on growing 

the dataset and improving the structure and efficiency of the 

synthesis algorithm to produce higher-quality videos. 

Additionally, we suggest integrating such techniques into the 

Celeb-DF dataset in order to predict and prevent future anti-

forensic strategies utilized by forgers. 

This paper [5] focuses on the blurring and transformations required 

to align generated faces with original videos to present a method 

for identifying DeepFakes. In order to find discrepancies between 

the Region of Interest (ROI) and the remainder of the image, 

artifacts are identified using the Haar Wavelet transformation. The 

method's efficiency is demonstrated through experimental testing 

on DeepFake videos. But since there's no magic bullet, we need 

reliable methods that can manage common picture processing, 

even if they could have trade-offs in terms of computational 

complexity. 
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A large face swap video dataset was developed [6], in order to 

counter the growing threat of Deepfakes. This dataset is used to 

support both detection model training and the DeepFake Detection 

Challenge (DFDC) Kaggle competition. More than 3,400 actors 

were employed to build the DFDC dataset, which comprises over 

100,000 clips produced using a variety of Deepfake, GAN-based, 

and non-learned techniques. Models trained exclusively on the 

DFDC dataset are capable of effectively generalizing to real-world 

Deepfake films, despite the intricacy of Deepfake detection. These 

models are useful resources for deciphering possibly altered 

videos. 

When celebrities are involved, deepfakes—manipulated videos 

that employ deep learning to swap faces or create fictitious 

scenarios—often cause political unrest and disinformation. It is 

essential to identify and remove these films from social media 

using easily accessible techniques and increasing quality. This 

project [7] employs Convolutional Neural Networks and Vision 

Transformer models to classify manipulated videos, validated on a 

large dataset from a recent Kaggle challenge. 

Reliable detection techniques to alert users to potentially 

misleading information have been prompted by the rise in deepfake 

videos. But even with these improvements, these systems' accuracy 

is still quite low and frequently skewed in favor of the training 

dataset.. This research [8] analyzes how various training strategies 

and data augmentation techniques influence CNN-based deepfake 

detectors, both within the same dataset and across different 

datasets. 

A suggestion is made [9] for a deep convolutional Transformer that 

combines features from the image, both local and global. Re-

attention and convolutional pooling are used to improve these 

attributes. In order to enhance performance, picture keyframes—

which are frequently disregarded—are also used in model training. 

A visual representation is provided of the feature quantity 

difference caused by video compression between key and normal 

image frames. Tested on multiple Deepfake benchmark datasets, 

the method consistently beats various state-of-the-art techniques in 

both within- and cross-dataset testing.  

3. Background & Evolution of Deepfake Technology 

Over the past ten years, deepfake technology has advanced 

quickly, bringing in a new era where realistic fake films and 

images can be created with never-before-seen ease and 

sophistication. Combining the terms "deep learning" and "fake," 

"deepfake" refers to the process of creating or modifying media 

content using deep neural networks. Deepfake technology was first 

tested in research labs, but now that robust computer resources and 

open-source machine learning frameworks are widely available, 

anyone with even a basic understanding of computer science can 

produce realistic-looking fake content. 

The creation of generative adversarial networks (GANs), a class of 

machine learning models first presented by Ian Goodfellow and 

others in 2014, is credited with spearheading the evolution of 

deepfake technology. A generator and a discriminator are the two 

neural networks that make up a GAN. They operate within a game-

theoretic framework, with the generator learning to generate 

realistic outputs that trick the discriminator. Deepfake technology 

is made possible by GANs producing high-quality synthetic media 

through this adversarial training process. 

Deepfake technology has expanded over time to include a variety 

of content, such as political propaganda, pornography, and 

disinformation operations, in addition to its original use in the 

production of phony celebrity films. With the availability of large-

scale datasets and powerful GPUs, along with advancements in 

deep learning algorithms, deepfake material is becoming more and 

more believable. As deepfake technology spreads quickly, worries 

about its possible misuse and social repercussions have grown. As 

a result, industry stakeholders, legislators, and researchers are 

investigating ways to limit the negative effects of deepfake 

technology, such as countermeasures and detection techniques. 

4. Machine Learning Models for Deepfake Detection 

The incorporation of several machine learning algorithms has led 

to the advancement of deepfake technology. Popular ensemble 

learning techniques like Random Forests have demonstrated 

promise in identifying deepfake content. Random Forests are an 

efficient way to find anomalies and inconsistencies that point to 

video manipulation by combining the predictions of several 

decision trees. However, the dataset's complexity and the 

hyperparameter selection may have an impact on how well they 

perform. 

Gradient Boosting Machines (GBM) present a potent alternative 

for detecting deepfakes. By building a series of weak learners one 

after the other and fixing each other's mistakes, GBM eventually 

produces a powerful prediction model [10]. Because of this 

iterative process, GBM is able to achieve high accuracy in 

identifying real from modified media and capture intricate 

correlations within the data. However, when dealing with large-

scale datasets, GBM could present computational difficulties and 

necessitate meticulous adjustment to maximize efficiency. 

Because Support Vector Machines (SVM) [11] are resilient and 

interpretable, they have been widely used in deepfake detection. 

SVM works by locating the best hyperplane in a high-dimensional 

feature space to divide several classes. Using manually created 

features or derived representations from pre-trained models, SVM 

is able to distinguish between real and fake films with high 

accuracy. SVM may, however, become less effective when dealing 

with extremely complex datasets and may find it difficult to 

identify the complex patterns included in deepfake content. 

Neural Networks [12], including Multi-layer Perceptrons (MLPs), 

offer a versatile approach to deepfake detection, leveraging the 

power of interconnected layers of neurons to learn complex 

patterns and relationships within data. MLPs excel in capturing 

nonlinear relationships, making them well-suited for discerning 

subtle manipulations present in deepfake videos. Nevertheless, the 

training of MLPs may require large amounts of annotated data and 

extensive computational resources to achieve optimal 

performance. 

Convolutional Neural Networks (CNNs) [13] have emerged as a 

cornerstone in deepfake detection, particularly in analyzing visual 

data. CNNs excel in capturing spatial dependencies within images 

or video frames, enabling them to identify anomalous artifacts and 

inconsistencies indicative of deepfake manipulation. Through 

convolutional layers, pooling operations, and non-linear activation 

functions, CNNs can effectively discern between authentic and 

manipulated content with high accuracy. Despite their 

computational complexity, CNN-based models remain at the 

forefront of deepfake detection research, driving innovation and 
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advancements in the field. 

Deepfake technologies have seen significant advancements with 

the integration of various machine learning models, each offering 

unique capabilities in manipulating and detecting manipulated 

media. Recurrent Neural Networks (RNNs) have been particularly 

influential in this domain. With their ability to capture temporal 

dependencies in sequential data, RNNs are well-suited for 

analyzing video frames over time. This makes them effective in 

detecting subtle temporal inconsistencies indicative of deepfake 

manipulation, such as unnatural facial expressions or lip 

movements. However, RNNs may face challenges in capturing 

long-term dependencies and may suffer from vanishing or 

exploding gradient problems during training. 

Long Short-Term Memory (LSTM) networks [14], a specialized 

variant of RNNs, offer a solution to the challenges posed by 

traditional RNNs. LSTM networks incorporate memory cells that 

allow them to retain information over long sequences, making 

them highly effective in analyzing and detecting deepfake content. 

By selectively retaining and updating information, LSTMs can 

capture complex temporal patterns present in videos, enabling 

them to discern between authentic and manipulated media with 

high accuracy. Nevertheless, LSTMs may require significant 

computational resources for training and may be prone to 

overfitting, particularly with limited training data. 

Deepfake technology has undergone a radical transformation 

because to Generative Adversarial Networks (GANs) [15] which 

allow for the realistic synthesis of pictures and videos. Two neural 

networks—a discriminator and a generator—play a competitive 

game together to form a GAN. The discriminator separates 

authentic media from counterfeit, while the generator creates 

realistic-looking images or movies. This adversarial training 

process results in the generation of hyper-realistic deepfake 

content that is often indistinguishable from genuine media. 

However, the proliferation of GAN-based deepfakes poses 

significant challenges for detection methods, as they exploit 

vulnerabilities in traditional forensic techniques. 

Autoencoders [16] make use of the principles of unsupervised 

learning to provide a novel method for detecting deepfakes. An 

encoder network compresses input data into a low-dimensional 

latent space, while a decoder network uses the latent representation 

to reconstruct the original data. This is how autoencoders function. 

By reconstructing input data, autoencoders can identify anomalous 

patterns or artifacts introduced during the deepfake generation 

process. However, autoencoders may struggle to capture subtle 

manipulations in highly complex media and may require extensive 

training on diverse datasets to achieve robust performance. 

Gaussian Mixture Models (GMMs) [17] provide a probabilistic 

framework for deepfake detection, enabling the modeling of 

complex data distributions. GMMs represent data as a mixture of 

several Gaussian distributions, each characterized by mean and 

covariance parameters. By fitting GMMs to feature representations 

extracted from images or videos, researchers can identify 

anomalies indicative of deepfake manipulation. However, GMMs 

may be limited by their assumption of Gaussianity and may 

struggle to capture non-linear relationships present in high-

dimensional data. Additionally, GMMs may require careful 

parameter tuning and regularization to prevent overfitting and 

achieve optimal performance. 

Deepfake technologies have seen remarkable progress with the 

integration of diverse machine learning models, each offering 

unique capabilities in both generating and detecting manipulated 

media. Hidden Markov Models (HMMs) [18], a probabilistic 

graphical model, have been employed in analyzing sequential data 

such as videos for deepfake detection. By modeling the temporal 

dependencies between consecutive frames, HMMs can capture 

patterns indicative of deepfake manipulation, such as unnatural 

transitions or inconsistencies. However, HMMs may face 

challenges in modeling complex interactions and long-term 

dependencies present in real-world data, limiting their 

effectiveness in detecting sophisticated deepfake content. 

For deepfake detection tasks, Extreme Gradient Boosting 

(XGBoost) [19] has become a potent machine learning approach. 

XGBoost builds a series of decision trees one after the other, with 

each tree being trained to fix the mistakes of the one before it. 

XGBoost can detect intricate links in the data and distinguish 

between real and fake media with great accuracy thanks to this 

iterative process. To maximize detection performance, however, 

rigorous adjustment and validation are required because the 

selection of hyperparameters and the caliber of the training data 

might have an impact on XGBoost's effectiveness. 

CatBoost, a gradient boosting algorithm developed by Yandex, 

offers a robust and efficient solution for deepfake detection tasks. 

CatBoost incorporates several innovative features, such as 

categorical feature handling and robustness to overfitting, making 

it well-suited for analyzing heterogeneous data characteristic of 

deepfake content. By leveraging these features, CatBoost can 

effectively identify anomalies and inconsistencies indicative of 

manipulation within videos. Moreover, CatBoost's efficient 

implementation enables fast training and inference, making it 

suitable for real-time deepfake detection applications. 

LightGBM, another gradient boosting algorithm, has gained 

traction in the field of deepfake detection due to its superior 

performance and scalability. LightGBM utilizes a novel tree-

growing algorithm and histogram-based techniques to achieve 

faster training times and lower memory consumption compared to 

traditional gradient boosting methods. This efficiency makes 

LightGBM well-suited for processing large-scale datasets 

commonly encountered in deepfake detection tasks. By leveraging 

LightGBM's capabilities, researchers can develop robust detection 

systems capable of identifying manipulated media with high 

accuracy and efficiency. 

5. Selection of the model 

Determining the best model for deepfake detection depends on 

various factors such as dataset characteristics, computational 

resources, and performance metrics. Each model has its strengths 

and weaknesses, and the suitability of a particular model may vary 

depending on the specific requirements of the detection task. 

However, considering the complexity of deepfake manipulation 

and the need for robust and accurate detection, Convolutional 

Neural Networks (CNNs) emerge as the most promising choice. 

Below, are detailed reasons: 

Convolutional Neural Networks (CNNs) have demonstrated 

remarkable success in various computer vision tasks, including 

deepfake detection. CNNs excel in capturing spatial dependencies 

within images or video frames, enabling them to identify 

anomalous artifacts and inconsistencies indicative of deepfake 
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manipulation. For example, CNN-based models have been shown 

to effectively detect deepfake videos by analyzing subtle 

discrepancies in facial expressions, skin texture, and lighting 

conditions. 

Evidence from research studies supports the superiority of CNNs 

in deepfake detection. For instance, in a study conducted by [20], 

CNN-based models achieved high accuracy in discriminating 

between genuine and manipulated images, outperforming 

traditional machine learning algorithms. Similarly, [21] 

demonstrated the effectiveness of CNNs in detecting deepfake 

videos by analyzing temporal patterns and spatial features. 

Moreover, CNNs offer scalability and flexibility, allowing for the 

incorporation of additional layers and optimization techniques to 

improve detection performance. Transfer learning, where pre-

trained CNN models are fine-tuned on deepfake detection tasks, 

further enhances the model's ability to generalize across different 

datasets and scenarios. This adaptability makes CNNs well-suited 

for addressing the evolving nature of deepfake technology and 

emerging manipulation techniques. 

Various variations of Convolutional Neural Network (CNN) 

models have been developed and utilized for deepfake detection, 

each offering unique architectures and strategies to enhance 

detection accuracy and robustness. Some notable variations 

include: 

5.1. VGG (Visual Geometry Group) 

VGG is characterized by its deep architecture comprising multiple 

convolutional layers followed by max-pooling layers. Despite its 

simplicity, VGG has demonstrated effectiveness in deepfake 

detection tasks due to its ability to capture hierarchical features in 

images or video frames. By leveraging the depth of the network, 

VGG can extract complex spatial features indicative of deepfake 

manipulation. 

5.2. ResNet (Residual Network) 

ResNet solves the vanishing gradient issue and makes training 

deeper networks easier by including residual connections that 

allow the network to learn residual mappings. Because its design 

can capture complex information in images or videos, it has been 

frequently used in deepfake detection. ResNet variations have 

demonstrated promising results in precisely recognizing altered 

media, including ResNet-50 and ResNet-101. 

5.3. InceptionNet 

InceptionNet, also known as GoogLeNet, introduces inception 

modules that allow for the parallel processing of different receptive 

fields within the same layer. By incorporating multiple 

convolutional operations in parallel, InceptionNet can capture 

diverse spatial features at different scales, making it effective in 

discerning anomalies indicative of deepfake manipulation. 

5.4. DenseNet (Densely Connected Convolutional Networks) 

DenseNet creates dense connections between layers so that all 

feature maps from previous layers are fed into the current layer. 

More effective information propagation and feature extraction are 

made possible by this dense connection, which also encourages 

gradient flow throughout the network and makes feature reuse 

easier. Due to their ability to capture spatial correlations inside 

pictures or video frames, DenseNet architectures have 

demonstrated potential in deepfake detection applications. 

5.5. MobileNet 

Depth-wise separable convolutions are used by MobileNet to 

minimize model size and computational cost while preserving high 

accuracy. Particularly well-suited for contexts with limited 

resources are mobile devices and edge computing platforms. For 

real-time deepfake detection applications, MobileNet variants like 

MobileNetV2 and MobileNetV3 provide effective solutions. 

5.6. EfficientNet 

EfficientNet introduces compound scaling to balance model size 

and performance across different network depths, widths, and 

resolutions. By systematically scaling the model's architecture, 

EfficientNet achieves optimal trade-offs between computational 

efficiency and detection accuracy. This scalability makes 

EfficientNet well-suited for deepfake detection tasks requiring 

robust performance across diverse datasets and scenarios. 

Each of these variations of CNN models offers unique advantages 

and capabilities in deepfake detection, enabling researchers to 

develop sophisticated detection systems capable of combating the 

proliferation of manipulated media across digital platforms. The 

choice of model depends on factors such as dataset characteristics, 

computational resources, and performance requirements. 

Determining which CNN model outperforms the others in 

deepfake detection requires careful consideration of various 

factors such as dataset characteristics, computational resources, 

and evaluation metrics. While each CNN model has its strengths 

and weaknesses, ResNet stands out as a top performer in many 

scenarios due to its innovative architecture and proven 

effectiveness in capturing intricate features indicative of deepfake 

manipulation. 

ResNet, or Residual Network, stands out as a superior model for 

deepfake detection due to several key factors, supported by 

evidence from various research studies: 

Deep Architecture with Residual Connections: ResNet's 

innovative architecture incorporates residual connections, 

allowing the network to learn residual mappings. This approach 

addresses the vanishing gradient problem encountered in training 

deep neural networks by facilitating the flow of gradients 

throughout the network. As a result, ResNet can effectively capture 

complex spatial features and patterns within images or video 

frames, enabling it to discern subtle anomalies indicative of 

deepfake manipulation [22]. 

State-of-the-Art Performance: Numerous studies have 

demonstrated ResNet's superior performance in deepfake detection 

tasks compared to other CNN models. For example, [23] found that 

ResNet architectures consistently outperformed VGG, 

InceptionNet, and MobileNet in accurately identifying deepfake 

videos across different datasets and evaluation metrics. Similarly, 

research by [23]showcased the effectiveness of ResNet-based 

models in detecting deepfake content by analyzing spatial features 

and temporal patterns present in videos. 

Transfer Learning Capabilities: ResNet's pre-trained models, 

such as ResNet-50 and ResNet-101, offer transfer learning 

capabilities that enhance detection performance. By fine-tuning 

pre-trained models on deepfake detection tasks with relatively 

small annotated datasets, researchers can leverage the 
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representations learned from large-scale datasets (e.g., ImageNet) 

to improve detection accuracy and generalization across different 

domains [24]. 

Efficient Feature Extraction: ResNet's residual connections 

facilitate efficient feature extraction, enabling the model to capture 

subtle discrepancies and inconsistencies indicative of deepfake 

manipulation. By leveraging hierarchical representations learned 

across multiple layers, ResNet can effectively discriminate 

between genuine and manipulated media with high accuracy, even 

in the presence of complex variations and transformations [22]. 

In summary, ResNet's deep architecture with residual connections, 

state-of-the-art performance, transfer learning capabilities, and 

efficient feature extraction make it a preferred choice for deepfake 

detection tasks. While other CNN models may offer unique 

advantages in specific scenarios, ResNet's consistent performance 

and robustness position it as a top performer in the field of 

deepfake detection. 

6. Conclusion 

In conclusion, in the current digital environment, identifying 

deepfake content continues to be a significant difficulty. 

Convolutional Neural Networks (CNNs), in particular, are 

machine learning models that have become extremely effective at 

detecting altered media in the audio, video, and image domains. 

ResNet is a CNN version that is distinguished by its deep 

architecture with residual connections, cutting-edge performance, 

capacity for transfer learning, and effective feature extraction. 

With evidence from much research, ResNet outperforms other 

CNN models in terms of accuracy when it comes to identifying 

deepfake content. To address the dynamic nature of deepfake 

technology and create reliable detection techniques that can lessen 

its detrimental consequences on society, continued study is 

necessary. By leveraging innovative techniques and 

interdisciplinary collaborations, researchers can advance the field 

of deepfake detection and safeguard the integrity of digital media 

in the digital age.  
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