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Abstract: Given that soil composition influences nutrient cycling, biodiversity support, and water regulation, it is critical to the ecosystem's 

health.  It reduces greenhouse gas emissions by acting as a carbon sink and storing organic carbon. Maintaining arable land, preventing 

sedimentation in water bodies, and managing erosion are all significantly influenced by the texture and structure of the soil. Furthermore, 

because some soil constituents enhance the quality of the soil and water by absorbing and digesting pollutants, soil composition has an 

impact on pollution remediation. It is imperative to acknowledge the significance of soil content in order to sustain ecosystems and apply 

sustainable land management techniques. Research is mainly focused on evaluating precision, recall, true positive rate, and F-measure in 

order to forecast the Organic Matter Content in soil, such as that found in homes, farms, and forests. Machine learning methods like Naive 

Bayes, KNN, SVM, and Random Forest are employed in this study. The outcomes demonstrate that Random Forest outperforms other 

algorithms in the prediction of soil organic matter content.. 
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1. Introduction 

Forests are pivotal in combating climate change, as they 

absorb carbon dioxide from the atmosphere, storing it within 

their biomass. However, this stored carbon is released back 

into the atmosphere after the burning or felling of trees, 

which exacerbates the greenhouse effect and contributes to 

global warming. For biodiversity, carbon sequestration, and 

ecological health, forests are essential. For efficient forest 

management and conservation initiatives, it is essential to 

comprehend the soil qualities found in forests. Conventional 

soil examination techniques can be expensive, time-

consuming, and difficult, labour-intensive, and costly. 

Machine learning methods have become increasingly 

effective in recent years at deciphering complicated datasets 

and drawing insightful conclusions. In order to better 

understand, manage, and conserve forest ecosystems, this 

research investigates the use of machine learning algorithms 

to analyze the features of forest soil. The significance of soil 

properties in forest ecosystems Plant development, species 

distribution, and ecosystem function are influenced by the 

texture, moisture content, nutrient levels, and composition 

of the soil. Assessing the productivity, resilience, and health 

of forests to environmental stresses including land-use 

change and climate change requires an understanding of soil 

properties. 

Conventional techniques for analyzing soil include of data 

interpretation by hand, laboratory analysis, and field 

sampling. Large amounts of soil data can be quickly 

analyzed using machine learning techniques, which can also 

be used to predict soil parameters at different geographical 

scales and spot patterns and relationships. Labeled soil 

datasets can be used to train supervised learning algorithms, 

such as gradient boosting, random forests, and support 

vector machines, to predict soil attributes based on 

environmental variables. 

Farmers can choose the best crops to plant and improve their 

irrigation and fertilization techniques by having a thorough 

understanding of the composition of the soil in sandy areas. 

Estimating the amount of soil in sand helps evaluate the 

quality of the soil and spot possible environmental problems 

like contamination, salinity, or soil erosion. For construction 

projects in sandy areas, understanding the nature of the soil 

is essential for ensuring stability, preventing foundation 

issues, and choosing the right building materials. Land use 

planning decisions, including zoning laws, urban 

development, and conservation initiatives, are influenced by 

predictions about the soil content of sandy regions. By 

providing insight into sedimentary deposition, soil 

formation processes, and landscape change, soil content 

prediction in sand advances geological research. 

Large particles and air gaps in sandy soil provide for 

superior drainage. This keeps soil from becoming soggy and 

lets extra water evaporate fast, which is good for a lot of 

crops—especially those that are vulnerable to root rot. In the 

spring, sandy soil heats up faster than other soil types. This 

makes it easier to plant early and encourages quicker crop 
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germination and growth, which lengthens the growing 

season. Because of its loose nature, sandy soil is typically 

easier to deal with and grow. It is easier to till and aerate, 

which lowers labor and equipment expenses. Loam or clay 

soils are more prone to compaction than sandy soils. Better 

root penetration and growth are made possible by this, 

which promotes healthier plants that absorb nutrients more 

effectively. Sand soil's loose texture lessens the possibility 

of soil erosion brought on by water and wind. This keeps 

priceless topsoil from being lost and helps to preserve soil 

fertility. Because sandy soil drains efficiently, it can be less 

friendly to some soil-borne pathogens and diseases, which 

can lower the frequency of plant diseases. Although sandy 

soil may not hold onto moisture and nutrients as well as 

other soil types, it can be used to grow crops—like some 

fruits and vegetables and drought-tolerant plants—that do 

well in well-drained environments. Early planting is made 

possible by the sandy soil's rapid spring warming, which 

gives farmers an advantage over other crops by starting the 

growing season early. 

These are only a few instances of the various applications of 

carbon dioxide in various industries. Carbon dioxide is an 

essential gas for many commercial, industrial, and scientific 

uses in addition to being a greenhouse gas. Photosynthesis 

is the process by which plants, algae, and certain bacteria 

transform CO2, water, and sunshine into oxygen and 

carbohydrates. Carbon dioxide is an essential part of this 

process. The production of oxygen, which is necessary for 

breathing for both humans and other creatures, depends on 

this process. To promote plant development, greenhouses 

and other controlled environments employ carbon dioxide. 

Increased crop yields and photosynthesis can result from 

higher CO2 levels, which will improve agricultural 

production and food security. Beverages like soda, beer, and 

sparkling water are carbonated with carbon dioxide to give 

them the pleasing fizz and bubbles that consumers love. 

Medical applications for carbon dioxide include 

laparoscopy (minimally invasive surgery), cryotherapy 

(freezing tissue for medical operations), and medicinal gas 

mixes used as respiratory stimulants. In fire extinguishers 

and fire suppression systems, carbon dioxide is utilized as a 

fire suppressant. It smothers the flames and inhibits 

combustion by displacing oxygen in the vicinity. Carbon 

dioxide from industrial sources is sequestered and kept 

underground or used for enhanced oil recovery (EOR) to 

lower emissions into the environment in an attempt to slow 

down climate change. Carbon dioxide traps heat and helps 

to maintain a stable climate that is conducive to human 

habitation, even while excess CO2 in the atmosphere also 

contributes to global warming and climate change. 

Since nitrogen is a part of proteins, chlorophyll, and nucleic 

acids, it is a nutrient that is necessary for plant growth. Its 

advantages include increased crop yields, robust plant 

development, and overall ecosystem productivity when 

nitrogen levels are appropriate. Additionally, it increases the 

plant's ability to withstand stress and raises the caliber of 

harvested goods. As a key component of soil organic matter, 

carbon helps with nutrient cycling, soil structure, and water 

retention. Its advantages include supporting soil microbial 

activity, organic matter decomposition, and nutrient 

availability with appropriate carbon levels. Soils that are 

high in carbon typically hold water better, have better soil 

structure, and are more fertile. In proposed system we are 

categorizing the soil types such that Forest soil, Residential 

soil to predict which type of soil have more good chemical 

composition. In Table 1 shown the Characteristic of soil 

type.  

Table 1. Characteristics of Each Soil Type 

Soil Type Characteristics 

Forest Soil 

- Dark color due to high organic matter 

content 

 

- Thick layer of decomposed leaves, twigs, 

and other plant material 

 - Well-aerated with a spongy texture 

 - Good water infiltration and retention 

 

- Slightly acidic pH due to decomposition 

of organic matter 

Agricultural Soil 

- Variable color, often darker than forest 

soil due to organic matter from crop 

residues and manure 

 

- Tilled to improve structure and root 

penetration 

 

- Can be compacted in some areas due to 

plowing or machinery use 

 

- May contain higher levels of nutrients due 

to fertilization practices 

Residential Soil 

- Varies widely in texture and composition 

depending on landscaping practices and 

land use history 

 

- May be enriched with organic matter from 

compost or mulch 

 

- Can contain contaminants such as heavy 

metals or pollutants from urban runoff 

depending on surrounding land use and 

history 

 

The relative amounts of sand, clay, and silt particles in the 

soil influence its texture, which has an impact on nutrient 

availability, drainage, and water retention. Good soil 

structure, water infiltration, and root penetration are all 

encouraged by soil that has an ideal ratio of sand, clay, and 

silt particles. It promotes healthy microbial activity, nutrient 

exchange, and aeration, all of which enhance plant growth 
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and productivity. Another kind of inorganic nitrogen that is 

necessary for plant nutrition and that influences soil fertility 

and plant growth is ammonium. Sufficient starting 

ammonium levels offer a quick source of nitrogen for plant 

uptake, encouraging early development and growth. 

Additionally, it helps to increase soil fertility, ecosystem 

productivity, and nutrient availability. Reflects the amount 

of nitrogen that soil microorganism’s store, showing soil 

fertility and microbial activity. Elevated amounts of 

nitrogen-containing microbial biomass suggest the presence 

of dynamic soil microbial communities involved in nitrogen 

fixation, organic matter breakdown, and nutrient cycling. 

Plant productivity, nutrient availability, and soil fertility are 

all enhanced by this. The process that transforms organic 

nitrogen into inorganic forms (like ammonium and nitrate) 

that plants may absorb is known as "net nitrogen 

mineralization." The release of accessible nitrogen from 

organic matter is indicated by positive net nitrogen 

mineralization rates, which promote plant production and 

growth. It helps to enhance nutrient cycling, soil fertility, 

and ecosystem health. The process by which nitrifying 

bacteria in the soil change ammonium to nitrate, affecting 

the availability of nitrogen for plant uptake, is known as net 

nitrification. 

2. Materials and Methods 

The previous study attempted to categorize soil texture in 

photos taken with an ultraviolet fluorescent camera (UFC). 

The result of semantic segmentation was then broken down 

into smaller tiles, and to improve the robustness of the data, 

texture-enhancing filters were applied to a subset of the tiles 

using Garbon filters. This highlighted the various soil 

patterns in each image. Following the input of these photos 

into a convolutional neural network (CNN) for texture 

classification, the accuracy of the results significantly 

improved. 

The prior research made an effort to classify soil texture in 

images captured by an ultraviolet fluorescent camera 

(UFC). After semantic segmentation, the output was divided 

into smaller tiles. To increase the data's resilience, texture-

enhancing Garbon filters were then applied to a portion of 

the tiles. This brought to light the different soil patterns in 

every picture. The accuracy of the results greatly increased 

once these images were fed into a convolutional neural 

network (CNN) for texture classification. (Forkuo et al. 

2018) The caliber and representativeness of the training data 

have a significant impact on how well the naive Bayes 

classifier performs. Inaccurate categorization results may 

arise from the study's use of biased, small-scale, or 

inadequately diversified data.  (Myers, Montgomery 2016) 

There may be a lack of depth or comprehensiveness in the 

paper's discussion of the biotic factors affecting potato tuber 

yield and quality. It can leave out crucial details or not go 

into enough detail on the mechanics underlying the impacts 

that are seen.  (Lookman, Alexander 2018), There may be a 

lack of depth or comprehensiveness in the paper's discussion 

of the biotic factors affecting potato tuber yield and quality. 

It can leave out crucial details or not go into enough detail 

on the mechanics underlying the impacts that are seen.  

(Bisgaard and Kulahci 2011) this paper may lack original 

contributions and may not provide novel insights or 

practical applications for practitioners. (D. K. Muriithi 

2018) the quality and quantity of data used in the 

optimization process have a significant impact on its 

correctness and dependability. Inadequate or subpar data 

may jeopardize the validity of the study's conclusions and 

the efficiency of the optimization procedure. The study may 

concentrate on particular circumstances or elements 

affecting potato tuber yield, which could restrict the 

applicability of the conclusions to different geographical 

areas, climatic conditions, or farming methods. 

2.1. Problem Identification 

 In the earlier work, the classification of soil texture 

in images taken under UFC was the main focus. Following 

semantic segmentation, the output is divided into smaller 

tiles. Texture-enhancing filters, such as the Garbon filter, 

are then applied to a subset of the tiles, highlighting different 

soil patterns in each image and boosting data robustness. 

After that, the images are sent into a CNN texture 

classification system, which greatly increases the accuracy. 

2.2. System Architecture 

Fig. 1 shows the information preparation process as 

converting raw data into a comprehensible or useable 

format. Pre-processing data typically consists of three 

stages. They are data transformation, information reduction, 

and information purification. Normalization of the dataset is 

made possible by data cleansing, or the act of removing 

erroneous information. The mapping of the data's 

homogeneity is known as transformation. Data reduction is 

the process of transforming data from a disorganized to a 

simplified state. The data are arranged in this case in an 

unsupervised manner. Using machine learning methods like 

SVM and Random Forest, we applied classification 

approaches to forecast the Organic Matter Content. 

Accurately classified instances, incorrectly classified 

instances, recall, precision, false positive rate, and true 

positive rate were among the assessment criteria. Our 

investigation, which was made possible by the use of the 

machine learning tool WEKA, sought to determine the ideal 

https://paperpile.com/c/PL5B8X/5etR
https://paperpile.com/c/PL5B8X/5etR
https://paperpile.com/c/PL5B8X/GBkS
https://paperpile.com/c/PL5B8X/GBkS+1DC1+IKnf+Yi3T+BTO1
https://paperpile.com/c/PL5B8X/GBkS+1DC1+IKnf+Yi3T+BTO1
https://paperpile.com/c/PL5B8X/5etR
https://paperpile.com/c/PL5B8X/5etR
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precision. 

 

Fig 1.  System Architecture 

2.3. Data Collection 

The Kaggle website will compile information about several 

categories of soil characteristics. The emphasis on 

agricultural, residential, and forest soil types and their 

corresponding advantages are shown in Figure 1. It will 

offer comprehensive data on the composition of the soil, 

including nitrogen, carbon, ammonium, nitrate, nitrite, and 

microbial biomass nitrogen. We have specifically gathered 

data on the properties of forest soil. 

The year built, the age of the grass, bulk density, and past 

and present land uses are all considered independent 

variables. The dependent variables include the following: 

respiration, initial NO3 (+NO2), initial ammonium content, 

microbial biomass nitrogen, net nitrogen mineralization, 

and net nitrification; nitrogen percentage, carbon 

percentage, carbon to nitrogen ratio, nitrogen content in 

grams per square meter, carbon content in grams per square 

meter, percentage of sand, clay, and silt; and microbial 

biomass carbon. 

The Kaggle website will be used to collect data on the 

various types of soil properties. The information in Fig. 1 

will focus on the many types of soil that are present in 

agricultural, residential, and forest environments, as well as 

the benefits associated with each. It will include a list of the 

elements that make up the soil, such as carbon, microbial 

biomass, nitrogen, ammonium, nitrate and nitrite, and 

carbon. We collected information about the characteristics 

of the forest soil. The independent determinants are the bulk 

density, year of building, age of the grass, and past and 

present land uses. Respiration, starting NO3 (+NO2), 

starting ammonium content, percentages of sand, clay, and 

silt, nitrogen percentage, carbon percentage, and carbon to 

nitrogen ratio, as well as nitrogen and carbon contents in 

grams per square meter, are the dependent variables. 

Classification is a data mining approach that helps with 

more accurate analysis and prediction by classifying a data 

set. In data mining, classification algorithms are frequently 

used to separate data into discrete groups. Many sectors 

employ classification techniques to identify the kind and 

category to which a given tuple belongs. Identification of 

microorganisms is aided by classification. Facilitates the 

formation of alliances between several types of organisms. 

Aids in comprehending the phylogeny and evolutionary 

history of species. 

2.4. Classification 

The process of classifying data into distinct classes or 

categories according to its attributes or features is known as 

machine learning classification. Machine learning 

classification is mostly used to automatically categorize 

fresh, unseen data into predetermined classes or categories. 

Machine learning classification algorithms use labeled 

training data to identify patterns, which they then use to 

new, unseen data to predict or classify it. These algorithms 

might be as basic as decision trees and logistic regression or 

as sophisticated as support vector machines, random forests, 

and neural networks. The size of the dataset, the type of data, 

and the required degree of accuracy or interpretability all 

influence the algorithm selection. 

One example of a categorization challenge is the ability to 

identify spam in email service providers. In this 

classification, there are only two options: "spam" or "not 

spam." It is binary as a result. A classifier establishes the 

relationship between a given set of input variables and the 

class using training data. In this scenario, training data must 

include both known spam and non-spam emails. After the 

classifier is correctly trained, it can recognize an unfamiliar 

email. Classification is one type of supervised learning in 

which the objectives are also given input data. Classification 

can help with target marketing, credit approval, medical 

diagnosis, and other duties. 

3. Machine Learning Algorithm 

3.1. Naïve Bayes 

A popular probabilistic classifier in machine learning for a 

variety of applications is Naive Bayes. It is frequently 

utilized in text mining tasks like document categorization, 

sentiment analysis, and spam filtering. Naive Bayes is a 

recommendation algorithm that can be used in 

recommendation systems to provide users with information 

or items based on past behavior or preferences.  

The initial stage in applying the Naive Bayes algorithm is to 

gather labelled training data, which is made up of soil 

sample labels that correspond to different classes, including 

residential, agricultural, or forest. Subsequently, the pre-

processed data is separated into training and testing sets, 

pertinent features are extracted, and categorical 

characteristics are encoded if needed. The class priors and 

class-conditional probabilities for every soil component 

given each class are then computed using the training data 
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to train the Naive Bayes classifier. The class with the highest 

posterior probability is chosen as the projected class label 

during prediction. The posterior probability of each class is 

computed for each new soil sample using the Naive Bayes 

method. Finally, the classifier is evaluated by comparing the 

predicted class labels with the true class labels from the 

testing set to measure the classification accuracy. 

PSEUDOCODE: 

1. Collect training data consisting of soil samples with 

associated class labels (e.g., forest, agricultural, residential). 

2. Preprocess the data: 

   - Extract relevant features (soil components) from the soil 

samples. 

   - Encode categorical features if necessary. 

   - Split the data into training and testing sets. 

3. Train the Naive Bayes classifier: 

   - Calculate class priors P(C) for each class (e.g., forest, 

agricultural, residential). 

   - For each class C: 

     - Calculate the class-conditional probabilities P(X|C) for 

each soil component X given class C using the training data. 

       - Use appropriate probability estimation methods such 

as Gaussian Naive Bayes for continuous features or 

Multinomial Naive Bayes for discrete features. 

4. Predict the class label for new soil samples: 

   - For each new soil sample: 

     - Calculate the posterior probability P(C|X) for each class 

C using the Naive Bayes formula: 

       P(C|X) = P(C) * P(X1|C) * P(X2|C) * ... * P(Xn|C) 

       where X1, X2, ..., Xn are the soil components in the 

sample. 

     - Select the class with the highest posterior probability as 

the predicted class label. 

5. Evaluate the classifier: 

   - Compare the predicted class labels with the true class 

labels from the testing set to measure the classification 

accuracy. 

   - Optionally, calculate other performance metrics such as 

precision, recall, and F1-score. 

3.2. K Nearest Neighbor (KNN) 

An efficient machine learning approach for both 

classification and regression problems is the k-Nearest 

Neighbors (k-NN) algorithm.  The technique just commits 

the training dataset to memory throughout the training 

phase. The algorithm determines the distance between a new 

data point and every other point in the training dataset in 

order to predict the class of that new point.  

The primary stage in putting the k-Nearest Neighbors 

(KNN) method into practice is gathering labeled training 

data, which consists of soil samples labeled with matching 

classes as residential, agricultural, or forest. After that, the 

data goes through preprocessing, during which pertinent 

characteristics are taken out of the soil samples and, if 

necessary, categorical features are encoded. Next, the 

dataset is split up into testing and training sets. The training 

data and related class labels are then stored, and the KNN 

classifier is trained. Using a selected distance metric, like 

the Manhattan or Euclidean distance, the algorithm 

determines the distance between each fresh soil sample and 

all training samples during the prediction phase. The k 

nearest neighbors are selected based on the calculated 

distances, and the majority class label among the k 

neighbors is assigned as the predicted class label for the new 

sample. Finally, the classifier's performance is evaluated by 

comparing the predicted class labels with the true class 

labels from the testing set to measure classification 

accuracy. 

PSEDOCODE: 

1. Collect training data consisting of soil samples with 

associated class labels (e.g., forest, agricultural, residential). 

2. Preprocess the data: 

   - Extract relevant features (soil components) from the soil 

samples. 

   - Encode categorical features if necessary. 

   - Split the data into training and testing sets. 

3. Define the distance metric: 

   - Choose a distance metric (e.g., Euclidean distance, 

Manhattan distance) to measure the similarity between soil 

samples. 

4. Train the KNN classifier: 

   - Store the training data with associated class labels. 

   - No explicit training step is required for KNN, as it is a 

lazy learning algorithm. 

5. Predict the class label for new soil samples: 

   - For each new soil sample: 

     - Calculate the distance between the sample and all 

training samples using the chosen distance metric. 

     - Select the k nearest neighbors based on the calculated 

distances. 

     - Determine the majority class label among the k nearest 

neighbors. 
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     - Assign the majority class label as the predicted class 

label for the new sample. 

6. Evaluate the classifier: 

   - Compare the predicted class labels with the true class 

labels from the testing set to measure the classification 

accuracy. 

   - Optionally, calculate other performance metrics such as 

precision, recall, and F1-score. 

3.3. Support Vector Machine (SVM) 

Support Vector Machines (SVMs) represent a potent 

category of supervised learning algorithms that find use in 

regression and classification problems.  

To implement the Support Vector Machine (SVM) 

algorithm, the first step involves collecting labeled training 

data consisting of soil samples with associated class labels, 

such as forest, agricultural, or residential. The data is then 

preprocessed by extracting relevant features and encoding 

categorical features if necessary. Subsequently, the SVM 

model is trained by selecting a kernel function, defining the 

model parameters such as the regularization parameter (C), 

and training the model on the training data using 

optimization algorithms like gradient descent or quadratic 

programming. Once trained, the SVM model can predict the 

class label for new soil samples by mapping the input 

features to the same feature space used during training and 

using the trained model to predict the class label based on 

the decision function output. Finally, the classifier's 

performance is evaluated by comparing the predicted class 

labels with the true class labels from the testing set to 

measure classification accuracy. 

PSEDOCODE: 

1. Collect training data consisting of soil samples with 

associated class labels (e.g., forest, agricultural, residential). 

2. Preprocess the data: 

   - Extract relevant features (soil components) from the soil 

samples. 

   - Encode categorical features if necessary. 

   - Split the data into training and testing sets. 

3. Train the Random Forest classifier: 

   - Choose the number of trees (n_estimators) and other 

hyperparameters such as max_depth, min_samples_split, 

etc. 

   - For each tree in the forest: 

     - Randomly select a subset of features for each tree 

(feature bagging). 

     - Train the decision tree on a bootstrapped sample of the 

training data (bootstrap aggregating or bagging). 

4. Predict the class label for new soil samples: 

   - For each new soil sample: 

     - Pass the sample through each tree in the forest and 

obtain a class prediction from each tree. 

     - Aggregate the predictions from all trees (e.g., by 

majority voting) to obtain the final predicted class label. 

5. Evaluate the classifier: 

   - Compare the predicted class labels with the true class 

labels from the testing set to measure the classification 

accuracy. 

   - Optionally, calculate other performance metrics such as 

precision, recall, and F1-score. 

3.4. Random Forest 

Random Forest is a powerful ensemble learning method in 

machine learning that may be used for both classification 

and regression issues. It creates a huge number of decision 

trees during training, from which it extracts each tree's mean 

prediction (for regression) or mode (for classification).  

To implement the Random Forest algorithm, start by 

collecting labeled training data containing soil samples and 

their corresponding class labels (e.g., forest, agricultural, 

residential). Preprocess the data by extracting relevant 

features and encoding categorical variables if necessary. 

Next, establish a Random Forest model by defining various 

hyperparameters like max_depth and min_samples_split, as 

well as the number of decision trees (n_estimators). Choose 

a subset of features at random for each decision tree in the 

forest to use as training data. Using a bootstrapped sample 

of the training data, teach each decision tree. Via combining 

the forecasts from each decision tree in the forest, determine 

the class label for fresh soil samples (e.g., via majority 

voting). Lastly, measure the classification accuracy of the 

classifier by comparing the true class labels from the testing 

set with the predicted class labels. 

PSEDOCODE: 

1. Collect training data consisting of soil samples with 

associated class labels (e.g., forest, agricultural, residential). 

2. Preprocess the data: 

   - Extract relevant features (soil components) from the soil 

samples. 

   - Encode categorical features if necessary. 

   - Split the data into training and testing sets. 

3. Train the Random Forest classifier: 

   - Choose the number of trees (n_estimators) and other 

hyperparameters such as max_depth, min_samples_split, 

etc. 
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   - For each tree in the forest: 

     - Randomly select a subset of features for each tree 

(feature bagging). 

     - Train the decision tree on a bootstrapped sample of the 

training data (bootstrap aggregating or bagging). 

4. Predict the class label for new soil samples: 

   - For each new soil sample: 

     - Pass the sample through each tree in the forest and 

obtain a class prediction from each tree. 

     - Aggregate the predictions from all trees (e.g., by 

majority voting) to obtain the final predicted class label. 

5. Evaluate the classifier: 

   - Compare the predicted class labels with the true class 

labels from the testing set to measure the classification 

accuracy. 

   - Optionally, calculate other performance metrics such as 

precision, recall, and F1-score. 

4. Experimental Result 

After completing the data preprocessing outlined in Fig. 2, 

Weka, a machine learning program, was utilized to evaluate 

categorization methods for classifying soil types such as 

forest soil, residential soil, and agricultural soil based on 

components of chemical content. Table 2 presents the 

evaluated strategies, including metrics such as recall, 

precision, true positive (TP) rate, and false positive (FP) 

rate, considering both correctly and erroneously classified 

cases. The categorization techniques' output is depicted in 

Fig. 2. 

The complexity of the dataset and the nature of the problem 

at hand determine which of the three algorithms—Naive 

Bayes, KNN, and SVM—to use. Each of these algorithms 

has its own set of advantages and disadvantages, and the 

choice of one over the other usually comes down to the 

particulars of the task. After a thorough analysis, Random 

Forest was shown to be the most accurate model, exhibiting 

an exceptional capacity to manage subtleties in the data. 

Additional proof of Random forest's efficacy in obtaining 

the required accuracy came from an SPSS box plot study. 

The comparison of SVM, Random Forest, KNN, and Naive 

Bayes for classifying soil types depends on the particular 

problem being solved as well as the complexity of the 

dataset. Because each algorithm has advantages and 

disadvantages of its own, the choice between the two is 

frequently based on the particulars of the task. After a 

careful analysis, it was found that Random Forest 

outperformed the other options in terms of accuracy because 

of how well it handled the particular idiosyncrasies in the 

data. The results of the SPSS box plot analysis further 

affirmed the effectiveness of the Naive Bayes algorithm in 

achieving the desired level of accuracy. 

Table 2. Measurement of Classification Techniques 

Algorithm TP rate FP rate Precision Recall 

Naïve bayes 0.869 0.915 0.875 0.816 

KNN 0.813 0.841 0.916 0.875 

SVM 0.916 0.951 0.878 0.915 

Random 

Forest 
1 0.989 0.978 1 

 

 

Fig 2.  Classification Techniques 

Furthermore, we are considering Mean absolute error, root 

mean square error, relatable mean square error, relatable 

root absolute error. When comparing the random forest 

algorithm to decision tables and linear regression, root mean 

square error yielded the best accuracy in the random forest. 

The measurement parameters can be found in Table 2. The 

output of the classified input is displayed in Fig. 2. 

Table 3. Measurement of Parameters 

 

Forest 

soil 

Residential 

Soil 

Agriculture 

soil 

Mean 83.75 83.25 87 

Minimum 75 79 82 

Maximum 89 90 92 

 

Based solely on the provided statistics of mean, minimum, 

and maximum values for Forest Soil, Residential Soil, and 

Agricultural Soil, it's not appropriate to determine which 

soil type having more chemical content shown in Table 3. 

The choice of soil type depends on various factors such as 

the intended use, agricultural requirements, environmental 

conditions, and specific goals of the land management or 

agricultural practices. For example, agricultural soil may be 

0

0.5

1

1.5

TP rate FP rate Precision Recall

Classification Techniques

Naïve bayes KNN svm Random Forest



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4227–4236  |  4234 

preferable if the objective is to develop crops because of its 

higher mean and maximum values, which may indicate 

superior nutrient levels or fertility for crop growth. 

However, because of its distinctive ecosystem functions and 

biodiversity, forest soil may be valued more for ecological 

or conservation reasons. Similarly, because of its balanced 

qualities, residential soil could be appropriate for urban 

gardening or landscaping. 

Table 4. Descriptive Statistics 

 

Fores

t soil 

Residentia

l Soil 

Agricultur

e soil Total 

Naïve 

bayes 

75 79 82 78.6

7 

KNN 84 85 89 86 

SVM 87 79 85 83.6

7 

Rando

m 

Forest 

89 90 92 90.3

3 

Total 83.75 83.25 87 84.6

7 

 

We notice variations between the performance of the Naïve 

Bayes, KNN, SVM, and Random Forest algorithms based 

on the data that are presented, which include mean, 

minimum, and maximum values for specific performance 

parameter shown in Table 4. 

Based on the provided performance metrics for Naïve 

Bayes, KNN, SVM, and Random Forest algorithms, it is 

evident that Random Forest achieved the highest mean 

performance (90.33) compared to the other algorithms. 

Furthermore, Random Forest demonstrated the highest 

minimum and maximum values in comparison to the other 

algorithms, demonstrating its superior performance on a 

variety of assessment parameters. Consequently, it can be 

inferred from these numbers that Random Forest 

outperforms all other algorithms that have been assessed in 

this particular scenario. In Fig. 3 shown the graph of 

Descriptive Statistic. 

 

 

Fig 3.  Graph and Descriptive Statistics 

4. Conclusion  

The comparison between Naïve Bayes, Support Vector 

Machine, K-Nearest Neighbor, and Random Forest relies on 

the particulars of the data and the type of problem you are 

attempting to solve. The decision between the four 

algorithms is frequently influenced by the specifics of the 

work at hand, as each has advantages and disadvantages. 

Finally Random Forest got the best accuracy.  

 

Fig 4.  SPSS Box Plot 

According to the experimental results displayed in Figure 4, 

agricultural soil has a higher chemical composition. This 

includes respiration, initial NO3 (+NO2), initial ammonium 

content, microbial biomass nitrogen, net nitrogen 

mineralization, and net nitrification; additionally, it has a 

higher percentage of carbon, nitrogen, and carbon to 

nitrogen ratios, as well as higher amounts of carbon, sand, 

clay, and silt. 

In order to determine which kind of soil is ideal, we are 

using a soil dataset in this study to forecast the soil's good 

chemical composition. To do this, we have divided the 

different types of soil into three categories: residential, 

agricultural, and forest soil. We are using machine learning 

algorithms, such as Random Forest, SVM, KNN, and Naïve 

Bayes, to improve. Contrasting these algorithms to 

determine which is superior. The algorithm with the highest 

quality among the order systems was chosen to be the best 

algorithm. Given that Random Forest has the maximum 
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order-smoothness in this classification, it is regarded as the 

best classification computation. 

5. Future work 

In analyzing the loss of trees, it might be necessary in future 

study endeavors to take other aspects like climate change 

into account 
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