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Abstract: The emergence of IIoT in vital industrial systems has heightened the demand for strong security frameworks as cyber threats 

become more sophisticated. However, the traditional security measures are usually inadequate, especially in real-time operational scenarios, 

making the industrial systems susceptible to disruptive attacks. This is the problem that this paper tries to solve by proposing a new Intrusion 

Detection System (IDS) for IIoT that uses Machine Learning (ML) and Deep Learning (DL) approaches, supplemented by Neighborhood 

Component Analysis (NCA) for improved feature selection. Our holistic method is based on pre-processing the dataset, which includes one-

hot encoding and min-max normalization, applying NCA for the most critical features selection, and using a two-level classification strategy, 

where ensemble classifiers, standard classifiers, and deep neural networks are used. IIoT based IDS shows enhanced performance with the 

use of NCA in feature selection. NCA-optimized models deliver near perfect values of accuracy, precision, recall, F1-score, and AUC, which 

are close to 1, outperforming Without-NCA. Moreover, the NCA usage decreases both training and testing times significantly, making the 

system much more effective for real-time applications. 

Keywords: Industrial Internet of Things (IIoT), Intrusion Detection System (IDS), Machine Learning (ML), Deep Learning (DL), and 

Neighborhood Component Analysis (NCA). 

I. INTRODUCTION 

The concept of the Internet of Things (IoT) has revolutionized 

the digital age by making physical objects become part of 

computer systems, improving the efficiency, economic 

advantages, and reducing human input. At the heart of IoT is 

the interconnectivity of ordinary devices that are connected to 

the internet, and thus, they can send and receive data 

indefinitely. These technological changes resulted in the 

emergence of smart houses, healthcare monitoring systems, 

and automatic industrial operations. With the development of 

IoT technologies, the complexity of the generated data and the 

amount of the data have increased dramatically, which creates 

new problems for data management and system security [1]. 

IIoT expands the scope of these technologies to key industrial 

sectors like manufacturing, logistics, oil and gas, and 

agriculture. Utilizing machine learning (ML) and big data 

technologies, IIoT is to make the industrial operations more 

reliable, efficient, and safe via improved sensor data analysis, 

machine-to-machine (M2M) communication, and advanced 

automation processes. The stakes are highest in industrial 

environments, where system failures can result in huge 

economic losses or disasters, emphasizing the importance of 

robust and reliable IIoT systems [1]. 

Constrained by the shortcomings of conventional centralized 

computing modes, edge computing has emerged as a critical 

innovation by processing data much closer to where the data 

is produced. This change decreases the latency to a large 

extent, saves network bandwidth and improves system 

responsiveness, which are critical requirements in IIoT 

environments as quick, real-time decisions are the key to 

keeping the operational integrity and safety. Nevertheless, the 

use of edge computing also brings new security threats. Edge 

devices are distributed and subject to both physical and cyber 

threats, which makes the management of the huge data 

quantities created and their integrity in transit or at rest a 

challenge [2, 3]. 

The conventional Intrusion Detection Systems (IDS) 

comprising network-based (NIDS) and host-based (HIDS) 

systems have played a critical role in keeping the security 

threat under control. NIDS monitors the network traffic to find 

anomalies, while HIDS looks at system logs for malicious 

activities. The adoption of machine learning techniques with 

IDS technologies is a breakthrough as it enhances their ability 

to detect advanced and dynamic threats more quickly. The 

machine learning-based IDS systems are dynamic in nature, 

thus they are becoming more accurate and eliminating the 

false positives that improves the security edge computing in 

the IIoT networks [4].  

Based on these developments, this paper proposes an 

advanced IDS for IIoT that employs more sophisticated 
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machine learning (ML), and deep learning (DL) methods. Our 

system focuses on the integration of the benefits of both ML 

and DL models for the purpose of detecting and response to 

security threats efficiently. The principal innovation in our 

approach is the incorporation of Neighborhood Component 

Analysis (NCA) for feature selection which it reduces the 

dimensionality of the dataset significantly and hence the 

computational load of the IDS that leads to better 

performance. This helps our system to rapidly identify usual 

behaviors as well as potential security threats of different 

degrees of magnitude. The work will define the architecture 

of the envisioned IDS, the utilized method, and the anticipated 

consequences of our developments to enhance the security and 

operational performance of the IIoT networks. 

II. RELATED WORK 

In the section, various recent studies relevant to our work are 

summarized and presented in Table 1 as follows: 

Yao et al. [5] offer a novel approach for intrusion detection in 

the IIoT based on the union of machine learning and edge 

computing. This hybrid system has been developed to boost 

the efficiency of the IIoT environments by processing data at 

the edge of the network. With data analysis being localized, 

the system effectively eliminates the latency problems usually 

associated with central processing systems. The ability to 

instantly process the phenomenon is very crucial in the 

maintenance of the ability to react timely to potential security 

threats that can be important in preventing operational 

interruptions or data leaks in industrial environments. In 

addition, the system employs machine learning algorithms 

that serve to improve the system’s performance in terms of 

threat detection concerning current data. Such a learning 

process helps in the effective identification of known and 

novel security risks and thus improves the security 

architecture of IIoT networks. The centrality of data 

processing is reduced leading to reductions in network traffic 

that in turn makes the system more efficient by using less 

bandwidth and by reducing the load on central servers.  

Eid et al. [6] introduces machine learning techniques to be 

used for an intrusion detection system in Industrial Internet of 

Things (IIoT) networks. This study is significant as it 

investigates the potential of utilizing machine learning to 

improve IIoT security systems, which are currently at the heart 

of cybercriminals’ attacks because of their critical role in 

industrial operation. The research assesses machine learning 

models to identify those that are more appropriate for 

identification of abnormal and potentially dangerous activities 

in IIoT networks. Responsive models are designed to be 

reactive and reliable in real-time, identifying and responding 

to threats within time, hence preventing harm.  

The paper of Zolanvari et al.  [7] concerned with the analysis 

of network vulnerabilities in the industrial Internet of Things 

(IIoT) utilizing the machine learning approaches.  This study 

is essential because it addresses the urgent requirement for 

robust security solutions in IIoT networks that are the 

fundamental part of the contemporary industrial systems that 

are exposed to the growing number of sophisticated cyber-

attacks. The paper evaluates the performance of different 

machine learning models in the identification and analysis of 

vulnerabilities of IIoT networks by the authors. The goal is to 

achieve a thorough understanding of all possible security 

failures prior to their exploitation by hackers. The dynamic 

security protocol is the cornerstone of the integrity and quality 

of industrial activities where interlinked devices are 

continuously working. The results of this study are a part of 

the bigger field of cybersecurity: they provide a vision of how 

machine learning can be used to enhance security 

architectures of IIoT systems, that will make industrial 

environments safer.  

Guezzaz et al. [8] propose a light weighted hybrid edge-based 

IIoTedge basedintrusion detection framework. This study 

explores the growing demand for best-of-breed security 

systems that work in an edge computing environment - an 

issue that is crucial to Industrial Internet of Things (IIoT). The 

approach outlined is to combine edge computing speed and 

local processing advantage with machine learning analytical 

power to detect and respond to security threats on the fly. The 

hybrid nature of the framework makes it lightweight, i. e., it 

does not require many computational resources, which is vital 

to maintain the performance of edge devices, which are 

usually low in processing power. The findings of the study 

hold potential in improving the security of IoT systems by 

using machine learning for quick detection and reaction to 

potential threats, thus protecting the critical industrial 

processes.  

Ferrag et al. [9] introduce “Edge-IIoTset,” a new and 

comprehensive cybersecurity dataset specially designed for 

IoT and IIoT applications. This dataset was built keeping in 

mind the requirement for creating and testing machine-

learning models that are used in centralized as well as in 

federated learning settings, which is an essential characteristic 

in enhancing the effectiveness and the response of 

cybersecurity measures. The significance of “Edge-IIoTset” 

lies in its real-world practicality and detail which offers 

researchers and developers many practical data cases covering 

the complexity and diversity of modern IoT and IIoT 

environments. The authors’ suggested dataset will include 

several attack scenarios as well as normal data that will enable 

the formulation of machine learning algorithms that will be 

able to detect, analyze, and respond to the threat in cyber 

security. This resource is especially useful in building 

intrusion detection systems and other security solutions which 

need intensive training data. This kind of dataset access will 

lead to better benchmarking and IoT and IIoT infrastructure 

specific security solutions development.  
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Ullah et al. dedicated solution for an IIoT network is 

MARGU-IDS, which is a high-efficient intrusion detection 

system [10]. This system introduces a Multi-Head Attention-

Based Gated Recurrent Unit (MAGRU) method, an advanced 

method which combines attention mechanisms with gated 

recurrent units (GRUs) for better detection of malicious 

activities in IIoT environments. Integration of multi-head 

attention mechanism into MAGRU-IDS allows it to process 

multiple fragments of input data sequences simultaneously, 

which enhances its efficiency in the detection of intrusion 

patterns. This is especially advantageous in IIoT environments 

because the data flows are continuous and complicated and 

therefore need advanced analytics that can adjust to the 

dynamic changes in the performance of the network. The 

GRUs can carry out the processing of these data sequences 

efficiently where the previous inputs’ information is retained 

without the vanishing gradient issue that occurs in the normal 

recurrent neural networks. 

Vaiyapuri et. al [11] examine the potential of deep learning 

technologies in enhancing intrusion detection in Industrial 

Internet of Things (IIoT) networks. This study critically 

evaluates various deep learning approaches and their 

efficiencies and outlines the areas for future research in terms 

of the security of IIoT systems. The authors provide details on  

Table 1: Summary of paper presented in related work. 

Authors Year Key Findings Limitations 

Yao et al. [5] 2019 

Developed a hybrid IDS that combines 

machine learning with edge computing to 

reduce latency and network traffic in 

IIoT systems. 

Limited real-time processing capabilities. 

Eid et al. [6] 2023 

Explored the effectiveness of various ML 

models in detecting unusual activities 

within IIoT networks. 

Lack of detail on the specific 

computational requirements and 

scalability of the ML models used. 

Zolanvari et al. 

[7] 
2019 

Assessed the effectiveness of ML models 

in identifying vulnerabilities within IIoT 

networks. 

Primarily theoretical; lacks extensive real-

world testing. 

Guezzaz et al. 

[8] 
2022 

Introduced a lightweight hybrid IDS 

framework using ML for edge based IIoT 

security. 

Framework might not scale well in highly 

dynamic or expansive network 

environments. 

Ferrag et al. 

[9] 
2022 

Presented "Edge-IIoTset," a realistic 

cybersecurity dataset for IoT and IIoT 

applications. 

Actual effectiveness of the dataset in 

diverse real-world scenarios remains to be 

fully tested. 

Ullah et al. [10] 2023 

Developed MAGRU-IDS using a multi-

head attention-based GRU for enhanced 

intrusion detection in IIoT. 

Complexity of the model might impact 

real-time deployment in resource-

constrained environments. 

Vaiyapuri et 

al. [11] 
2021 

Reviewed deep learning approaches for 

intrusion detection in IIoT networks, 

outlining opportunities and future 

directions. 

Detailed empirical research to validate 

these models in operational settings is still 

needed. 

Tang et al. [12] 2023 

Investigated the use of deep learning 

algorithms to improve IDS performance 

in complex network environments. 

Challenges in deployment and integration 

with existing security infrastructures were 

not addressed. 

Rodríguez et 

al. [13] 
2023 

Implemented an attentive transformer 

deep learning model with XAI for 

intrusion detection in IoT systems. 

Exploration of practical implications and 

deployment of XAI in operational 

environments is limited. 

Saxena et al. 

[14] 
2022 

Provided a comprehensive review of 

deep learning implementations in IIoT, 

highlighting potential and challenges. 

Lacks detailed case studies and in-depth 

analysis of real-world application 

successes and failures. 
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the advantages of deep learning in detecting subtle patterns 

and anomalies that might be missed outright by traditional 

methods, making it suitable for the dynamic and 

heterogeneous nature of IIoT. The paper talks about several 

deep learning models that have shown good performance in 

the detection of intrusive activities from network traffic data; 

these models include Convolutional Neural networks (CNNs), 

Recurrent Neural Networks (RNNs), and Autoencoders. In 

addition, this paper features the limitations of deep learning 

models, which include large datasets and computational 

requirements and research issues such as practical training 

methods and models that can work well with fewer resources. 

Tang et al. [12] are focused on the improvement of Intrusion 

Detection Systems (IDS) with deep learning algorithms. This 

study is part of a broader field of cybersecurity technologies 

that are covered at the same time in other conferences such as 

Pervasive Intelligence and Computing, Cloud and Big Data 

Computing, and Cyber Science and Technology Congress. 

The authors carried out research on the capability of deep 

learning to greatly enhance the accuracy and efficiency of 

intrusion detection in complicated networks. They also 

discuss a variety of deep learning models that can understand 

and make intelligent analyses of huge network datasets 

without creating any delay and also find anomalies faster and 

potentially malicious acts. Built on the power of deep learning 

which lets the system learn from the new data and adapt 

without explicit programming, the system is aimed at being an 

efficient solution to the perpetually changing cyber threats 

world. 

Rodríguez et. et al [13] introduce an innovative deep learning 

method for intrusion detection in IoT systems, that relies on 

an attention transformer model with automated interpretable 

feature selection. This study is significant because of the union 

of cutting-edge machine learning methods and explainability, 

which is a new requirement in AI and cybersecurity. The use 

of attentive transformers in their model allows for a 

concentrated and detailed processing of sequential data, which 

is typical of network traffic. This approach allows the model 

to focus on the most relevant parts of the data necessary for 

identifying potential threats, thereby enhancing the 

performance of the intrusion detection system. Furthermore, 

the use of explainable AI (XAI) techniques makes the system 

not just predict and detect intrusions, but also reveal ‘how’ and 

‘why’ decisions are taken. In such systems, transparency is 

crucial for trust and accountability, especially in IoT 

environments. The approach of the study in blending deep 

learning with XAI creates the basis for the creation of more 

powerful and understandable security solutions in the IoT 

environment. The development is important, since it reduces 

the threat of emergence of more complex cyber dangers. 

Saxena et. al [14] provide an analysis of how deep learning 

technologies are utilized in the Industrial Internet of Things 

(IIoT). Their study emphasizes the transformative power of 

deep learning in improving the IIoT system’s functions, from 

predictive maintenance to real-time data analysis and further. 

The writers dwell on both the pros and cons of the application 

of deep learning methods in IIoT. They argue that in spite of 

the fact that deep learning can significantly improve 

operational efficiencies and insights through advanced data 

analysis and pattern recognition, there are such problems as 

the necessity to have large data sets, high computational 

power, and concerns about data privacy and security. This 

paper is a treasure trove of information on deep learning in the 

context of IIoT of today which outlines all the latest 

developments and identifies several key areas in which more 

research and development is necessary. 

Our work seeks to address several key gaps in the field of 

Intrusion Detection Systems for the Industrial Internet of 

Things by leveraging advanced machine learning and deep 

learning techniques: 

− Comparative Analysis of ML and DL Models: We 

are exploring how different ML models stack up 

against DL models in terms of effectiveness in 

detecting and responding to security threats within 

IIoT environments. 

− Efficient Data Processing with NCA: By 

implementing NCA for feature selection, our 

research addresses the need for more efficient data 

processing methods. This approach significantly 

reduces the dimensionality of data, enhancing the 

IDS's performance and lowering the computational 

demands, which is crucial for real-time applications 

in IIoT. 

− Multi-level Threat Detection: Unlike many 

existing systems that only categorize activities as 

normal or malicious, our IDS is designed to identify 

various levels of threats, providing a nuanced and 

effective security mechanism. 

Our work contributes to enhancing the security frameworks of 

IIoT systems, offering both theoretical insights and practical 

solutions to better protect industrial environments against 

sophisticated cyber threats. 

III. METHODOLOGY 

The proposed system framework comprises three primary 

components: the recorder, an AI-based intrusion detection 

system placed on the edge layer server, and the decision-

making component. The recorder is responsible for capturing 

and recording the behavior of IoT sensors and networks. 

Simultaneously, the AI-based system utilizes the properties of 

the IoT network to analyze and detect its status. The 

information about the IoT network's status is then transmitted 

to the decision-making component, which, based on the 

network behavior, determines whether it is operating normally 
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or experiencing an attack. Figure 1 visually depicts the 

components of this framework. 

 

Fig 1: Components AI-Based IDS framework. 

Our proposed work consists of several steps as shown in 

Figure 2, as follows: 

 

Fig 2: Proposed model of our smart IDS. 

Step 1: Select dataset, and in our work, IoTID20 dataset [15] 

will use which consists of 86 columns including various 

network and flow-based features and 625,783 records. These 

columns capture different aspects of network behavior, which 

are essential for analyzing traffic and detecting anomalies in 

IoT environments. Knowing that three of these columns are 

for labels, which classify each record as normal or as one of 

several types of attacks as shown in Figure 3. The labels are 

critical for supervised learning tasks where the model needs to 

learn from labeled examples to predict the category of new, 

unseen data. 

 

Fig 3: IoTID20 Attack Taxonomy 

Step 2: Pre-Processing for preparing dataset to be suitable for 

training smart models and mainly consists of three steps: 

− One-Hot Encoding: Machine learning models 

generally work better with numerical input. 

Categorical data are transformed into a numerical 

format that models can interpret without introducing 

ordinality. 

− Min-Max Normalization: To scale numerical 

features in the dataset to a common scale without 

distorting differences in the ranges of values. This 

rescales the feature to a fixed range of 0 to 1, using 

the equation (1):  

 

Step 3: Feature Selection using NCA: To enhance the 

performance of nearest neighbors’ classifiers by selecting and 

weighting features that contribute most to distinguishing 

between classes. NCA learns a linear transformation (a 

weight matrix) that maximizes the likelihood that a stochastic 

nearest neighbor will belong to the same class. This 

effectively learns which features are important by focusing 

on reducing distances between similar pairs (same class) and 

increasing distances between dissimilar pairs (different 

classes). 

Step 4: Split DS using Holdout: The dataset is split into 

training (80%) and testing (20%) sets. The training set is used 

to build and train the model, while the testing set is used 

purely for evaluating its performance, simulating how the 

model would perform on unseen data. 

Step 5: Classification: In our work we use two levels of 

classification: 

− First Level - Normal or Attack: Determine whether 

each instance in the dataset is a normal operation or 

an anomalous attack. 

− Second Level - Type of Attack: Further classify each 

detected attack into types, for instance, DOS, 

malware, or phishing, based on the characteristics of 

the attack. 

Regarding classifier, we used three types of classifiers which 

will train using training datasets. 

− Ensemble Classifiers: Use methods like Bagging 

Trees and AdaBoost, which combine the predictions 

of several base estimators to improve robustness and 

accuracy over a single estimator. 

− Standard Classifiers: Implementing algorithms such 

as Support Vector Machine, K Nearest Neighbor, 

Naive Bayes, and Decision Trees, each having their 

particular strengths in the handling of different types 

of data and classification problems. 

− Deep Neural Networks: Take advantage of the 

sophisticated models such as LSTM, which are very 

good at handling sequences and time series data, 

(1) 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4176–4189 |  4181 

thus, making them ideal for time dependent data 

anomaly detection. 

Step 6: Evaluation: The most significant purpose of this 

measure is to determine the performance of the model on 

new, unseen data, which reflects its practical usefulness and 

accuracy. This is achieved through the application of 

different metrics including accuracy, precision, recall, F1-

Mesaure, and ROC curves to assess different aspects of 

performance of the model to ensure it meets the required 

deployment standards. 

The step-by-step instructions above are altogether the strong 

pipeline and outcomes framework for data handling, 

processing, and analysis for security objectives. 

A. Neighborhood Component Analysis (NCA) For 

Feature selection 

Neighborhood Component Analysis (NCA) is a 

dimensionality reduction and feature selection technique 

widely used to improve the performance of nearest neighbor 

classification. NCA works by learning a linear transformation 

of the dataset. NCA aims to transform the feature space so 

that the probability of a stochastic nearest neighbor belonging 

to the same class is increased. This is done by minimizing a 

loss function which sums over all misclassified examples 

weighted by their distance from the query point [16]. 

The approach includes training a weight matrix that rescales 

the feature space. What NCA tries to do by optimizing this 

matrix is to reduce the distances of data points that are similar 

(same class) and increase the distances between data points 

that are different (different classes). The procedure applies 

gradient descent, or other related optimization algorithms to 

achieve the optimal weights. This has enabled NCA to 

significantly improve the efficiency of nearest neighbor 

algorithms in the optimization of feature spaces, and for this, 

NCA has found use in a variety of machine learning 

applications, especially when it comes to both classification 

and clustering tasks [17]. 

B. Classification Algorithm 

Adaboost (Adaptive Boosting) [18] is an ensemble 

technique, that uses several weak learners to generate a highly 

accurate classifier. Every learner, a simple decision tree 

usually, is added sequentially to the ensemble and focuses on 

the instances that were misclassified by the previous ones. 

The learners are assigned a weight by their accuracy, and also 

each instance in the dataset gets a weight that will be 

increased if it is misclassified. This makes the ensemble to be 

able to fit in the hard cases in the dataset. AdaBoost is very 

valuable for binary classification problems, and it is often 

noted for its ability to enhance classification accuracy.  

 

Bagging Trees (BagTree) or Bootstrap Aggregating [19], is 

another ensemble method, that employs multiple decision 

trees trained on different sub-samples of the same training set. 

The subsets are generated by the process of random sampling 

of the training set with replacement. Each tree is trained 

individually and then their predictions are combined usually 

by majority voting for classification or averaging for 

regression. This approach decreases variance and eliminates 

overfitting, thus making an ensemble of decision trees more 

resistant as compared to individual trees. 

SVM [20] is a strong classification method that operates by 

identifying the hyperplane that separates two classes of data 

with the maximum margin. Put simply, it identifies the largest 

“street” between classes. SVM is very efficient in high-

dimensional spaces and is flexible enough to deal with linear 

as well as non-linear boundaries employing the trick of 

kernel. 

K-Nearest Neighbors (KNN) is a simple, instance-based 

learning algorithm [21]. In KNN, the classification of a new 

instance is determined by a plurality vote of its neighbors, 

with the instance being assigned to the class most common 

among its k nearest neighbors measured by a distance 

function. KNN is easy to implement and understand but can 

become computationally expensive as the size of the data 

grows. 

Decision Tree (DT) classifiers [22] are intuitive models that 

split data by learning decision rules inferred from the 

features. Trees are formed by nodes representing tests on 

features and leaf nodes representing classes. Decision trees 

are easy to interpret and can handle both numerical and 

categorical data but are prone to overfitting, especially with 

complex trees. 

Naive Bayes (NB) classifiers [23] are probabilistic models 

that apply Bayes’ Theorem, assuming strong (naive) 

independence between the features. They are particularly 

well-suited for classification tasks where high dimensionality 

is present, such as text classification. Despite their simplicity 

and the naive assumption, Naive Bayes classifiers often 

perform very well under many complex real-world situations. 

Long Short-Term Memory (LSTM) [24] networks are a 

type of recurrent neural network (RNN) suitable for sequence 

prediction problems. Unlike standard feedforward neural 

networks, LSTMs have feedback connections and can 

process data sequences irrespective of input sequence length 

They are especially handy in tasks where context of the input 

data is of high importance, such as, speech recognition or 

anomaly detection in time series data. LSTMs prevent the 

vanishing gradient problem of the traditional RNNs, which 

makes them capable of learning longer dependencies. 
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Our LSTM model configuration is designed to effectively 

handle sequence classification tasks and consists of following 

layers:  

− Input Layer: The model accepts sequences, where 

each sequence element corresponds to one feature.  

− LSTM Layer: The LSTM layer has 200 hidden 

units, providing it with substantial capacity to learn 

from the data by capturing complex temporal 

dependencies within the sequence. It's configured to 

output only the last hidden state, which is typical for 

sequence-to-label tasks where the final state 

represents the culmination of learned temporal 

features relevant to the prediction task. 

− Fully Connected Layer: This layer has as many 

neurons as there are unique classes in the dataset, 

ensuring each class can be predicted. 

− Softmax Layer: Following the fully connected layer, 

the softmax layer normalizes the output to a 

probability distribution over the predicted classes, 

making the model's output interpretable as class 

probabilities. 

− Classification Layer: The final layer computes the 

cross-entropy loss during training, which helps in 

optimizing the model by comparing the predicted 

output with the true class labels. 

The LSTM model utilizes the Adam optimizer with settings 

optimized for GPU execution. Training is now set to 10 

epochs at a learning rate of 0.001. Verbose output and 

progress plots are enabled to monitor the training process. 

This setup strikes a balance between achieving convergence 

in a reasonable number of training cycles and providing 

detailed insights into training progress through visual 

feedback. 

Each of these models has its strengths and particular contexts 

where it excels as shown in Table 2, making them suitable for 

various kinds of data and predictive modelling challenges. 

IV. PERFORMANCE MEASURES 

Classification accuracy serves as an effective metric to gauge 

learning performance of proposed models [25-27]. The 

evaluation utilizes a standard confusion matrix technique, 

with the following metrics listed below: 

Confusion Matrix: A confusion matrix provides a concise 

summary of prediction outcomes in classification problems. 

It offers insight into classification accuracy by distinguishing 

between correct and incorrect predictions as well as errors 

made within each class, distinguishing between true positives 

(true negatives) and misclassifications (false positives and 

false negatives). Diagonal elements indicate this information 

while off-diagonal ones represent misclassification errors 

like false positives/false negatives respectively. 

Accuracy can be defined as the percentage of correctly 

classified samples when measured values are compared with 

known ones; expressed using equation (2): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

Where true positive (TP), true negative (TN), false positive 

(FP), and false negative (FN) represent key components of 

confusion matrices. 

Table 2: Advantage and Disadvantage of each used model. 

 

Classifier Advantages Disadvantages 

AdaBoost 

Enhances the 

accuracy of 

weak 

learners, 

robust to 

overfitting, 

less prone to 

overfitting 

than DT. 

Sensitive to 

noisy data and 

outliers, 

performance 

depends on data 

and weak 

learner. 

Bagging 

Trees 

Reduces 

variance, less 

prone to 

overfitting, 

works well 

for high 

dimensional 

data. 

Computationally 

intensive, less 

interpretable, 

not the best 

choice for very 

large datasets. 

SVM 

Effective in 

high-

dimensional 

spaces, works 

well with 

clear margin 

separation, 

versatile 

(kernel 

methods). 

Requires full 

data in memory, 

can be slow to 

train, choosing a 

correct kernel 

can be 

challenging. 

KNN 

Simple and 

effective, no 

training 

period, 

naturally 

handles 

multi-class 

cases. 

Slow query time 

as dataset 

grows, sensitive 

to irrelevant 

features, needs 

homogeneous 

features. 

Decision 

Trees 

Easy to 

interpret and 

explain, can 

handle both 

numerical 

and 

categorical 

data. 

Prone to 

overfitting, can 

be unstable, 

sensitive to 

small changes in 

the data. 

(2) 
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Naive 

Bayes 

Fast and 

efficient, 

performs well 

with large 

datasets, 

good baseline 

for text 

classification. 

Assumes feature 

independence, 

poor estimates 

of probability 

can be a 

drawback. 

LSTM 

Excellent for 

sequential 

data, can 

model time 

series data, 

capable of 

learning 

long-term 

dependencies. 

Computationally 

intensive, 

difficult to train, 

and can suffer 

from overfitting 

without proper 

regularization. 

 

Error Rate measures the proportion of misclassified samples 

within the dataset as defined by equation (3). Ultimately, 

lower error rates mean better model performance. 

 

𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 =
𝐹𝑃 + 𝐹𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 

 

Precision  measures the model's ability to correctly classify 

positive values as shown by equation (4): 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

Recall is the measure of the fraction of true positives 

(instances that are properly classified as belonging to a 

particular class) out of all positives, that is both true positives 

and false positives together. As shown by equation (5):  

𝑅𝑒𝑐𝑎𝑙𝑙  =
TP

TP + FN
 

 

Specificity refers to a model's ability to predict negative 

values accurately as indicated by equation (6): 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑁 + 𝐹𝑃
 

 

One of the evaluation metrics for binary classification 

models is Area Under the Curve (AUC). It quantifies the 

area under a Receiver Operating Characteristic curve, which 

plots true positive rates versus false positive rates at 

different classification thresholds; an AUC of 1 represents 

perfect classification, whereas 0. 5 or less represents 

random classification.  

 

Receiver Operating Characteristic (ROC) curves are 

graphical presentations of True Positive Rate versus False 

Positive Rate in binary classification models. Their location 

in the left upper corner is usually associated with good 

model performance. 

 

F Measure is a frequent performance metric in binary 

classification assignments. It is the harmonic mean of 

precision and recall - an evaluation that takes both of these 

aspects into account. The calculation process of the F1 score 

is illustrated by the Equation (7): 

F Measure = 2 × (
precision ×  recall 

precision +  recall
) 

Training time is the duration required to train a model on a 

specific dataset. Fast training times are desirable as they 

facilitate rapid model development and deployment. 

Testing time pertains to the duration taken to assess a trained 

model on a new dataset. Efficient testing times are 

advantageous as they enable prompt inference of model 

predictions. 

V. RESULTS AND DISCUSSION 

In this section, we conduct two experiments: the first 

experiment focuses on classifying network behavior as 

normal or anomalous, and the second experiment extends the 

classification to distinguish between normal operations and 

various types of attacks. For both experiments, we will 

evaluate different models with and without the application of 

NCA feature selection. 

A. First Experiment: 

In the initial experiment, the details of the full dataset along 

with its training and testing splits is shown in Figure 4. The 

metrics used for comparison will include accuracy, error rate, 

precision, recall, specificity, and the F-measure across both 

the training and testing phases. This setup will allow us to 

assess the impact of NCA on model effectiveness 

comprehensively. 

 

Figure 4: Details of Full, Training and testing datasets 

for first level of classification. 

(4) 

 

(5) 

 

(6) 

 

(7) 

 

(3) 
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After applying NCA on the dataset, we can specify specific 

score threshold for dropping the columns which their score 

less than threshold. Figure 5 illustrates the feature scores for 

each column using NCA, both in their original order and 

ranked from highest to lowest importance. These visuals 

provide valuable insights into which features are most 

influential in the dataset when NCA is applied.  

 

Fig 5: The feature scores for each column using NCA, both 

in their original order and ranked from highest to lowest 

importance, for first level of classification. 

 

Knowing that, setting a threshold value for feature scores in 

NCA can significantly influence model performance and 

computational efficiency. Our choice of a threshold value of 

0.0022, which results in selecting the top 20 highest-scoring 

features and dropping the other 63, appears to be a strategic 

compromise between performance and efficiency. 

Knowing that, choosing a higher threshold value will lead to 

fewer features being selected. This can simplify the model 

further and reduce training and testing times, but at the risk 

of dropping potentially important features, which might 

degrade the model's performance. It's crucial to ensure that 

the selected features still capture the essence of the data 

without sacrificing the ability to generalize well. Whereas, a 

lower threshold value means more features will be retained, 

which might maintain or even slightly enhance performance 

due to the richer feature set. However, this comes with 

increased computational costs, as more features require more 

processing power and time during both training and testing 

phases. This might not be desirable, especially in scenarios 

where rapid decision-making is critical. The columns that 

their score high or equal threshold ranking from highest to 

lowest score are:  Timestamp, Dst_Port, Src_Port, Dst_IP, 

Init_Bwd_Win_Byts, Pkt_Size_Avg,  Fwd_Pkt_Len_Max, 

Pkt_Len_Var, Flow_ID, Bwd_Pkt_Len_Min, 

Bwd_Pkt_Len_Mean, Bwd_Seg_Size_Avg, Pkt_Len_Std, 

Bwd_Pkt_Len_Max, Fwd_Pkt_Len_Mean, 

Fwd_Seg_Size_Avg, ACK_Flag_Cnt, Pkt_Len_Mean, 

Pkt_Len_Max, Bwd_Pkt_Len_Std. 

The results of the first experiment are shown in Figure 6 and 

Table 3 where (a) specific for comparing different model 

without using NCA, whereas (b) is for results with using 

NCA feature selection. 

a 

 

b 

Fig 6: Results of the first experiment for binary 

classification (a) without and (b) with NCA feature 

selection. 

From Figure 6 and table 3, we can observe several key 

insights based on the metrics provided as follows: 

− Without NCA, models like SVM and DL-LSTM 

achieve perfect scores (1.00) across all metrics. 

Ensemble methods such as Decision Tree and 

Ensemble BagTree also display near-perfect 

performance, suggesting a strong fit.  

− With NCA, the performance of most models either 

improves slightly or remains statistically consistent, 

particularly in precision, recall, and F Measure 

metrics.  

−  
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− Notably, KNN shows significant improvements in 

accuracy and precision, which suggests that NCA 

helps focus this model on more relevant features, 

thereby enhancing its effectiveness. 

− Further analysis reveals Naive Bayes exhibiting a 

slight improvement in most metrics with NCA, 

maintaining good performance even without it—this 

indicates robustness to feature selection.  

− Both Decision Tree and Ensemble BagTree methods 

maintain high performance with and without NCA, 

suggesting their inherent ability to manage 

irrelevant or redundant features effectively.  

− SVM and DL-LSTM continue to show strong 

performance in both scenarios. Additionally, there is 

a general decrease in error rates with the application 

of NCA, indicating fewer misclassifications, and the 

AUC remains high, showcasing excellent model 

capability in distinguishing between classes.  

− Training times for models like KNN are notably 

reduced with NCA, from 8.02 seconds to 1.44 

seconds, improving both model accuracy and 

operational efficiency. Testing times also see 

reductions, which benefits real-time prediction 

scenarios, making NCA a valuable preprocessing 

step for deployment in performance-sensitive 

environments.  

Overall, the application of NCA feature selection appears to 

enhance model performance or maintain high performance 

while reducing computational overhead, emphasizing its 

importance in managing complex datasets like IoTID20. 

B. Second experiment: 

In the second experiment, which mirrors the first in 

methodology, the focus shifts to classifying data into 

categories of 'normal' or various 'types of attack.' The 

experiment utilizes NCA with a threshold value of 0.0016, 

strategically selecting the top 28 features for the classification 

task. Detailed distributions of the full dataset along with the 

training and testing splits are outlined in Figure 7. 

 

Fig 7: Details of Full, Training and testing datasets for 

second level (Multiclass) of classification. 

Additionally, the impact of applying NCA with the specified 

threshold is illustrated in Figure 8, highlighting how this 

approach refines feature selection to enhance model 

performance in distinguishing between normal operations 

and potential attacks. 

Table 3: Results of first experiment. 

3.a Results of the different models without NCA Feature Selection -First Level 

Methods Accuracy Precision Recall Specificity F Measure AUC Error Rate 
Training 

Time (sec) 

Testing 

Time (sec) 

KNN 0.81769 0.57975 0.70685 0.70685 0.59241 0.85387 0.18231 8.02 0.45 

Naïve Bayes 0.97906 0.92662 0.89314 0.89314 0.90909 0.98120 0.02094 8.99 3.21 

Decision Tree 0.99983 0.99956 0.99904 0.99904 0.99930 0.99894 0.00017 34.32 0.25 

Ensemble BagTree 0.99946 0.99971 0.99576 0.99576 0.99772 1.00000 0.00054 400.82 3.59 

Ensemble Adaboost 0.92598 0.96002 0.92598 0.94224 0.98666 0.99999 0.98814 78.30 0.43 

SVM 1 1 1 1 1 1 0 669.97 2.43 

DL-LSTM 1 1 1 1 1 1 0 319.46 11.42 

3.b Results of the different models with NCA Feature Selection -First Level 

Methods Accuracy Precision Recall Specificity F Measure AUC Error Rate Training Time (sec) Testing Time (sec) 

KNN 0.83462 0.58926 0.71549 0.71549 0.60779 0.85641 0.16538 1.44 0.12 

Naïve Bayes 0.98369 0.90286 0.98164 0.98164 0.93808 0.99819 0.01631 1.25 0.40 

Decision Tree 0.99990 0.99966 0.99954 0.99954 0.99960 0.99974 0.00010 5.98 0.09 

Ensemble BagTree 0.99980 0.99989 0.99844 0.99844 0.99917 1.00000 0.00020 152.51 2.40 

Ensemble Adaboost 0.99810 0.99856 0.99810 0.99833 0.99960 0.99999 0.0019 13.61 0.13 

SVM 1 1 1 1 1 1 0 182.36 1.63 

DL-LSTM 1 1 1 1 1 1 0 160.56 6.42 
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Fig 8: The feature scores for each column using NCA, both 

in their original order and ranked from highest to lowest 

importance for second level of classification. 

The columns that their score high or equal threshold ranking 

from highest to lowest score are: Timestamp, Src_Port, 

Dst_Port, Pkt_Len_Max, Pkt_Len_Std, ACK_Flag_Cnt, 

Dst_IP, Flow_ID, Fwd_Pkt_Len_Min, Bwd_Pkt_Len_Max, 

Pkt_Size_Avg, Flow_Duration, SYN_Flag_Cnt, Protocol, 

Bwd_Pkt_Len_Min, Fwd_Pkt_Len_Max, 

Bwd_Pkt_Len_Mean, Bwd_Seg_Size_Avg, 

Fwd_Pkt_Len_Mean, Fwd_Seg_Size_Avg, 

Init_Bwd_Win_Byts, Bwd_IAT_Tot, Src_IP, 

Pkt_Len_Mean, Fwd_Pkt_Len_Std, Pkt_Len_Var, 

Pkt_Len_Min, Idle_Max. 

The results of the second experiment are shown in Figure 9 

where (a) specific for comparing different model without 

using NCA, whereas (b) is for results with using NCA feature 

selection. Moreover, the training and testing time for second 

level of classification is shown in table 4. 

 

a 

 

b 

Fig 9: Results of second experiment for multiclass 

classification (a) without and (b) with NCA feature 

selection. 

From Figure 9 we can observe the following:  

− The use of NCA generally enhances model 

performance across most metrics. This is especially 

evident in models like SVM and DL-LSTM, where 

almost all performance metrics are at or near perfect 

scores. 

− Notably, the error rates for most models are 

significantly reduced when NCA is applied. This 

suggests that NCA effectively enhances the models' 

ability to generalize, which is critical in avoiding 

overfitting and improving model robustness. 

− Naïve Bayes: Shows improvement in accuracy, 

precision, and AUC with NCA, reflecting better 

generalization and effective feature utilization. 

− Decision Tree: This model shows a high recall rate 

consistently, but a minor rise in error rate occurs 

with NCA, which implies trade-off between 

sensitivity and specificity. 

− KNN: With the use of NCA only a moderate 

improvement in performance metrics is observed, 

showing that KNN does benefit from feature 

selection, but its performance is limited when 

compared to more sophisticated models.  

− Ensemble BagTree and Adaboost: Both models 

demonstrate large gains in all measures with NCA, 

especially in AUC and error rates, that confirm the 

strength of ensemble methods with proper feature 

selection.  

− SVM: NCA achieves almost perfect metrics in all 

dimensions, thus, being one of the best performing 

in both setups.  

− DL-LSTM: Keeps a very good performance metrics 

with and without NCA, with small improvements in 

error rates and AUC with NCA, demonstrating its 

ability to handle complex data patterns.  

This detailed study emphasizes the usefulness of NCA in 

improving classification models performance, which makes 

it a useful tool for the preprocessing stage of model training, 

particularly when it comes to complex and big datasets.  

From Table 4, we can observe that: 

− In absence of NCA, models such as Naïve Bayes and 

Decision Tree show short training and testing times, 

efficiency and fast evaluating, respectively. KNN 

gives moderate times but is a little bit slower than 

the other two. The more complicated models, like 

BagTree, Adaboost, SVM, and DL-LSTM, from the 

ensemble methods, have long training times because 

of their intricate computations and dealing with 

high-dimensional data. More specifically, DL-

LSTM results in the longest training and testing 

times which point to its computational intensity 
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because it is based on an architecture optimized for 

sequential data. The overall comparison emphasizes 

the computational requirements differences among 

various classification models.  

− The use of NCA always results in lower training and 

testing times for all models. This implies that, by 

reducing the number of features, NCA does not only 

benefit the computational process but may also help 

in concentrating the model’s learning on the most 

influential features, therefore, improving the model 

accuracy and response.  

− Models such as DL-LSTM enjoy the most important 

advantage from NCA in the form of time-saving that 

is crucial for deployment in environments when 

time is of the essence.  

− Although ensemble methods still take a significant 

amount of computational time even with NCA, the 

decrease is substantial, which can make them more 

practical in scenarios where their robustness can be 

used without such a heavy penalty on performance 

speed.  

In general, NCA helps in improving computational efficiency 

and is especially useful when optimizing complex models for 

real-time or near real-time applications in network behavior 

classification.  

Finally, the performance measure for each class for LSTM 

using NCA Feature Selection, confusion matrix and ROC 

curve are presented in Table 5, Figure 10-a and Figure 10-b 

respectively. 

 

a 

 

b 

Fig 10: (a) Confusion matrix and (b) ROC curve for LSTM 

using NCA for second level of classification. 

Table 4: Time for training and testing of different models for the second level of classification with and without 

NCA.  
Training Time (sec) Testing Time (sec) 

Methods Without NCA With NCA Without NCA With NCA 

Naïve Bayes 6.62 1.77 3.63 1.17 

Decision Tree 28.85 10.02 0.18 0.08 

KNN 7.35 2.66 0.77 0.29 

Ensemble BagTree 454.98 222.48 5.83 4.27 

Ensemble Adaboost 871.40 363.81 3.54 3.56 

SVM 133.52 66.33 3.54 3.23 

DL-LSTM 505.59 177.64 16.20 7.31 

 
Table 5: Performance measure for each class for LSTM using NCA Feature Selection 

Class Accuracy Precision Recall Specificity F Measure AUC Error Rate 

'DoS' 0.99994 0.99983 0.99958 0.99998 0.99971 0.99987 0.00006 

'MITM ARP Spoofing' 0.99974 0.99844 0.99703 0.99991 0.99774 0.99949 0.00026 

'Mirai' 0.99977 0.99971 0.99994 0.99943 0.99983 0.99981 0.00023 

'Normal' 0.99983 0.99925 0.99813 0.99995 0.99869 0.99943 0.00017 

'Scan' 0.99975 0.99887 0.99907 0.99985 0.99897 0.99977 0.00025 

Average 0.99981 0.99922 0.99875 0.99982 0.99899 0.99968 0.00019 
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VI. CONCLUSION 

This study showcases the high potential of combining 

Machine Learning (ML) and Deep Learning (DL) methods 

with Neighborhood Component Analysis (NCA) for 

improving Intrusion Detection Systems (IDS) in Industrial 

Internet of Things (IIoT) environments. Extensive 

experimentations have supported the fact that ML and DL 

models, when optimized using NCA feature selection, not 

only show improvements in performance metrics such as 

accuracy, precision, recall, and AUC but also demonstrate 

significant reductions in training and testing times. Of special 

note is the efficiency of NCA in reducing the dimensionality 

of the features without losing the capability of detection. It 

facilitates better data processing that is vital in real-time 

intrusion detection scenarios, with prompt response being a 

requirement. The models tested, particularly the DL-LSTM 

and SVM, have yielded results close to perfection scores, 

which demonstrate the strength of the approach in a security-

critical setting.  

 For future research in improving Intrusion Detection 

Systems for the Industrial Internet of Things (IIoT), the focus 

should be on the combination of advanced machine learning 

techniques among which are hybrid models that combine 

different ML and DL approaches to effectively deal with 

complex attack patterns. With federated learning, the privacy 

and scalability of such systems in distributed settings could 

be enhanced. Further, the improvement of autonomous and 

adaptive IDS capabilities that will be able to update and 

respond to new threats on the fly would be advantageous. 

Increasing the testing to wider and bigger datasets would 

enable the verification of the models’ robustness and 

scalability. Finally, integration of XAI practices would 

improve the transparency and trustworthiness of such 

systems, a key aspect for their operational compliance in the 

context of sensitive industrial applications. 

References 

[1] Alotaibi, B. (2023). A survey on Industrial Internet of 

Things security: Requirements, attacks, AI based 

solutions, and edge computing opportunities. Sensors, 

23(17), 7470. https://doi.org/10.3390/s23177470 

[2] Mirani, A. A., Velasco-Hernandez, G., Awasthi, A., & 

Walsh, J. (2022). Key challenges and emerging 

technologies in Industrial IoT architectures: A review. 

Sensors, 22(15), 5836. 

https://doi.org/10.3390/s22041586 

[3] Oladimeji, D., Gupta, K., Kose, N. A., Gundogan, K., 

Ge, L., & Liang, F. (2023). Smart transportation: An 

overview of technologies and applications. Sensors, 

23(8), 3880. https://doi.org/10.3390/s23083880 

[4] Gupta, K., Oladimeji, D., Kose, N. A., Gundogan, K., 

Ge, L., & Liang, F. (2023). The role of Industrial IoT in 

manufacturing for implementation of smart industry. 

Sensors, 23(21), 8958. 

https://doi.org/10.3390/s23218958 

[5] Yao, H., Gao, P., Zhang, P., Wang, J., Jiang, C., & Lu, 

L. (2019). Hybrid Intrusion Detection System for Edge-

Based IIoT Relying on Machine-Learning-Aided 

Detection. IEEE Network, 33, 75-81. 

https://doi.org/10.1109/MNET.001.1800479. 

[6] Eid, A., Nassif, A., Soudan, B., & Injadat, M. (2023). 

IIoT Network Intrusion Detection Using Machine 

Learning. 2023 6th International Conference on 

Intelligent Robotics and Control Engineering (IRCE), 

196-201. 

https://doi.org/10.1109/IRCE59430.2023.10255088. 

[7] Zolanvari, M., Teixeira, M., Gupta, L., Khan, K., & Jain, 

R. (2019). Machine Learning-Based Network 

Vulnerability Analysis of Industrial Internet of 

Things. IEEE Internet of Things Journal, 6, 6822-6834. 

https://doi.org/10.1109/JIOT.2019.2912022. 

[8] Guezzaz, A., Azrour, M., Benkirane, S., Mohy-Eddine, 

M., Attou, H., & Douiba, M. (2022). A Lightweight 

Hybrid Intrusion Detection Framework using Machine 

Learning for Edge-Based IIoT Security. Int. Arab J. Inf. 

Technol., 19, 822-830. 

https://doi.org/10.34028/iajit/19/5/14. 

[9] Ferrag, M., Friha, O., Hamouda, D., Maglaras, L., & 

Janicke, H. (2022). Edge-IIoTset: A New 

Comprehensive Realistic Cyber Security Dataset of IoT 

and IIoT Applications for Centralized and Federated 

Learning. IEEE Access, PP, 1-1. 

https://doi.org/10.1109/ACCESS.2022.3165809. 

[10] Ullah, S., Boulila, W., Koubâa, A., & Ahmad, J. (2023). 

MAGRU-IDS: A Multi-Head Attention-Based Gated 

Recurrent Unit for Intrusion Detection in IIoT 

Networks. IEEE Access, 11, 114590-114601. 

https://doi.org/10.1109/ACCESS.2023.3324657. 

[11] Vaiyapuri, T., Sbai, Z., Alaskar, H., & Alaseem, N. 

(2021). Deep Learning Approaches for Intrusion 

Detection in IIoT Networks – Opportunities and Future 

Directions. International Journal of Advanced 

Computer Science and Applications, 12. 

https://doi.org/10.14569/IJACSA.2021.0120411. 

[12] Tang, W., Li, D., Fan, W., Liu, T., Chen, M., & Dib, O. 

(2023). An Intrusion Detection System Empowered by 

Deep Learning Algorithms. 2023 IEEE Intl Conf on 

Dependable, Autonomic and Secure Computing, Intl 

Conf on Pervasive Intelligence and Computing, Intl 

Conf on Cloud and Big Data Computing, Intl Conf on 

Cyber Science and Technology Congress 

(DASC/PiCom/CBDCom/CyberSciTech), 1137-1142. 

https://doi.org/10.1109/DASC/PiCom/CBDCom/Cy59

711.2023.10361315. 

[13] Rodríguez, D., Okey, O., Maidin, S., Udo, E., & 

Kleinschmidt, J. (2023). Attentive transformer deep 

learning algorithm for intrusion detection on IoT 

https://doi.org/10.3390/s23083880
https://doi.org/10.3390/s23218958
https://doi.org/10.1109/MNET.001.1800479
https://doi.org/10.1109/IRCE59430.2023.10255088
https://doi.org/10.1109/JIOT.2019.2912022
https://doi.org/10.34028/iajit/19/5/14
https://doi.org/10.1109/ACCESS.2022.3165809
https://doi.org/10.14569/IJACSA.2021.0120411
https://doi.org/10.1109/DASC/PiCom/CBDCom/Cy59711.2023.10361315
https://doi.org/10.1109/DASC/PiCom/CBDCom/Cy59711.2023.10361315


International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4176–4189 |  4189 

systems using automatic Xplainable feature 

selection. PLOS ONE, 18. 

https://doi.org/10.1371/journal.pone.0286652. 

[14] Saxena, A., Pant, B., Alanya-Beltran, J., Akram, S., 

Bhaskar, B., & Bansal, R. (2022). A Detailed Review of 

Implementation of Deep Learning Approaches for 

Industrial Internet of Things with the Different 

Opportunities and Challenges. 2022 5th International 

Conference on Contemporary Computing and 

Informatics (IC3I), 1370-1375. 

https://doi.org/10.1109/IC3I56241.2022.10072499. 

[15] I. Ullah and Q. H. Mahmoud, "A Scheme for Generating 

a Dataset for Anomalous Activity Detection in IoT 

Networks." In: Goutte C., Zhu X. (eds) Advances in 

Artificial Intelligence. Canadian AI 2020. Lecture Notes 

in Computer Science, vol 12109. Springer, Cham. 

https://doi.org/10.1007/978-3-030-47358-7_52 

[16] Daniel, L., Chen, P.-Y., Liu, S., Ko, C.-Y., Mohapatra, 

J., & Weng, T.-W. (2022). Revisiting contrastive 

learning through the lens of neighborhood component 

analysis: An integrated framework. Proceedings of the 

39th International Conference on Machine Learning. 

https://proceedings.mlr.press/v162/ko22a.html 

[17] Ko, C.-Y., Mohapatra, J., Liu, S., Chen, P.-Y., Daniel, 

L., & Weng, T.-W. (2022). Revisiting contrastive 

learning through the lens of neighborhood component 

analysis: An integrated framework. MIT-IBM Watson 

AI Lab. Retrieved from 

https://mitibmwatsonailab.mit.edu/research/blog/revisit

ing-contrastive-learning-through-the-lens-of-

neighborhood-component-analysis-an-integrated-

framework/ 

[18] Tsiapoki, S., Bahrami, O., Häckell, M., Lynch, J., & 

Rolfes, R. (2020). Combination of damage feature 

decisions with adaptive boosting for improving the 

detection performance of a structural health monitoring 

framework: Validation on an operating wind 

turbine. Structural Health Monitoring, 20, 637 - 660. 

https://doi.org/10.1177/1475921720909379. 

[19] Yu, H., Xu, C., Geng, G., & Jiang, Q. (2024). Multi-

Time-Scale Shapelet-Based Feature Extraction for Non-

Intrusive Load Monitoring. IEEE Transactions on 

Smart Grid, 15, 1116-1128. 

https://doi.org/10.1109/TSG.2023.3285117. 

[20] Chen, L., Dong, X., Wang, B., Shang, L., & Liu, C. 

(2024). An Edge Computing-Oriented Islanding 

Detection Using Differential Entropy and Multi-

Support Vector Machines. IEEE Transactions on Smart 

Grid, 15, 191-202. 

https://doi.org/10.1109/TSG.2023.3288361. 

[21] Pujar, P., Kumar, A., & Kumar, V. (2024). Efficient plant 

leaf detection through machine learning approach based 

on corn leaf image classification. IAES International 

Journal of Artificial Intelligence (IJ-AI). 

https://doi.org/10.11591/ijai.v13.i1.pp1139-1148. 

[22] Wang, Y., Yan, Z., Sang, L., Hong, L., Hu, Q., 

Shahidehpour, M., & Xu, Q. (2024). Acceleration 

Framework and Solution Algorithm for Distribution 

System Restoration Based on End-to-End Optimization 

Strategy. IEEE Transactions on Power Systems, 39, 

429-441. 

https://doi.org/10.1109/TPWRS.2023.3262189. 

[23] Nordin, S., Wah, Y., Haur, N., Hashim, A., Rambeli, N., 

& Jalil, N. (2024). Predicting automobile insurance 

fraud using classical and machine learning 

models. International Journal of Electrical and 

Computer Engineering (IJECE). 

https://doi.org/10.11591/ijece.v14i1.pp911-921. 

[24] Vaiyapuri, T., & Binbusayyis, A. (2024). Deep self-

taught learning framework for intrusion detection in 

cloud computing environment. IAES International 

Journal of Artificial Intelligence (IJ-AI). 

https://doi.org/10.11591/ijai.v13.i1.pp747-755. 

[25] Alrahhal, M., & Supreethi K.P. (2020). Multimedia 

Image Retrieval System by Combining CNN With 

Handcraft Features in Three Different Similarity 

Measures. International Journal Of Computer Vision 

And Image Processing, 10(1), 1-23. DOI: 

10.4018/ijcvip.2020010101. 

[26] Alrahhal, M., & K.P, S. (2021). Full Direction Local 

Neighbors Pattern (FDLNP). International Journal Of 

Advanced Computer Science And Applications, 12(1). 

DOI: 10.14569/ijacsa.2021.0120116. 

[27] Alrahhal, M., & K P, S. (2021). COVID-19 Diagnostic 

System Using Medical Image Classification and 

Retrieval: A Novel Method for Image Analysis. The 

Computer Journal. DOI: 10.1093/comjnl/bxab051. 

 

 

.

 

https://doi.org/10.1109/IC3I56241.2022.10072499
https://mitibmwatsonailab.mit.edu/research/blog/revisiting-contrastive-learning-through-the-lens-of-neighborhood-component-analysis-an-integrated-framework/
https://mitibmwatsonailab.mit.edu/research/blog/revisiting-contrastive-learning-through-the-lens-of-neighborhood-component-analysis-an-integrated-framework/
https://mitibmwatsonailab.mit.edu/research/blog/revisiting-contrastive-learning-through-the-lens-of-neighborhood-component-analysis-an-integrated-framework/
https://mitibmwatsonailab.mit.edu/research/blog/revisiting-contrastive-learning-through-the-lens-of-neighborhood-component-analysis-an-integrated-framework/
https://doi.org/10.1177/1475921720909379
https://doi.org/10.1109/TSG.2023.3285117
https://doi.org/10.1109/TSG.2023.3288361
https://doi.org/10.11591/ijai.v13.i1.pp1139-1148
https://doi.org/10.1109/TPWRS.2023.3262189
https://doi.org/10.11591/ijece.v14i1.pp911-921
https://doi.org/10.11591/ijai.v13.i1.pp747-755

