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Abstract: To address the issues such as limited detection device resources and prolonged detection times in surface damage detection 

of steel cables installed commercial, public, and industrial buildings, advanced deep learning techniques, and Convolutional Neural 

Networks (CNN) have been investigated in this study and a new network model has been designed. This work proposes a steel cable defect 

detection network model based on YOLO, incorporating GhostNet into the backbone network, and introducing a novel feature extraction 

module (ShuffleNC3) based on ShuffleNet and attention mechanisms. Pruning improvements are then applied to the Head part. 

Experimental results indicate that the improved network achieves approximately1.149% increase in average precision compared to the 

baseline YOLOv5s. This modification achieves a simultaneous reduction of network computational costs and maintains high recognition 

accuracy, meeting better requirements for surface damage detection in steel cables. The parameters and computational costs are reduced 

by approximately 43 % and 31.4%, respectively, while the model size also decreases by 42%.  

Keywords: Deep learning; Convolutional Neural Network; YOLOv5; Steel cables; Attention mechanism; Surface damage detection; 

Object detection.

1. Introduction 

The steel cable is a bundle of multiple strands of steel wires twisted 

around a fiber core or a steel wire rope core. In practical use, issues 

such as damage can lead to economic losses or casualties. 

Therefore, timely detection and recognition of damage to the steel 

cable are crucial. Target detection methods are divided into single-

stage and two-stage, with YOLO and R-CNN being representative 

algorithms, respectively. YOLO, known for its superior 

performance in speed and detecting smaller targets, has been 

chosen in this study for conducting detection and recognition 

experiments on damaged steel cable surfaces. 

The YOLO object detection algorithm is a widely used single-stage 

detection algorithm with various versions such as YOLOv3[1], 

YOLOv5[2], YOLOv7[3]. YOLOv5, considered the most 

outstanding due to its performance, builds on YOLOv4[4] with 

some improvements. 

Most algorithms and literature in object detection are based on or 

refer to YOLOv5. Therefore, this study adopts YOLOv5 for 

research and improvement. The YOLOv5 network can be divided 

into four main parts: Input, Backbone, Neck Network, and Head 

Detection Output. The Input part processes the input images, 

standardizing their size and normalizing operations. Mosaic 

operations enhance the input data by randomly scaling, splicing, 

and cropping four input images. This enriches the detection 

dataset, increases network robustness, reduces Mini-batch values, 

and lessens the GPU burden. Adaptive anchor box calculations and 

adaptive image scaling improve subsequent object detection 

performance. 

The Backbone mainly consists of Conv modules, C3 modules, and 

SPPF modules, aiming to extract image features from input 

pictures for subsequent object detection work. The C3 module 

increases network depth and receptive field, enhancing feature 

extraction performance. The SPPF module, composed of max-

pooling and regular convolution, achieves feature extraction at 

different scales, generating three-scale feature maps to improve 

detection accuracy. 

The Neck Network combines FPN[5] (Feature Pyramid Network) 

and PANet[6]. It fuses features through top-down and bottom-up 

networks and combines the Backbone with the Head Detection 

Output, further enhancing detection capabilities. The Head 

Detection Output predicts targets of different sizes on the feature 

map[7]. Like YOLOv4, YOLOv5 uses multi-scale detection heads, 

showing good detection performance on feature maps of different 

sizes[8]. 

In practical applications of steel cable target detection, issues such 

as limited detection device resources and prolonged detection 

times may arise. Therefore, this study optimizes YOLO, reducing 

the model size and parameter numbers while maintaining high 

detection performance. By reducing model complexity and 

computational costs, the aim is to alleviate the practical application 

problems. 

2. Experimental methods and improvements 

The network in this paper replaces the convolution 
modules in the Backbone with GhostConv modules, 
which have higher performance and fewer parameters. 
Based on the C3 module, ShuffleNet and attention 
mechanisms are combined with the original C3 module, 
resulting in the proposed ShuffleNC3 module. This 
modification enhances the network's detection 
performance and provides a lighter structure. Finally, 
improvements are made to the Head Detection module. 

Compared to other fifth-generation networks, 
YOLOv5s has a lighter structure and lower 
computational cost. To achieve the balance between 
better detection performance and lower computational 
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costs, this paper proposes improvements based on the 
YOLOv5s network. The YOLOv5 network structure is 
shown in Fig 1. The following sections provide a detailed 

introduction to the GhostConv module and the 
ShuffleNC3 module proposed in this paper. 

 
Fig 1. YOLOv5 Network Structure 

 

2.1. GhostConv Convolution module 

During feature extraction, neural networks generate a significant 

amount of similar redundant features, which require significant 

computational resources[9]. To tackle this issue the GhostNetConv 

module has been introduced inspiration from GhostNet[10]. This 

module generates more feature maps with inexpensive operations, 

thereby reducing memory consumption during the intermediate 

expansion process. The GhostConv module structure is an 

improved version of the ordinary convolution module. It 

transforms the conventional convolution operation into two steps. 

In the first step, it performs a regular convolution on the input 

information to obtain some feature maps. In the second step, it 

performs a linear operation on the feature maps obtained in the first 

step, generating redundant feature maps. Finally, the outputs of the 

two steps are concatenated. It is compared with ordinary 

convolution in Fig 2. 

 

 

 

 

 

 

 

 

 

 

 

Fig 2. Regular convolution Compared with GhostConv 

 

The GhostConv module uses grouped convolution for linear 

transformation. Assuming the input feature map size is [C1, H, W]. 

The output feature map size is [C2, H', W'], number of channels 

defined by C, and height and width defined by the H and W of the 

feature map, after grouped convolution with g groups, the input 

feature map is divided into W×H×C1/g per group. A single 

convolution kernel becomes K×K×C2/g in size, where K is the 

kernel size. This significantly reduces the parameter and 

computation volume of the network. Similarly, assuming the input 

feature map size is [C1, H, W] and the output feature map size is 

[C2, H', W'], with conventional convolution kernel size K and 

linear transformation convolution kernel size D, and g representing 

the total number of mappings produced for each channel. 

Assuming K=D and g are much smaller than C1, the following 

formulas represent the ratio of computation volume and parameter 

volume between conventional convolution and the GhostConv 

module: 

𝑟𝑠 =
𝐶2 × 𝐻′ × 𝑊 ′ × 𝐶1 × 𝐾 × 𝐾

𝐶2

𝑔
× 𝐻′ × 𝑊 ′ × 𝐶1 × 𝐾 × 𝐾 + (𝑔 − 1) ×

𝐶2

𝑔
× 𝐻′ × 𝑊 ′ × 𝐷 × 𝐷

=
𝐶1 × 𝐾 × 𝐾

1
𝑔

× 𝐶1 × 𝐾 × 𝐾 +
(𝑔 − 1)

𝑔
× 𝐷 × 𝐷

≈
𝐶1 × 𝑔

𝐶1 + 𝑔 − 1
≈ 𝑔

  (1) 

Ratio of parameters: 

𝑟𝑐 =
𝐶1 × 𝐶2 × 𝐾 × 𝐾

𝐶2

𝑔
× 𝐶1 × 𝐾 × 𝐾 + (𝑔 − 1) ×

𝐶2

𝑔
× 𝐷 × 𝐷

≈
𝐶1 × 𝑔

𝐶1 + 𝑔 − 1
≈ 𝑔

                             (2) 

Therefore, theoretically, using the GhostConv module can save g 

times the computational cost and reduce g times the parameters. 

By introducing the GhostConv module into the Backbone and 

replacing the ordinary convolution, with g set to 2, it can 

significantly reduce the computational cost while ensuring 

network stability. 

 

2.2. ShuffleNC3 Module 

2.2.1. ShuffleNetV2 

In ShuffleNetV1[11], grouped convolution was used to decrease 

the number of parameters. In ShuffleNetV2[12], channel split 

method was proposed on its basis. Channel split replaces grouped 

convolution, reducing the computational cost required for grouped 

convolution. It splits the C-dimensional input channels into two 

branches, obtaining left and right branches. Since the more 

branches designed in the network and the higher the fragmentation, 
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the slower the network speed, one branch maintains an identity 

mapping, and the other branch performs feature extraction through 

three convolutions. After that, a concatenation operation is applied 

to the outputs. After the Concatenation, since each regular 

convolution operation is performed on the same branch each time, 

leading to no information exchange within each group, the idea of 

channel shuffle is proposed. As shown in Fig 3, for the g groups of 

feature matrices obtained through channel split, it further divides 

them into g groups, transforms the position of each channel, and 

concatenates to create a new feature matrix. 

 

Fig 3. Channel shuffle thought structure 

 

This aims to achieve the fusion of feature information, thereby 

improving feature reusability and feature extraction performance. 

The C3 module is an important component in the Backbone, 

consisting of three convolution modules and one Bottleneck 

module. In this paper, ShuffleNetV2 is combined with the C3 

module, replacing the Bottleneck structure with the ShuffleNet 

Bottleneck structure. The ShuffleNet Bottleneck arrangement is 

shown in Fig 4, where the convolution module includes the Conv 

module, BN normalization module, and activation function 

module. 

Fig 4. ShuffleNet Bottleneck structure 

2.2.2. CBAM Attention 

CBAM[13] is a lightweight convolutional attention module. 

Unlike common attention modules such as SENet[14] and 

ECANet[15], it performs attention operations not only in the 

channel dimension but also in the spatial dimension. Its structure 

is shown in Fig 5.  

 

 

 

Fig 5. CBAM structure 

These two feature maps are fed into a fully connected layer, the 

output results are added together, and after calculating through the 

Sigmoid activation function, channel weight coefficients 

representing the importance of features are obtained. Finally, the 

original input feature map is multiplied by the channel weight 

coefficients to acquire an output feature map of size [C, H, W]. The 

spatial attention module mainly focuses on the positional 

information of the target. It keeps the dimension unchanged in 

space and compresses it in the channel, using the same principle as 

the channel attention module. 

In this paper, CBAM attention is added to the ShuffleNet 

Bottleneck structure. The CBAM attention mechanism enables the 

network to focus on more relevant areas. Through parallel max-

pooling and average-pooling layers, the network, during the 

feature extraction process, extracts richer and more comprehensive 

high-level features, thereby improving feature extraction 

performance. 

Fig 6. ShuffleNC3 structure 

2.3. Improvement in Head   

The Head is the part of object detection that mainly consists of 

convolutional layers, pooling layers, fully connected layers, etc. It 

is used to perform multi-scale object detection for large, medium, 

and small targets based on the features extracted from the 

Backbone part. The Anchor part is a pre-defined set of bounding 

boxes used to create candidate boxes on the feature map. Since the 

targets in the steel cable dataset used in this study are mostly 
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medium and small-sized objects, only small target detection boxes 

[10, 13, 16, 30, 33, 23] and medium target detection boxes [30, 61, 

62, 45, 59, 119] are defined. Experimental results have shown that 

using predefined anchor boxes yields better detection performance 

than using anchor boxes obtained through K-means clustering. 

Therefore, the network in this paper uses predefined anchor boxes 

instead of anchor boxes obtained through K-means clustering. The 

large target detection part and the corresponding Neck network 

part connected to the Backbone are pruned in the Head network, 

significantly reducing the computational complexity and 

parameter count of the network. The improved YOLOv5 network 

architecture is shown in Fig 7. 

 

 

Fig 7. Improved Network Architecture 

3. Experimental findings and subsequent analysis 

In this section, the dataset, experimental settings, and evaluation 

metrics have been introduced and the improved network has been 

applied to the available datasets with experimental results and 

analysis. Subsequently, ablation experiments are conducted to 

verify the effects of the GhostConv module, ShuffleNC3 module, 

and Head part improvements. Finally, the proposed network 

method is compared with other commonly used defect recognition 

methods. 

3.1. Dataset 

To prove the effectiveness of the proposed improved method, we 

utilized the Cable Damage Computer Vision Project dataset and 

the DBTT Computer Vision Project dataset[15][16]. These 

datasets were partially integrated and subjected to data 

augmentation to create the Cable Damage dataset. The dataset 

includes two types of damage: fractures and burns in steel cables, 

consisting of a total of 6,590 images. The dataset was split into 

training (70%), validation (20%), and test sets (10%). Exactly, the 

training set contains 4,614 samples, while the validation set 

contains 1,314 samples. The training set plays a crucial role in 

training the network parameters to achieve the minimum loss 

function. The validation set is used to evaluate the accuracy of the 

trained network in recognizing surface damage. The two types of 

damage in the dataset are illustrated in Fig 8. 

 

 

 

Fig 8. Burn and Fracture type of damage in the dataset 

3.2. Experimental configuration 

The experiments were conducted in the PyTorch framework. The 

hardware setup included an NVIDIA GeForce RTX 3080 GPU 

with 10 GB VRAM and an Intel(R) Xeon(R) 2.50 GHz Platinum 

8255C CPU. The network was trained for 210 iterations, with a 

batch size of 32. Input images were resized to 640×640 and 

normalized. Stochastic Gradient Descent (SGD) was used as the 

optimizer with a linear learning rate schedule, starting at 0.01 and 

ending at 0.0001. The momentum parameter and weight decay 

coefficient were set to 0.937 and 0.0005, respectively. Since the 

network structure was modified, pre-training weights were not 
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used in any of the experiments. The test results of the improved 

network are shown in Fig 9, indicating that the enhanced network 

accurately identifies surface damage in steel cables. 

Fig 9. Test Results 

3.3. Evaluation Indicators 

This study evaluates the proposed network using metrics such as 

mean Average Precision (mAP), Precision, Recall, Floating-Point 

Operations per Second (GFLOPs), Parameters (Params), model 

size, and Frames Per Second (FPS) to provide a comprehensive 

assessment. In object detection tasks, Precision and Recall are 

crucial indicators to judge the recognition performance of the 

network, calculated as follows, where TP represents true positives, 

FP represents false positives, and FN represents false negatives. 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                      (3) 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                         (4) 

The mean Average Precision (mAP) is the mean of average 

precision across all classes. Additionally, to compare the 

computational complexity of different networks, this study 

employs Floating-Point Operations (GFLOPs) and Parameters 

(Params) to represent performance differences between networks. 

Moreover, Frames Per Second (FPS) is used to indicate the 

inference speed, with the results being the average for 663 test 

images. 

3.4. Control experiment results and analysis 

This section of the experiment includes ablation studies to validate 

the effects of the GhostConv module, ShuffleNC3 module, and the 

introduction of attention mechanisms within ShuffleNC3. Four 

commonly used attention mechanisms, including SE-Net, ECA-

Net, CA-Net, and CBAM-Net, were employed, and compared for 

their impact on the network. Furthermore, the study compares the 

proposed improved network with other state-of-the-art lightweight 

models, such as YOLOv3-Tiny, YOLOv6, YOLOv7-Tiny, and the 

two-stage object detection network Faster-RCNN. Additionally, 

popular lightweight backbone networks, MobileNetV3, 

ShuffleNetV2, and GhostNet, replace the default backbone of 

YOLOv5 for further comparison. 

The results demonstrate that the introduced GhostConv module, 

ShuffleNC3 module, and improvements in the Head section 

significantly decrease the computational complexity and 

parameters of the network. The best fusion method in Experiment 

7 shows a 1.1% increase in mAP, with a 43.4% reduction in 

parameters, a 31% reduction in computation, and a 42.3% 

reduction in model size. In attention mechanism comparison 

experiments, CBAM demonstrates slightly better execution in 

terms of mAP, and it is selected for integration into the ShuffleNC3 

module. 

In this section, the advantages of the GhostConv module, 

ShuffleNC3 module, and Head improvement in steel cable damage 

recognition are verified through ablation experiments. The 

experimental results are shown in Table 1 and graphical 

representation shown in Fig 10. 

 

 

Table 1.  Experimental results after various improvements 

Experiment GhostConv ShuffleNC3 Head mAP (%) Precision (%) Recall (%) Params (M) GFLOPs Model Size 

(MB) 

FPS 

1 — — — 83.6 87.5 80.3 7.02 15.8 14.4 106.3 

2 √ — — 83.7 88.3 80.2 6.24 14.0 12.8 112.3 

3 — √ — 84 90.9 78.6 6.52 14.1 13.5 61 

4 — — √ 83.9 91.3 78.2 5.23 14.3 10.8 137 

5 √ √ — 84.1 88.7 81.6 5.75 12.3 11.9 57.8 

6 √ — √ 84.3 88.9 80.4 4.46 12.5 9.2 126.6 

7 √ √ √ 84.7 88.9 82.1 3.97 10.9 8.3 64.5 
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Fig 10. Experimental results after various improvements 

The ShuffleNC3 module introduces an attention mechanism. 

Currently, the most commonly used attention mechanisms include 

SE-Net, ECA-Net, CA-Net[13], and CBAM-Net, a total of four 

types. These four attention mechanisms are individually 

incorporated for comparative experiments, as shown in Table 2 and 

graphical representation shown in Fig 11. 

 

Table 2. Results of each attention mechanism 

Experiment SE ECA CA CBAM mAP% Precision (%) Recall (%) Prams (M) GFLOPs Model size 

(MB) 
1 √ — — — 83.9 87.8 82.1 3.97 10.9 8.3 

2 — √ — — 83.5 88.5 82.7 3.94 10.9 8.2 

3 — — √ — 84.1 88.1 81.9 3.97 10.9 8.4 

4 — — — √ 84.7 88.9 82.1 3.97 10.9 8.3 
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Fig 11. Recognition results of each attention mechanism 

To justify the performance of the improved network in steel cable 

damage recognition, we compared it with other advanced 

lightweight network models, including YOLOv3-Tiny, 

YOLOv6[18], YOLOv7-Tiny. Additionally, performance 

comparisons were conducted with commonly used two-stage 

object detection networks like Faster-RCNN[19]. Furthermore, 

commonly used lightweight backbone networks such as 

MobileNetV3, ShuffleNetV2, and GhostNet[20], [21] were 

employed to replace the default Backbone of YOLOv5 for 

comparison. The results are presented in Table 3 and graphical 

representation shown in Fig 12. 
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Table 3. Performance comparison of commonly used target detection networks 

Experiment Model mAP (%) Params (M) GFLOPs Model size 

(MB) 

1 YOLOv5s 83.6 7.02 15.8 14.4 

2 YOLOv3-Tiny 84.1 8.67 13 16.6 

3 YOLOv6s 81.9 18.5 45.3 181 

4 YOLOv7-Tiny 83.4 6.01 13.2 12.3 

5 Faster-RCNN 61.3 137.1 370.2 108 

6 MobileNetV3-YOLOv5 82.5 5.02 11.3 10.4 

7 ShuffleNetV2-YOLOv5 81.7 3.79 8.0 8.0 

8 GhostNet-YOLOv5 84.2 4.76 7.9 10.0 

9 Improved YOLOv5 84.7 3.97 10.9 8.3 
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Fig. 12 Performance comparison of commonly used target detection networks 

 

Based on ablation experiments, after introducing GhostConv 

module separately, ShuffleNC3 module, and Head improvement 

separately resulted in a significant reduction in computational and 

parameter quantities. Experiment number 5 and 7 involved 

different methods of combining above three improvements. 

Experiment number 7 shows that fusion method exhibited the best 

performance, with a 1.1% increase in average accuracy. Parameter 

and computational quantities were reduced by 43.4% and 31%, 

respectively, and the model size decreased by 42.3%. Since the 

ShuffleNC3 module incorporates the CBAM attention mechanism, 

it may have some impact on the network's computational speed. 

The FPS metric is influenced by experimental configurations, 

yielding different results on various devices. Therefore, this paper 

places more emphasis on average accuracy and network 

computational costs, making Experiment number 7 network model 

more suitable. 

Through attention comparison experiments, it is observed that the 

four attention mechanisms have a similar impact on parameter 

quantity, computational cost, and model size. Using CBAM can 

achieve higher average accuracy. Therefore, CBAM is 

incorporated into the ShuffleNC3 module in this network. In the 

comparison experiments with different models, although 

YOLOv3-Tiny has slightly higher average accuracy than 

YOLOv5s, its use of DarkNet-53 as the backbone results in higher 

computational costs. On the other side YOLOv6s and YOLOv7-

Tiny perform worse in steel cable damage recognition compared 

to the pre-improved YOLOv5s. The proposed network maintains 

high average accuracy while outperforming other models in 

computational costs and model size. Among the models with 

replaced backbones, ShuffleNetV2-v5 and GhostNet-v5 networks, 

due to their extensive use of lightweight convolutions and 

shallower network depth, exhibit slightly lower parameter and 

computational quantities than the improved network. 

ShuffleNetV2-v5 reduces parameters by 0.18M and computations 

by 2.9G, while GhostNet-v5 reduces computations by 3G. 

However, their shallower networks cannot guarantee the accuracy 

of recognition, resulting in lower average accuracy compared to 

the improved network. Therefore, the improved network is more 

in line with the requirements of this paper, exhibiting the best 

performance. 

4. Conclusion 

In this paper, a lightweight network dedicated to the recognition of 

surface damage on steel cables installed in public building, based 

on YOLOv5, has been proposed. Based on the proposed network, 

it reduced the network parameters and computational complexity, 

saved computational cost, and ensure the average detection 

accuracy, GhostConv modules, ShuffleNC3 modules and 

improvement in Head section were employed. Tested on the Cable 

Damage dataset, the improved network achieves a 1.149% increase 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 495–495  | 495 

in average accuracy compared to YOLOv5s, with reductions of 

43% in parameters and 31% in computation complexity, 

respectively, and the model size also decreased by approximately 

42%. 
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