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Abstract: This paper presents a string metric for measuring the similarity between words. The distance function satisfies the axioms of 

non-negativity, reflexivity, symmetry, and triangle inequality. A comparative study of the string metric is carried out with Hamming and 

Levenshtein distances for word matching task.          
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1. Introduction 

Distance measure has unique importance for recognizing 

the strength of the clustering patterns which helps to study 

the bond between the associated structures. There are quite 

a few concepts of distance measures. Jaccard distance, 

which is the complement of the Jaccard coefficient, 

measures the dissimilarity between two data sets by 

subtracting the Jaccard coefficient from 1[1, 2]. Introduced 

by Hermann Minkowski, Manhattan distance is computed 

between two points as the sum of the absolute differences 

of the Cartesian coordinates[3, 4]. Instead of considering 

two points, Mahalanobis distance measures the distance 

between a point and a distribution [5].   

String matching algorithms help to locate a pattern with 

some features within a given arrangement of symbols.  A 

string metric helps to measure the distance between two 

text strings. For example, Hamming distance measures the 

number of positions with mismatched characters between 

two strings of equal length[6]. Levenshtein distance 

between two strings is the minimal number of edit 

operations like deletion, insertion, and alteration of a single 

character required to change one string to another [7]. To 

measure the edit distance between two sequences, two 

string metrics namely Jaro-Winkler distance, [8] and 

Damerau– Levenshtein distance are used [7, 9, 10]. Jaro-

Winkler distance works for strings of equal or varying 

lengths; but by considering the fact that it does not obey 

the triangle inequality, this distance is not considered as 

metric in the mathematical sense [11, 12]. 

String metric, which is a distance measure that computes 

the distance between two strings, can be expressed in terms 

of matches and mismatches of the string elements. To 

qualify as distance measure, a metric must satisfy the 

axioms of non- negativity, reflexivity, symmetry, and 

triangle inequality [12].  Review on Logical matching 

strategy explores two real world applications, locating and 

comparing the sequential pattern of finite length [13]. 

Through this paper, we present a string-to-string distance 

measure based on logical match. 

2. Related work 

String metric plays a vital role in text-linked research and 

applications in areas such as identifying the word 

similarity [14] comparing molecular sequences, and text 

mining. In general, there is a wide literature on quantifying 

the similarity between molecular sequences, such as 

Needleman-Wunsch [15] and Smith-Waterman [16], but 

there are very few publications concerning the 

measurement of likeness between short strings, for 

example, Levenshtein and Hamming distances. Studies on 

interrelated work admissible to explore the characteristics 

of earlier approaches and to recognize the specific 

problems for computing string similarity. Related works 

can be categorized into two types: one significant type of 

distance measure is edit distance, in which distance is the 

cost of the finest arrangement of edit operations. 

Conventional edit operations are character insertion, 

deletion, and substitution, and each operation must be 

allocated a cost. The Levenshtein distance assigns a unit 

cost to all edit operations [7]. On the other hand, Hamming 

distance measures the distance between two equal-length 

sequences of symbols as the number of positions at which 

the corresponding symbols are not same [6]. 

3. Method 

The strings are arranged so that each symbol coincides 

with its corresponding index and then proceeds to match 

for computing the number of identical symbols. Here, the 

comparison of two text strings returns the number of 

matches by generating indices corresponding to the 

symbols.    

3.1 Preliminary 

3.1.1 Distance measure: Distance measure is a function             

D(P, Q) that takes two points as arguments and produces a 

real number[12]. The distance measure satisfies the 
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following axioms,    i) D(P, Q) ≥ 0   ii)  D(P, Q) = 0, if and 

only if P = Q   iii)  D(P, Q) = D(Q, P)    iv) D(P, Q) ≤ 

D(P, R) + D(R, Q)  

3.1.2 Computation of the number of matching symbols:   

Let P = p1p2p3… pn and Q = q1q2 q3…qn, be two strings 

of equal length, n (where |P| = |Q| = n). Then the number of 

matching symbols of strings P and Q can be computed by 

generating the indices [13]. 

Example:  Let P and Q be two strings BELLA and BELLE 

respectively, where the length of the strings, |P| = |Q| = 5. 

Here, the word BELLA is constructed using the alphabet 

set ΣP = {B, E, L, A} and the word BELLE is created by 

using the alphabet set ΣQ = {B, E, L}. The string BELLA 

is arranged so that each symbol coincides with its 

corresponding index as in Table 1.                    

Table 1.  Arrangement of string P with alphabet set ΣP 

Indices   B   E   L   A 

  5      # 

  4     #  

  3     #  

  2    #   

  1   #    

Here, the symbol # is used to indicate the index where the 

alphabet is placed. Indices of the string P can be 

represented as: <B(1); E(2); L(3, 4); A(5) >. The string 

BELLE is arranged so that each symbol coincides with its 

corresponding index as in Table 2. 

Table 2.  Arrangement of string Q with alphabet set ΣQ 

Indices B E L 

5  #  

4   # 

3   # 

2  #  

1 #   

Here, the indices of the string Q can be represented as: 

<B(1); E(2,5); L(3, 4)>. On comparison, only the 5th index 

of the strings P and Q does not have a match as mentioned 

in Table 3 and the remaining four indices have matched, so 

the total number of matches, (say k) equals  4. 

 

 

 

 

Table 3.  Comparison of strings P and Q to find matches 

Indices Symbol Locations Match / 

Mismatch 

Number 

of 

match 

1 B 1  1st Match 1 

2 E 2 5 2nd Match 1 

3 L 3  3rd Match 1 

4 L 4  4th Match 1 

5 A   1st  

Mismatch 

 

3.2 String distance measure                                                                                                 

The distance function is defined as the difference 

between the length of the string and total number of 

matches, where the number of matches is determined by 

matching the indices. Let P = p1p2p3… pn and Q = 

q1q2q3…qn be two strings of equal length n, (where |P| = 

|Q| = n). The distance function, D(P, Q) = n - k, where k is 

the number of matching symbols of string P while 

comparing with the string Q.  

 

Axiom-1:  D(P, Q) ≥ 0  (Non-negativity).  The distance 

measure using matches satisfies D(P, Q) ≥ 0. 

Proof sketch: As the number of matches between the 

strings are always less than or equal to the length of the 

strings, the distance between the strings becomes non-

negative. Therefore, D(P, Q) = n- k ≥ 0. This implies 

distance is non- negative.   

Example: Let P and Q be the strings BELLA and BELLE 

respectively, where |P| = |Q| = 5. By using the number of 

matching symbols, k can be computed as 4 (as per 3.1.2). 

P B E L L A 

Q B E L L E 

 Distance is, n – (number of matching symbols) = 5- 4 = 1. 

The result shows that distance is non- negative. This 

satisfies  D(P, Q) ≥ 0. 

 

Axiom-2:  D(P, Q) = 0, if and only if P = Q (Reflexivity).   

The distance measure using matches satisfies D(P, Q) = 0,            

if and only if P = Q. 

Proof sketch: Distance between the strings equals to zero 

only if the number of matches between the strings and 

length of the string are equal, that is, only if both strings 

are identical. Therefore, the number of mismatching 

symbols in between the strings P and Q becomes zero. That 
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is, D(P, Q) = n- k = k- k = 0, since the number of matching 

symbols, k = n.  

Example: If the two strings are identical, then P = Q.   

P B E L L A 

Q B E L L A 

 The string P is arranged so that each symbol coincides 

with its corresponding index as in Table 4.  

Table 4.  Arrangement of string P with alphabet set ΣP 

Indices B E L A 

5    # 

4   #  

3   #  

2  #   

1 #    

Indices of the string P are represented as: <B(1); E(2); L(3, 

4); A(5)>.  The string Q is arranged so that each symbol 

coincides with its corresponding index as in Table 5. 

 Table 5.  Arrangement of string Q with alphabet set ΣQ 

Indices B E L A 

5    # 

4   #  

3   #  

2  #   

1 #    

Indices of the string Q are represented as: <B(1); E(2); L(3, 

4); A(5) >. Here, number of matching symbols while 

comparing the strings P and Q can be computed as in Table 

6.     

Table 6. Comparison of strings P and Q to find matches 

Indices Symbol Locations Match/ 

Mismatch 

Number 

of 

match 

1 B 1 1st Match 1 

2 E 2 2nd Match 1 

3 L 3 3rd Match 1 

4 L 4 4th Match 1 

5 A 5 5th Match 1 

 

From Table 6, total number of matches = 5. This implies 

that the number of matches, k equals to the length of the 

strings P and Q (where, |P|= |Q|) and n- k = 0. That is, 5- 

5= 0, where  n= 5 and k= 5. This satisfies D(P, Q) = 0, if 

and only if  P = Q.  

Axiom-3:  D(P, Q) = D(Q, P)   (Symmetry). The distance 

measure satisfies D(P, Q) = D(Q, P). 

Proof sketch: In both the cases (the string P compares with 

the string Q or the string Q compares with the string P), the 

number of matching symbols, k remains the same. This 

implies the distance is symmetric. 

Example: Let P and Q be the strings BELLA and BELLE 

respectively, where |P|= |Q|= 5.  

This can be represented as: D(BELLA,  BELLE) 

P B E L L A 

Q B E L L E 

Here, the number of matching symbols, k = 4. Similarly, 

D(BELLE,  BELLA) 

Q B E L L E 

P B E L L A 

Here also, the number of matching symbols, k = 4. In both 

cases, the number of matching symbols, k remains the 

same. This implies that the distance is symmetric, D(P, Q) 

= D(Q, P). 

Axiom-4: D(P, Q) ≤ D(P, R) + D(R, Q)  (Triangle 

inequality). The distance measure satisfies D(P, Q) ≤ D(P, 

R) + D(R, Q). 

Proof sketch: Let P be p1p2p3…pn , Q be q1q2q3…qn and R 

be r1r2 r3…rn be three strings of equal lengths n (where,  |P| 

= |Q| = |R| = n). Let k be the number matching symbols 

between the strings P and Q, k1 be the number of matches 

between the strings P and R, and k2 be the number of 

matching symbols between the strings R and Q.  Here, the 

value of k will always be less than or equal to the sum of 

k1 and k2 for any three strings with equal length. Here, n - 

k ≤ n - k1 + n - k2 implies        n - k ≤ (n + n) - (k1 + k2); 

that is, n - k ≤ 2n - (k1 + k2). That is the number of 

mismatching symbols (n - k ) between strings P and Q is 

less than or equals to the sum of the number of 

mismatching symbols (n – k1) between the strings P and R; 

and the number of mismatching symbols (n – k2) between 

the strings R and Q. This proves that the distance measure 

satisfies triangle inequality.   

Example: Let P, Q, and R be the strings BELLA, BELLE, 

and BELAA respectively. The distance between the strings 

P and Q,  D(P, Q)  ≤  D(P, R)  +  D(R, Q). This implies the 

number of mismatching symbols between the strings P and 

Q ≤  Number of mismatching symbols between the strings 

P and R  + Number of mismatching symbols between the 

strings R and Q. This implies, D(BELLA, BELLE)  ≤  
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D(BELLA, BELAA) + D(BELAA, BELLE); this implies  

the number of mismatching symbols, 1 ≤  1 + 2.  

That is, 

P B E L L A 

Q B E L L E 

        ≤ 

P B E L L A 

R B E L A A 

        + 

R B E L A A 

Q B E L L E 

 

This satisfies triangle inequality, D(P, Q) ≤ D(P, R) + D(R, 

Q). 

4. Discussion And Conclusion 

The results show the realization of the method for 

comparing text strings of various sizes with real data. To 

evaluate the proposed string metric, the method was tested 

with English words[17], and we validated the difference 

with the Hamming and Levenshtein distances. In section 3, 

axioms 1 through 4 satisfy the norms of distance measure; 

thus, we computed the distance by taking pairs of strings. 

Table 7 exemplifies the proposed string metric for word 

matching task. Here, the number of matches is calculated 

between the strings P and Q.  From the set of strings in 

Table 7,  it is evident that all pairs of strings obey the 

axioms of non-negativity, reflexivity, symmetry, and 

triangle inequality.  The comparison results of the proposed 

distance measure with Hamming distance and Levenshtein 

distance is illustrated in Table 8. Alphabets represented red 

in color indicates the mismatch, while those in black color 

symbolize the match between the strings. Hamming 

distance and proposed distance determines distance 

between two strings of equal length, whereas Levenshtein 

distance can measure the distance even if the strings have 

different lengths. Hamming distance measures the 

minimum number of positions by which the strings differ 

whereas the proposed metric computes the distance by 

using the number of matches. For any two strings, the 

minimum number of positions determined in Hamming 

distance is same as the total number of mismatches 

calculated by the proposed distance measure. From Table 

8, we can observe that the distance calculated by Hamming 

distance and the proposed distance for same pair of strings 

are the same. On the other hand, Levenshtein distance 

incorporates operations other than substitution; thus, 

Levenshtein distance for any two strings is not always 

equal to Hamming or the proposed distance measure for 

the same pair of strings.  In the string metric based on 

Logical matching strategy, matches between the symbols 

are computed and the distance is calculated subsequently.  

Table 7. Distance between words using the proposed 

metric 

String 

P 

String 

Q 

String 

R 

k D(P,Q

) 

D(Q,

P) 

D(P,Q

) 

≤ 

D(P,

R) 

+ 

D(R,

Q) 

TEA TEE TOE 2 1 1 1≤ 

2+1 

TEA TEA TEA 3 0 0 0≤ 

0+0 

DEA

R 

DEE

R 

REA

D 

3 1 1 1≤ 

2+3 

HEEL HEA

L 

HEL

L 

3 1 1 1≤ 

1+1 

TIRE TIER TREE 2 2 2 2 ≤ 

2+2 

STAN TAN

K 

SKAT 0 4 4 4 ≤ 

2+4 

STEE

L 

STEA

L 

STAL

E 

4 1 1 1≤ 

3+3 

THER

E 

THEI

R 

THR

EE 

3 2 2 2 

≤2+3 

CENT

ER 

CEN

TRE 

REN

TER 

4 2 2 2 

≤1+3 

WAT

CH 

DRE

AM 

LEA

RN 

0 5 5 5 ≤ 

5+5 

 

Table 8.  Comparison of Hamming, Levenshtein, and the 

proposed distance measure 

String P String 

Q 

Hammin

g 

Distance 

Levenshte

in 

Distance 

Proposed 

Distance 

TEA TEE 1 1 1 

TEA TEA 0 0 0 

DEAR DEER 1 1 1 

HEEL HEAL 1 1 1 
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TIRE TIER 2 2 2 

STAN TANK 4 2 4 

STEEL STEAL 1 1 1 

THERE THEIR 2 2 2 

CENTE

R 

CENTR

E 

2 2 2 

WATC

H 

DREA

M 

5 5 5 

 

Acknowledgements 

This work is supported by University Grants Commission 

(Grant Number: F.2264-MRP-15-16-KLCA028-UGC-

MRP) 

Author contributions 

Sanil Shanker K P: Investigation, Conceptualization, 

Methodology, Literature review, Writing- Original draft 

preparation. 

Megha Narayanan: Literature review, Writing-Reviewing  

Arunodhya K Nambiar: Writing- Reviewing 

Conflicts of interest  

The authors declare no conflicts of interest. 

References 

[1] Sven Kosub. A note on the triangle inequality for the 

Jaccard distance, Pattern Recognition Letters, 2019 

(120): 36-38. 

https://doi.org/10.1016/j.patrec.2018.12.007 

[2] Tibrewal B., Chaudhury G.S., Chakraborty S., Kairi 

A. Rough Set-Based Feature Subset Selection 

Technique Using Jaccard’s Similarity Index. In: 

Chakraborty M., Chakrabarti S., Balas V., Mandal J. 

(eds) Proceedings of International Ethical Hacking 

Conference 2018. Advances in Intelligent Systems 

and Computing, vol 811. Springer, Singapore. 2019. 

https://doi.org/10.1007/978-981-13-1544-2_39. 

[3] Kretz T., Bönisch C., Vortisch P. Comparison of 

Various Methods for the Calculation of the Distance 

Potential Field. In: Klingsch W., Rogsch C., 

Schadschneider A., Schreckenberg M. (eds) 

Pedestrian and Evacuation Dynamics 2008. Springer, 

Berlin, Heidelberg. https://doi.org/10.1007/978-3-

642-04504-2_29. 

[4] José M. Merigó, and Anna M. Gil-Lafuente. Using 

the OWA Operator in the Minkowski Distance, World 

Academy of Science, Engineering and Technology. 

2008: 21. 

[5] P. Mahalanobis. On the generalized distance in 

statistics Proc. Nat. Inst. Sci. India (Calcutta) 

1936(2): 49–55. 

[6] Hamming, Richard W. Error detecting and error 

correcting codes, The Bell system technical 

journal.1950:147-160. DOI: 10.1002/j.1538-

7305.1950.tb00463.x 

[7] Levenshtein, Vladimir. Binary codes capable of 

correcting spurious insertions and deletion of ones, 

Problems of information Transmission. 1965: 8-17. 

[8] Cohen, William, Pradeep Ravikumar, Stephen 

Fienberg. A comparison of string metrics for 

matching names and records, KDD workshop on data 

cleaning and object consolidation.             2003 (3). 

[9] Zhao C., Sahni S. String correction using the 

Damerau- Levenshtein distance, BMC 

bioinformatics. 2019: 1-28. 

https://doi.org/10.1186/s12859-019-2819-0 

[10] Fred J Damerau. A technique for computer detection 

and correction of spelling errors, Communications of 

the ACM.1964:171-176. 

https://doi.org/10.1145/363958.363994 

[11] Van der Loo, Mark PJ. The stringdist package for 

approximate string matching, R J. 6.1. 2014. 

[12] Rajaraman, Anand, and Jeffrey David Ullman. 

Mining of massive datasets. Cambridge University 

Press. 2011. 

[13] Sanil Shanker KP, Elizabeth Sherly, Jim Austin. A 

note on two applications of Logical Matching 

Strategy, Applied Artificial Intelligence. 2011: 708-

720.  

[14] Carla Pires, Afonsa Cavaco & Marina Vigårio. 

Towards the Definition of Linguistic Metrics for 

Evaluating Text Readability. Journal of Quantitative 

Linguistics. 2017: 319-349. 

https://doi.org/10.1080/09296174.2017.1311448 

[15] Needleman S B and Wunsch C D. A general method 

applicable to the search for similarities in the amino 

acid sequence of two proteins, J. Mol. Biol.. 197( 48): 

443–453. 

[16] Smith T F and Waterman M S. Identification of 

Common Molecular Subsequences, J. Mol. Bio. 

1981: 195–197. 

[17] Simpson, J. A., Weiner, E. S. C., and Oxford 

University Press. The Oxford English Dictionary. 

Oxford: Clarendon Press. 1989.                     

 

https://doi.org/10.1007/978-981-13-1544-2_39
https://doi.org/10.1007/978-3-642-04504-2_29
https://doi.org/10.1007/978-3-642-04504-2_29
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.1186/s12859-019-2819-0
https://doi.org/10.1145/363958.363994
https://doi.org/10.1080/09296174.2017.1311448

