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Abstract: This research delves into enhancing the resilience of machine learning models, particularly image classification algorithms, 

against adversarial attacks. The focus is on using genetic algorithms to optimize bit plane slicing configurations, thereby improving the 

models’ robustness. The study reveals that models with 5-bit depth representations exhibit superior resilience, achieving high accuracies 

of 𝟗𝟖. 𝟐𝟏% against FGSM attacks and 𝟗𝟐. 𝟗𝟖% against DeepFool attacks. These results underscore the importance of adjusting detail 

levels through bit plane slicing to maintain algorithmic integrity under adversarial conditions. Despite a significant drop in performance 

due to adversarial modifications, with accuracy falling from 𝟗𝟎. 𝟑𝟐% to 𝟏𝟏. 𝟔𝟗%, a notable recovery was observed, highlighting the 

effectiveness of the optimized defense strategies. The findings advocate for further research into dynamic bit plane slicing and the 

development of advanced defense mechanisms using genetic algorithms, aiming to bolster the security and reliability of machine learning 

models against the continuously evolving adversarial threats. 
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1. Introduction 

Gradient-based sparse attacks are particularly insidious 

because they aim to achieve misclassification with 

minimal changes to the input, making them harder to 

detect. These attacks leverage the gradient information to 

identify the most effective alterations to the input data, 

optimizing for the fewest changes needed to deceive the 

classifier. Your future work in exploring defences against 

these attacks could focus on further enhancing the 

robustness of the randomization mechanism, possibly by 

investigating adaptive or dynamic randomization 

strategies that can anticipate and counteract the 

optimization strategies employed by attackers. Non-

gradient-based attacks, on the other hand, do not rely on 

gradient information and often employ more heuristic or 

search-based approaches to generate adversarial 

examples. These attacks can be more unpredictable and 

might exploit different model vulnerabilities than 

gradient-based methods. Defending against these attacks 

could involve developing more sophisticated detection 

mechanisms that can recognize and mitigate the impact of 

adversarial inputs, regardless of the specific strategy used 

to generate them [1]. In the realm of machine learning 

security, adversarial examples pose a significant threat to 

the integrity and reliability of neural network-based 

systems, including those used in face recognition and 

autonomous vehicles. Traditional defenses, such as 

adversarial training, defensive distillation, and feature 

squeezing, have sought to mitigate these vulnerabilities by 

either hardening the model against attacks or 

preprocessing inputs to remove adversarial noise. 

However, these methods often come with trade-offs 

between model accuracy and robustness or suffer from 

scalability and efficiency issues. Advanced denoising 

techniques have also been explored, with standard 

denoisers using autoencoders or specialized network 

architectures; yet, they frequently encounter the 

amplification effect, where residual adversarial noise 

exacerbates rather than alleviates the problem. The 

proposed Unified Deep Denoising Network (UDDN) 

strategy introduces a novel approach, combining a 

specialized loss function that reduces the discrepancy 

between outputs from original and denoised images, with 

a training algorithm that incorporates knowledge transfer 

to enhance model resilience. This dual approach addresses 

the amplification effect and ensures robustness against 

both white-box and black-box adversarial attacks. 

Experimental application to a face recognition model 

further underscores the effectiveness of the UDDN 

strategy in improving both the accuracy and security of 

neural network models, presenting a promising avenue for 

future research in safeguarding machine learning systems 

against adversarial threats[2]. The vulnerability of 

Convolutional Neural Networks (CNNs) to adversarial 

attacks, despite their remarkable success in computer 

vision tasks, highlights a critical challenge for their 

application in security-sensitive environments. The 

literature reveals a range of defense mechanisms aimed at 

mitigating the impact of these attacks, which often involve 

human-imperceptible adversarial noise patterns. 
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Traditional methods have focused on modifying the 

network architecture, adversarial training, or employing 

external detection systems to identify and neutralize 

adversarial inputs. However, these approaches frequently 

require substantial computational resources, potentially 

degrade model performance on clean images, or 

necessitate extensive retraining of the model.A novel 

image enhancement-based defense mechanism that 

leverages deep image restoration networks to correct 

adversarial perturbations by mapping off-the-manifold 

adversarial samples back onto the natural image manifold. 

This method distinguishes itself by not only counteracting 

adversarial attacks without compromising the model’s 

accuracy on unperturbed images but also improving the 

overall image quality. Unlike conventional defenses, our 

proposed approach does not alter the underlying classifier 

or rely on adversarial detection mechanisms, offering a 

computationally efficient solution that is easily integrated 

with existing models. Demonstrated through rigorous 

testing in gray-box scenarios, our method showcases 

robust defense capabilities across various attack 

algorithms without necessitating model-specific training 

or parameter adjustments. This simplicity, coupled with 

its compatibility with other defense strategies and model-

agnostic nature, positions it as a versatile and effective 

tool for enhancing the security of CNN-based systems 

against a wide spectrum of adversarial threats[3]. The 

escalating sophistication of adversarial attacks poses a 

formidable challenge to the deployment of Convolutional 

Neural Networks (CNNs) in security-critical applications. 

The nuanced landscape of adversarial threats, ranging 

from gradient-based sparse attacks that exploit model 

gradients for minimal yet effective perturbations, to non-

gradient-based attacks that utilize heuristic approaches to 

undermine model integrity. The exploration of defenses 

against these attacks, particularly through the 

development of the Unified Deep Denoising Network 

(UDDN) and image enhancement-based mechanisms, 

represents a significant stride towards fortifying neural 

networks. These proposed strategies, distinguished by 

their ability to restore adversarial samples to the natural 

image manifold and enhance image quality without 

compromising the model’s performance on clean images, 

mark a promising direction for future research. By 

addressing both the subtlety of gradient-based attacks and 

the unpredictability of heuristic approaches, this work lays 

a foundation for more resilient, adaptable, and efficient 

defense mechanisms. The demonstrated effectiveness of 

these methods in gray-box scenarios further underscores 

their potential to provide robust security enhancements 

across a broad array of neural network applications. 

Moving forward, the continued investigation into adaptive 

and dynamic defense mechanisms, alongside the 

integration of these novel strategies with existing models, 

will be crucial in navigating the evolving landscape of 

adversarial threats and ensuring the reliable deployment 

of CNNs in environments where security is paramount. 

2. Literature Survey 

For an in-depth exploration of Probabilistic Adversarial 

Robustness (PAR) and its implementation via PixelCNN 

as a defensive mechanism against adversarial attacks, the 

literature on adversarial training and robustness in deep 

learning models offers a foundational context. Adversarial 

training, highlighted as a key strategy for improving 

model resistance against such attacks, focuses on training 

neural networks with both clean and adversarial examples. 

This methodology aims to minimize classification error 

under adversarial perturbations by formulating the 

training process as a min-max problem. The goal is to find 

the worst-case adversarial examples and train the model 

to be robust against them. [4] work in this area introduced 

the use of the multi-step gradient-based PGD attack for 

solving the inner maximization problem, thereby 

significantly enhancing adversarial robustness.The 

literature categorizes defense strategies against 

adversarial attacks into Gradient Masking/Obfuscation, 

Robust Optimization, and Adversarial Example 

Detection, with Robust Optimization being particularly 

relevant to PAR. This category encompasses methods that 

improve the optimization function through adversarial 

examples, regularization terms, or model modifications to 

introduce uncertainty.Understanding the threat model of 

adversarial attacks—including aspects like timing 

(evasion vs. poisoning attacks), information access (white 

box vs. black box), goals (targeted vs. untargeted), and 

perturbation characteristics—is crucial for developing 

effective defense mechanisms. These considerations are 

essential for devising comprehensive strategies that 

address various facets of adversarial robustness, including 

those based on probabilistic models like PixelCNN.The 

aforementioned insights underscore the significance of 

adversarial training and robust optimization in defending 

against adversarial attacks, providing a solid framework 

for further research and implementation of PAR-based 

defense mechanisms [4]. Techniques such as Data 

Augmentation-based Transferability Enhancing Methods, 

including Diverse Inputs Method (DIM) and Translation 

Invariance Method (TIM), aim to increase adversarial 

transferability. These methods suggest that incorporating 

diverse attack strategies and optimizing for transferability 

could improve defenses like HGD against both white-box 

and black-box attacks [5]. Apollon, a novel defense 

against Adversarial Machine Learning (AML) attacks 

targeting Intrusion Detection Systems (IDS). It employs 

Multi-Armed Bandits (MAB) with Thompson sampling 

for dynamic classifier selection, enhancing IDS 

unpredictability against AML. Despite its effectiveness in 

detecting attacks and maintaining performance on normal 
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traffic, Apollon doesn’t completely eliminate AML risks 

but increases attackers’ effort and costs. Future work 

includes exploring other MAB models, additional 

classifiers, and testing on more datasets to further enhance 

Apollon’s robustness and efficiency in diverse network 

environments [6]. [8],[29] highlights that incorporating a 

maximal separation constraint in the objective function of 

Deep Neural Networks (DNNs) makes it challenging for 

adversaries to generate effective perturbations, as opposed 

to the traditional cross-entropy loss. This constraint 

ensures that adversarial polytopes of different classes do 

not overlap, effectively blocking viable attack vectors 

within the constrained perturbation budget. Rigorous 

testing across various attack types and settings confirmed 

the model’s robustness without relying on gradient 

obfuscation, suggesting a potent defense against 

adversarial threats in deep learning systems.[9][30] 

introduces a self-augmentation (SA) method to enhance 

defense against transferable adversarial examples 

targeting Deep Neural Networks. SA incorporates self-

ensemble, adding convolution layers to create diverse 

virtual models for an ensemble effect, and deviation-

augmentation, leveraging observed curved loss surfaces 

around input data to apply deviation vectors for evasion. 

Tested across four base models and ten defense 

mechanisms, SA demonstrates superior effectiveness in 

generating transferable attacks compared to existing 

methods, suggesting a potential advancement in 

understanding and mitigating adversarial threats.[10] 

introduces a novel image preprocessing method to combat 

adversarial examples in Deep Neural Networks (DNNs), 

crucial for applications like autonomous vehicles, 

healthcare, and face recognition. It employs adaptive 

parameters for label loss and pixel-level loss, guiding the 

model to reconstruct images and nullify adversarial 

perturbations without compromising image quality or 

classification accuracy. Additionally, a sparsity constraint 

architecture is used to ensure neurons activate only for 

significant patterns, reducing adversarial noise impact. 

Tested against various attacks on MNIST and CIFAR-10 

datasets, the method achieved impressive accuracies of 

98% and 92%, respectively, showcasing its effectiveness. 

[11] introduces an algorithm for generating sparse 

adversarial videos applicable in both black-box and white-

box settings, focusing on temporal and spatial sparsity by 

targeting key pixels and frames for perturbation. It 

employs super-pixels to manage dimensionality, offering 

efficiency across various video models and datasets. 

Despite its effectiveness, achieving under 1% pixel 

alteration and time efficiency, the technique faces 

limitations in real-world generalization. 

[12] introduces a self-supervised adversarial training 

mechanism in the input space, aiming to combine the 

strengths of model parameter modification and input 

processing for defense against adversarial attacks in 

DNN-based vision systems. It offers a generalizable 

solution that significantly enhances robustness across 

various tasks, such as classification, segmentation, and 

detection, by reducing the success rate of sophisticated 

attacks. This method can serve as a versatile, plug-and-

play defense mechanism for different vision systems, 

demonstrating substantial improvements over previous 

approaches. DIPDefend introduces a novel approach for 

defending deep neural networks against adversarial 

attacks by leveraging deep image priors. Unlike 

traditional methods that depend on external training 

datasets, DIPDefend focuses on the internal priors of 

individual images. It uses a deep image prior generator to 

reconstruct images, prioritizing robust features over non-

robust ones through an adaptive stopping strategy. This 

ensures a tailored defense for each adversarial input, 

showcasing superior performance against both white-box 

and black-box attacks in comparison to existing defense 

mechanisms [14]. [15] proposes "two-stream" 

architecture defends against adversarial examples by 

comparing outputs from high-resolution and low-

resolution networks. This framework, adaptable with new 

datasets and backbones, enhances future scalability and 

complicates white-box attacks for adversaries. It 

effectively detects adversarial examples without prior 

knowledge of their creation, suggesting its robustness 

against manipulations aimed at misleading DNNs. The 

underlying effectiveness may be attributed to its analysis 

of adversarial perturbations’ impact on neural networks. 

[24] demonstrate that applying various degrees of feature 

masking can significantly enhance a model’s defense 

against adversarial attacks. Their research highlights 

feature masking as an effective method to mitigate such 

attacks, effectively balancing model accuracy with 

improved security measures. [25] introduces a novel 

method combining K-Means clustering and Class 

Activation Mapping (CAM) for executing adversarial 

attacks, indicating a research void in understanding GNN 

vulnerabilities, particularly in how GNNs process graph 

data and the potential for exploitation. It suggests the 

necessity for future studies to explore GNNs’ data 

processing to safeguard against these vulnerabilities. The 

research also points to the need for application-specific 

defenses across various GNN applications, emphasizing 

tailored security measures for different domains.The 

susceptibility of deep learning models lacks emphasis on 

fostering interdisciplinary collaboration. Closing the gap 

between machine learning experts, security researchers, 

and domain-specific professionals is vital for crafting 

holistic adversarial defense strategies.To address these 

gaps, the research community needs to delve deeper into 

the intricate challenges of adversarial attacks. This 

involves considering diverse application contexts and 
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constructing adaptive, interpretable, and collaborative 

defense mechanisms. Integration of technical expertise 

across disciplines is essential for developing 

comprehensive strategies that mitigate adversarial threats 

effectively [26].[27] study highlights the exploration of 

deep-learning-based iris recognition methods, particularly 

focusing on the impact of omitting traditional 

preprocessing steps like iris normalization and feature 

enhancement. Most existing works emphasize complex 

preprocessing to improve accuracy, yet this study suggests 

that simplifying the process by using YOLOv4-tiny for 

iris localization and minimizing preprocessing steps could 

lead to equally or more effective biometric authentication 

systems. This approach challenges the conventional 

understanding and opens avenues for developing more 

efficient and accessible iris recognition technologies, 

especially for applications in small communities where 

computational resources may be limited.[28] outlines 

advancements in network intrusion detection using deep 

learning but does not specifically address the resilience of 

these models against adversarial attacks, which could 

manipulate model predictions by introducing subtle 

perturbations to input data. The gap suggests a need for 

exploring the robustness of the proposed CNN-BiLSTM 

model against such adversarial manipulations, ensuring its 

effectiveness not just under normal conditions but also 

when faced with sophisticated evasion techniques 

designed to bypass detection. Future research could focus 

on enhancing the model’s defense mechanisms against 

these attacks, ensuring reliable security measures in 

adversarial environments. [29] approach to improving 

autonomous vehicle steering angle prediction with a 

modified VGG19 model does not explicitly address the 

resilience of this deep learning system against adversarial 

attacks. Adversarial attacks can manipulate model 

predictions by introducing specially crafted inputs, a 

critical concern for autonomous vehicle safety. Future 

research could explore enhancing the model’s defense 

mechanisms against such attacks to ensure reliable 

performance even in adversarial environments, crucial for 

the real-world deployment of autonomous driving 

technologies. 

The Multi-Task Cascaded Convolutional Network 

(MTCNN) demonstrates high efficiency in face 

recognition, its robustness against adversarial attacks 

remains a significant research gap. Adversarial attacks 

involve subtly altered inputs designed to deceive neural 

networks, posing a serious security risk in applications 

relying on face recognition. Future research should focus 

on enhancing MTCNN’s defense mechanisms to identify 

and mitigate such attacks, ensuring the technology’s 

reliability and security in critical applications [30].The 

comprehensive investigation into adversarial machine 

learning (AML) and defense mechanisms underscores the 

necessity for advancing research in several key areas to 

effectively counteract adversarial threats. Among the 

various strategies discussed, the optimization of bit plane 

selection using genetic algorithms (GAs) presents a novel 

method that could significantly contribute to the 

development of more secure, reliable, and adversarially 

resilient machine learning models and systems. However, 

a clear research gap exists in fully understanding and 

implementing this approach within the context of 

defending against adversarial attacks. There is a lack of 

comprehensive theoretical models that explain the 

effectiveness of optimizing bit plane selection in 

enhancing the robustness of ML models against 

adversarial attacks. Developing a framework that 

elucidates how bit plane selection impacts the adversarial 

resilience of ML models. Conducting empirical studies to 

validate these theories in practical applications, such as 

image recognition or video surveillance systems.Current 

literature does not adequately address how the optimized 

selection of bit planes, using GAs can be integrated with 

other defense strategies, such as adversarial training, 

DIM, TIM, or dynamic classifier selection via MABs. 

Investigating methodologies for combining optimized bit 

plane selection with existing defense mechanisms to 

create a layered defense strategy. This involves assessing 

the compatibility and potential synergies between 

different approaches.The optimal configuration of genetic 

algorithms for bit plane selection, including the selection 

of appropriate fitness functions, mutation rates, crossover 

rates, and population sizes, remains 

underexplored.Conducting systematic experiments to 

identify the most effective GA configurations for 

optimizing bit plane selection. This research should aim 

to maximize defense efficacy against a wide range of 

adversarial attacks while minimizing computational 

overhead. The applicability of optimized bit plane 

selection across different domains and types of ML 

models, especially beyond visual processing tasks, is not 

well-documented.Extending the exploration of GA-

optimized bit plane selection to various domains, 

including audio processing, natural language processing, 

and other non-visual data types. Assessing the method’s 

effectiveness across different neural network architectures 

and learning paradigms. There is a need for research on 

the scalability of the GA-optimized bit plane selection 

process, especially in terms of processing large datasets 

and deploying in real-time systems.Investigating scalable 

and efficient implementations of GA-optimized bit plane 

selection, focusing on reducing computational complexity 

without compromising the defense’s effectiveness.The 

continuous evolution of adversarial attack methods may 

outpace the development of defense mechanisms, 

including those based on bit plane selection optimization. 

Developing adaptive and dynamic optimization strategies 
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that can evolve in response to new and emerging 

adversarial attack techniques. This includes creating 

feedback loops that allow the defense mechanism to learn 

from attempted attacks and adjust accordingly. 

3. Background and Motivation 

The landscape of machine learning (ML) and artificial 

intelligence (AI) has been significantly transformed by the 

advent of adversarial machine learning (AML), 

highlighting critical vulnerabilities in deep learning 

architectures. Adversarial examples, which are inputs 

specifically designed to deceive ML models, have 

emerged as a potent threat, undermining the reliability and 

integrity of systems deployed across various sectors, 

including autonomous navigation, healthcare diagnostics, 

cybersecurity, and biometric verification. This threat 

necessitates a profound exploration of defense 

mechanisms capable of safeguarding against these 

insidious attacks. Adversarial training has been identified 

as a cornerstone strategy for enhancing model robustness, 

involving the integration of adversarial examples into the 

training process. This approach aims to prepare the model 

for worst-case scenarios, thereby minimizing the 

classification error under adversarial conditions. 

Techniques such as the multi-step gradient-based 

Projected Gradient Descent (PGD) attack have been 

pivotal in solving the inner maximization problem, 

substantially improving adversarial robustness. However, 

as adversarial attack methodologies evolve, a noticeable 

gap remains between the complexity of these attacks and 

the effectiveness of current defense strategies. The 

exploration of defense mechanisms has been categorized 

into several strategies, including Gradient 

Masking/Obfuscation, Robust Optimization, and 

Adversarial Example Detection. Among these, Robust 

Optimization stands out for its relevance to Probabilistic 

Adversarial Robustness (PAR) - a concept that seeks to 

introduce uncertainty into the optimization function 

through adversarial examples, regularization terms, or 

model modifications. PAR, implemented via mechanisms 

such as PixelCNN, offers a promising avenue for defense 

by leveraging probabilistic models to enhance the 

resilience of ML systems against adversarial 

manipulations. 

Despite these advancements, there is a pressing need for 

innovative defense strategies that can address the 

multifaceted nature of adversarial threats. The 

optimization of bit plane selection using genetic 

algorithms (GAs) represents one such novel approach. 

This strategy involves fine-tuning the selection of bit 

planes - layers of binary images that together form the 

complete image representation - to enhance model 

robustness against adversarial attacks. However, the full 

potential of this approach has yet to be realized, owing to 

a dearth of comprehensive theoretical models and 

practical implementations that demonstrate its efficacy in 

real-world scenarios. 

Moreover, the integration of optimized bit plane selection 

with existing defense strategies, such as adversarial 

training and dynamic classifier selection, remains an 

underexplored area. This gap underscores the necessity 

for a layered defense strategy that can leverage the 

synergies between different approaches to offer robust 

protection against adversarial attacks. The continuous 

evolution of adversarial tactics further accentuates the 

need for adaptive and dynamic defense mechanisms. 

These mechanisms must be capable of evolving in 

response to new and emerging threats, ensuring the long-

term security and reliability of ML systems. This calls for 

a concerted research effort to develop scalable, efficient, 

and adaptable defense strategies that can navigate the 

complexities of the adversarial landscape. The motivation 

behind this research endeavor is twofold: to bridge the 

existing gaps in our understanding and implementation of 

defense mechanisms against adversarial attacks and to 

pioneer the development of more secure, reliable, and 

adversarially resilient ML models and systems. By 

addressing these challenges, we aim to fortify the 

foundation of ML and AI technologies against the ever-

growing threat of adversarial attacks, ensuring their safe 

and trustworthy application in critical domains. 

4. Methodology 

This research article outlines a novel approach to 

defending deep learning models against adversarial 

attacks by integrating bit-plane slicing with genetic 

algorithm (GA) optimization. The method’s foundation 

lies in its unique combination of image processing 

techniques and evolutionary computation to enhance 

model resilience. As shown in Figure 1, the architecture 

diagram of our proposed method illustrates the workflow 

and the key components involved in achieving improved 

accuracy over epochs for both source-only and target-only 

data. This design underpins our methodology’s 

effectiveness in addressing the challenges of domain 

adaptation, leveraging the intrinsic data characteristics to 

enhance model performance significantly. 

Below, we delve into a more detailed explanation of each 

component and the overall methodology. 

4.1 Bit-Plane Slicing 

In an 8-bit grayscale image, each pixel’s intensity value 

can be represented as a binary number, with 8 bits ranging 

from the most significant bit (MSB) to the least significant 

bit (LSB). The intensity 𝐼 of a pixel can be mathematically 

represented as: 
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𝐼 = 27𝑏7 + 26𝑏6 + 25𝑏5 + 24𝑏4 + 23𝑏3 + 22𝑏2 +

21𝑏1 + 20𝑏0      (1) 

Where 𝑏7 to 𝑏0 represent the bit values of the binary 

representation of the pixel intensity, with 𝑏7 being the 

MSB and 𝑏0 being the LSB. Bit-plane slicing involves 

isolating each bit plane of the binary representation of 

pixel intensities to reveal its contribution to the overall 

image. For an 8-bit grayscale image, this results in 8 

distinct layers, each representing a different bit plane. The 

bit-plane slicing operation for an image 𝐴 of dimensions 

𝑀 × 𝑁 and an 8-bit depth can be mathematically 

represented as: 

𝐵𝑘 = (𝐴 AND 2𝑘)  >>  𝑘   (2) 

Where: 

𝐵𝑘 represents the binary image of the 𝑘-th bit plane. 

𝑘 ranges from 0 to 7, representing each bit position from 

LSB to MSB. 

AND is the bitwise AND operation. 

>> is the bitwise right shift operator. 

 

Fig. 1. Architecture Diagram of the Proposed Method 

This operation isolates the 𝑘-th bit from each pixel in 𝐴 

and shifts it to the least significant bit position, creating a 

binary image that highlights the information contained in 

that specific bit plane. Bit-plane slicing also finds 

application in adversarial defense strategies, where 

preprocessing images by discarding certain bit planes can 

enhance the robustness of machine learning models 

against adversarial attacks. For example, to mitigate the 

effects of small perturbations often exploited by 

adversarial attacks, we can discard the 3 least significant 

bits (LSBs) of each pixel in the image 𝐴, creating a 

modified image 𝐴′. This operation can be represented as: 

𝐴′ = 𝐴 AND 111110002   (3) 

Where 111110002 represents a bit mask that retains only 

the 5 most significant bits (MSBs) of each pixel intensity. 

Fig. 2. Process of Bit Plane Slicing 
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Figure 2 gives visual illustrations of Bit Plane Slicing. Bit-

plane slicing is a fundamental technique in digital image 

processing that provides insights into the binary 

representation of pixel intensities. By dissecting images 

into their constituent bit planes, we can analyze their 

information content and apply various operations for 

different purposes, including image analysis, 

compression, and security. The mathematical models 

involved in bit-plane slicing enable precise manipulation 

of image data, making it a valuable tool in various 

applications, including adversarial defense in machine 

learning systems. The Bit-Plane Perturbation Rate 

(𝐵𝑃𝑃𝑅𝑖) is articulated as the ratio of the cumulative 

bitwise exclusive OR (XOR) discrepancy across the 𝑖th 

bit-plane of original and adversarially modified datasets, 

to the total bit count within the bit-plane, expressed in 

percentage. Formally, it is defined as: 

𝐵𝑃𝑃𝑅𝑖 =
∑xor(𝑏𝑝𝑖,𝑏𝑝𝐴𝑑𝑣𝑖)

𝑀×𝑁
× 100%  (4) 

In this equation, 𝑏𝑝𝑖 symbolizes the 𝑖th bit-plane of the 

pristine dataset, whereas 𝑏𝑝𝐴𝑑𝑣𝑖  denotes the 𝑖th bit-plane 

of the adversarial example. The bit-plane consists solely 

of binary values (0s and 1s), with the XOR operation 

employed to compute the bit-level differences. 𝑀 and 𝑁 

represent the dimensions of the bit-plane, specifically its 

height and width, respectively. Thus, 𝐵𝑃𝑃𝑅𝑖 quantifies 

the alteration rate within the 𝑖th bit-plane attributed to 

adversarial interventions, offering a measure of how these 

perturbations distort the original data at the bit-plane 

level. Additionally, it gauges the intensity of adversarial 

disruptions, with a pronounced 𝐵𝑃𝑃𝑅𝑖 in higher-order bit-

planes indicative of substantial adversarial perturbations, 

as considerable deviations are necessary to impact these 

bits. Empirical calculations of 𝐵𝑃𝑃𝑅𝑖 elucidate a 

predilection for perturbations to predominantly influence 

lower-order bit-planes, corroborating our intuitive 

understanding of adversarial perturbation patterns. The 

mathematical significance of the Bit-Plane Perturbation 

Rate (𝐵𝑃𝑃𝑅𝑖) lies in its ability to quantitatively assess the 

impact of adversarial perturbations on digital data at a 

granular, bit-level scale. This metric provides several key 

insights into the nature of adversarial attacks and their 

effects on data, especially within the context of machine 

learning security. Here are some of the insights and 

significances derived from 𝐵𝑃𝑃𝑅𝑖: 

1. Granular Analysis of Perturbations: 𝐵𝑃𝑃𝑅𝑖 allows for 

a detailed examination of how adversarial modifications 

affect each bit-plane of the data. Since digital images and 

other forms of data are represented at the binary level in 

computing systems, understanding these changes at the 

bit-plane level provides a foundational perspective on the 

mechanics of adversarial attacks. 

2. Quantitative Measure of Adversarial Impact: By 

calculating the percentage of bits that are altered in each 

bit-plane, 𝐵𝑃𝑃𝑅𝑖 offers a quantitative measure of the 

extent to which adversarial perturbations have modified 

the original data. This is crucial for evaluating the strength 

and efficacy of adversarial examples. 

3. Differentiation of Perturbation Magnitude Across Bit-

Planes: High 𝐵𝑃𝑃𝑅𝑖 values in higher-order bit-planes 

indicate that an adversarial attack has managed to 

introduce significant perturbations that affect the most 

significant bits of the data. Since higher-order bits have a 

larger impact on the value of binary data, alterations in 

these bits suggest a more profound change to the original 

data, which could have more noticeable effects, either 

visually in images or semantically in other types of data. 

4. Insights into Adversarial Attack Strategies: The 

observation that lower-order bit-planes are more 

commonly affected by perturbations aligns with the 

strategy of making minimal changes that are less likely to 

be detected by human observers or simple detection 

mechanisms. This subtlety in altering less significant bits 

can still be enough to deceive machine learning models 

without raising obvious flags to human supervisors. 

5. Evaluating Robustness of Machine Learning Models: 

Understanding the bit-plane perturbation rate can also 

help in evaluating and enhancing the robustness of 

machine learning models against adversarial attacks. By 

analyzing which bit-planes are more susceptible to 

perturbations and how these perturbations affect model 

performance, developers can design more effective 

defenses. 

6. Benchmark for Security Measures: 𝐵𝑃𝑃𝑅𝑖 serves as a 

benchmark for assessing the effectiveness of security 

measures against adversarial attacks. By quantifying the 

extent of alterations, it provides a basis for comparing the 

resilience of different models and the effectiveness of 

various defense strategies. 

In summary, the mathematical framework of 𝐵𝑃𝑃𝑅𝑖 

offers a nuanced and detailed approach to understanding 

and addressing the challenges posed by adversarial 

perturbations in the realm of digital data and machine 

learning. It underscores the importance of considering the 

bit-level integrity of data in the context of security and 

model robustness. 

4.2 Understanding 8-bit Grayscale Images 

Bit-plane slicing, in the context of image processing and 

optimization, involves decomposing an image into its 

binary components (bit planes) to analyze and manipulate 

the image data efficiently. This technique can be utilized 

for various purposes, including image compression, 

feature extraction, and enhancement. When considering 

bit-plane slicing selection optimization using genetic 

algorithms, we aim to find an optimal subset of bit planes 
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that best represents the image while minimizing 

computational complexity or meeting specific criteria. 

Chromosome Representation: 

Each individual in the genetic algorithm population 

represents a potential solution, which is a binary string 

representing the presence or absence of each bit plane. For 

example, if we have an 8-bit grayscale image, a 

chromosome might be represented as a binary string of 

length 8, where each bit indicates whether the 

corresponding bit plane is included or not. 

Fitness Function: The fitness function evaluates how well 

a particular subset of bit planes represents the image. This 

can be based on criteria such as image quality, 

compression ratio, or the effectiveness of the image in 

subsequent processing tasks. For example, fitness could 

be higher for subsets that maintain important features 

while reducing computational complexity. Genetic 

Operators: Selection: Individuals are selected for 

reproduction based on their fitness, with higher fitness 

individuals being more likely to be chosen. Various 

selection methods such as roulette wheel selection or 

tournament selection can be employed. 

Crossover: During crossover, pairs of individuals are 

combined to produce offspring. This operation is 

performed by exchanging genetic information between 

two parent chromosomes to create new solutions. In bit-

plane slicing optimization, this could involve exchanging 

bit planes between two parent solutions to generate 

offspring with a combination of bit planes from both 

parents. 

Mutation: Mutation introduces random changes to 

individual chromosomes to maintain genetic diversity 

within the population. In the context of bit-plane slicing 

optimization, mutation might involve flipping individual 

bits in the chromosome to add or remove specific bit 

planes from the solution. 

Termination Criteria: The genetic algorithm terminates 

when a stopping criterion is met, such as reaching a 

maximum number of generations, achieving a satisfactory 

solution, or stagnation in the improvement of solutions 

over several iterations. 

Optimization Goals: Image Quality: The objective may be 

to find a subset of bit planes that optimally preserves 

important image features and details while reducing 

computational complexity or storage requirements. 

Computational Efficiency: The goal could be to minimize 

the number of bit planes required for image representation 

while maintaining acceptable image quality. This would 

lead to faster processing and lower resource consumption. 

Adversarial Defense: In the context of adversarial 

defense, the optimization objective might involve 

selecting bit planes that are robust against common types 

of attacks while minimizing the impact on image quality. 

By combining the principles of genetic algorithms with 

the concept of bit-plane slicing, it’s possible to efficiently 

explore the space of possible solutions and find an optimal 

subset of bit planes for a given optimization goal. This 

approach can be particularly useful in scenarios where 

manual selection of bit planes is impractical or when 

dealing with large volumes of image data. 

Decomposition into Bit-Planes 

Bit-Plane Slicing is a technique used in digital image 

processing where the 8-bit grayscale values of an image 

are decomposed into 8 separate binary images, each 

representing one bit-position across the entire image. 

These binary images are referred to as bit-planes. 

Bit-Planes 

In an 8-bit grayscale image, each pixel’s intensity is 

represented by an 8-bit binary number, ranging from 𝑏0 to 

𝑏7, where: 

𝑏0 is the least significant bit-plane, affecting the pixel’s 

intensity the least. It makes subtle changes to the image’s 

detail or texture. 

𝑏7 is the most significant bit-plane, having the most 

considerable impact on the overall intensity. Changes in 

this plane can dramatically alter the image’s appearance 

by toggling between higher and lower intensity values. 

𝐼 = 27 ⋅ 𝑏7 + 26 ⋅ 𝑏6 + 25 ⋅ 𝑏5 + 24 ⋅ 𝑏4 + 23 ⋅ 𝑏3 + 22 ⋅

𝑏2 + 21 ⋅ 𝑏1 + 20 ⋅ 𝑏0    (5) 

Where 𝐼 denotes the intensity of a pixel, and 𝑏𝑛 represents 

the bit value at each position from 0 to 7. 

Given an 8-bit grayscale image 𝐴 with dimensions 

𝑀 × 𝑁, we can execute bit-plane slicing to extract each 

bit-plane as a separate binary image. This process is 

mathematically modeled as: 

𝐵𝑘 = ((𝐴 AND 2𝑘)  ≫  𝑘) for 𝑘 = 0,1, … ,7  (6) 

where 𝐵𝑘 represents the binary image for the 𝑘-th bit-

plane. The operation 𝐴 AND 2𝑘 isolates the 𝑘-th bit in 

each pixel’s binary representation. The right shift 

operation (≫) 𝑘 moves this bit to the least significant bit 

(LSB) position, converting it into a binary image where 

1s represent the presence and 0s the absence of the bit in 

that position across the original image. 

Adversarial Defense through Bit-Plane Manipulation 

In the context of adversarial defense, it is well-understood 

that adversarial attacks often exploit the lower-order bits 

of an image’s pixel values to introduce noise. This noise 

is imperceptible to humans but can significantly mislead 

AI models. A strategic approach to defend against these 
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subtle, malicious perturbations involves the manipulation 

or discarding of certain bit-planes. 

Strategic Implementation for Defense 

A practical defense mechanism involve preprocessing 

images by selectively discarding the least significant bit-

planes before feeding the images into the model. For 

example, to mitigate the effect of adversarial 

modifications, one might choose to ignore the 3 least 

significant bit-planes. The preprocessing operation can be 

mathematically represented as: 

𝐴′ = 𝐴 AND 111110002   (9) 

This operation effectively zeroes out the contributions of 

the least significant bits 𝑏0, 𝑏1, and 𝑏2, making the image 

less susceptible to fine-grained adversarial modifications. 

The bitwise AND operation with 111110002 ensures that 

only the higher-order bits are retained, thereby preserving 

the more significant aspects of the image’s content while 

discarding the bits most vulnerable to adversarial noise. 

The choice of how many bit-planes to discard involves a 

trade-off: removing more bit-planes can increase the 

model’s robustness but at the risk of losing critical image 

details that are essential for accurate classification or 

analysis. Thus, the strategy must balance the need for 

robustness against the potential degradation of image 

quality. The effect of bit-plane slicing on image quality 

and model performance can be quantitatively assessed 

through metrics such as signal-to-noise ratio (SNR) and 

model accuracy before and after preprocessing. 

Additionally, the impact on adversarial robustness can be 

evaluated by measuring model performance against 

known adversarial attacks, both with and without bit-

plane slicing preprocessing.Bit-plane slicing offers a 

nuanced approach to understanding and manipulating 

digital images at the binary level. When applied 

judaniciously, it provides a potent tool for enhancing the 

adversarial defense of machine learning models, 

balancing the trade-offs between maintaining image 

quality and ensuring robustness against attacks. The 

genetic algorithm (GA) optimization process for 

enhancing deep learning model resilience against 

adversarial attacks via bit-plane slicing offers a 

compelling application of evolutionary computing to the 

domain of adversarial machine learning defense. This 

approach intricately combines image processing 

techniques with evolutionary strategies to identify optimal 

configurations that mitigate the impact of adversarial 

perturbations. Bit-plane slicing is a technique used to 

decompose an image 𝐼 into its constituent bit planes. For 

an 8-bit grayscale image, each pixel value 𝑃 can be 

represented as a binary sequence 𝑏7𝑏6𝑏5𝑏4𝑏3𝑏2𝑏1𝑏0, 

where 𝑏7 is the most significant bit (MSB) and 𝑏0 is the 

least significant bit (LSB). The operation to extract a 

single bit-plane 𝑘 can be mathematically represented as: 

𝑆𝑘(𝐼) = (𝑃 ≫ 𝑘) & 1   (10) 

where 𝑆𝑘(𝐼) denotes the 𝑘-th bit-plane slice of image 𝐼, ≫ 

is the right-shift operator, and & is the bitwise AND 

operation. This operation is applied pixel-wise across the 

entire image, isolating the 𝑘-th bit from each pixel to form 

a binary image that represents the 𝑘-th bit-plane. 

Chromosome Representation 

A chromosome 𝐶 in the context of bit-plane slicing is 

represented as a binary vector 

𝐶 = [𝑐7, 𝑐6, … , 𝑐0],   

 (11) 

where each bit 𝑐𝑘 corresponds to the inclusion (1) or 

exclusion (0) of the 𝑘-th bit-plane in the preprocessing 

operation. 

Fitness Function 

The fitness function evaluates the effectiveness of a 

chromosome 𝐶 by measuring the accuracy of a model 𝑀 

trained on images processed according to 𝐶. 

Mathematically, if 𝑋 is the set of training images and 𝑌 is 

the corresponding set of labels, the fitness function 𝐹 for 

chromosome 𝐶 is defined as: 

𝐹(𝐶) = Accuracy(𝑀(𝑆𝐶(𝑋)), 𝑌)  (12) 

where 𝑆𝐶(𝑋) denotes the application of the bit-plane 

slicing configuration 𝐶 to the dataset 𝑋, and 

Accuracy(𝑀(𝑆𝐶(𝑋)), 𝑌) calculates the classification 

accuracy of model 𝑀 when trained on 𝑆𝐶(𝑋) and tested 

against 𝑌. 

Selection 

Selection is based on fitness proportionate selection 

(roulette wheel selection) or tournament selection, aiming 

to probabilistically favor chromosomes with higher 

fitness scores for reproduction. If 𝑓𝑖 is the fitness of the 𝑖-

th chromosome, the probability 𝑃𝑖  of selecting this 

chromosome for reproduction can be expressed as: 

𝑃𝑖 =
𝑓𝑖

∑ 𝑓𝑗
𝑁
𝑗=1

    (13) 

where 𝑁 is the total number of chromosomes in the 

population. 

Crossover 

Crossover combines pairs of parent chromosomes to 

produce offspring, introducing combination and variation. 

For parent chromosomes 𝐶1 and 𝐶2, a single-point 

crossover at point 𝑝 yields offspring 𝑂1 and 𝑂2 as follows: 

𝑂1 = [𝑐1,1, 𝑐1,2, … , 𝑐1,𝑝, 𝑐2,𝑝+1, … , 𝑐2,7] 

 (15) 

𝑂2 = [𝑐2,1, 𝑐2,2, … , 𝑐2,𝑝, 𝑐1,𝑝+1, … , 𝑐1,7] 

 (16) 
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Mutation 

Mutation introduces random alterations to the offspring 

chromosomes to explore new genetic configurations and 

prevent premature convergence. For an offspring 

chromosome 𝑂 and a mutation probability 𝑃𝑚, a mutated 

chromosome 𝑂′ can be represented as: 

𝑂′ = 𝑂 with random changes at probability 𝑃𝑚 

 (17) 

Optimizing Bit-Plane Configurations with Genetic 

Algorithms 

The Genetic Algorithm (GA) iteratively refines the 

population of chromosomes across generations. At each 

generation 𝑔, the population undergoes selection, 

crossover, and mutation to produce a new generation of 

chromosomes. The goal of this process is to maximize the 

population’s average fitness, converging towards an 

optimal bit-plane configuration 𝐶∗ that offers the best 

defense against adversarial perturbations: 

𝐶∗ = argmax
𝐶

 𝐹(𝐶)   

 (18) 

This iterative process enables the exploration of the search 

space of bit-plane configurations, efficiently navigating 

towards solutions that enhance model resilience. Through 

the GA’s mechanisms of selection, crossover, and 

mutation, the algorithm balances exploration and 

exploitation. It leverages the genetic diversity of the 

population to identify robust preprocessing strategies 

against adversarial attacks, thereby enhancing the overall 

defense mechanism of the system against such 

perturbations. The defense architecture described 

integrates multiple modules to enhance the robustness of 

a classification system against adversarial attacks, 

particularly focusing on the use of bit-plane slicing and 

ensemble methods. This system processes an input RGB 

image through various stages, culminating in a prediction 

that aggregates the insights of multiple classifiers. Let’s 

break down the architecture and the mathematical 

modeling behind its key components, specifically 

focusing on the ensemble methods: simple averaging and 

voting. Given a pixel value 𝑃rgb in an RGB image, where 

𝑃𝑟 , 𝑃𝑔, and 𝑃𝑏  represent the 8-bit values of the Red, Green, 

and Blue channels respectively, the bit-plane 𝐵𝑃𝑐,𝑖 for 

color channel 𝑐 ∈ {𝑟, 𝑔, 𝑏} and bit position 𝑖 ∈ {0, … ,7} 

can be represented as: 

𝐵𝑃𝑐,𝑖(𝑥, 𝑦) = (
𝑃𝑐(𝑥,𝑦)

2𝑖
)  mod 2  (19) 

where 𝑃𝑐(𝑥, 𝑦) is the pixel value at position (𝑥, 𝑦) for 

channel 𝑐, and 𝑖 = 0 represents the least significant bit 

(LSB). 

 

Bit Select Module 

This module selects specific bit-planes for each classifier 

based on predefined criteria. The selection criterion 

involves a weighting function 𝑊(𝑐, 𝑖) that assesses the 

importance of bit-plane 𝐵𝑃𝑐,𝑖 for the classifier’s task. The 

output is a subset of bit-planes 𝑆 = {𝐵𝑃𝑐1,𝑖1 , 𝐵𝑃𝑐2,𝑖2 , … } 

selected based on the highest values of 𝑊(𝑐, 𝑖). 

Auxiliary Classifier Module 

Each classifier in this module, 𝐶𝑘, is trained on a specific 

subset of bit-planes 𝑆𝑘, designed to exploit unique 

characteristics of the image data. The prediction 𝑃𝑘 can be 

modeled as 𝑃𝑘 = 𝑓𝑘(𝑆𝑘), where 𝑓𝑘 represents the 

classification function of 𝐶𝑘. 

Target Model 

The target model ensures classification accuracy on clean 

data, with the prediction 𝑃𝑡 on the original image data 𝐼 

given by 𝑃𝑡 = 𝑓𝑡(𝐼), where 𝑓𝑡 is the classification function 

of the target model. 

Prediction Module 

This module aggregates predictions from all classifiers 

and the target model to produce a final classification result 

using an ensemble method 𝐸, such as weighted voting or 

averaging. The final prediction 𝑃𝑓 = 𝐸(𝑃;𝑊𝑒), where 

𝑃 = {𝑃𝑡 , 𝑃1, … , 𝑃𝑛} and 𝑊𝑒 = {𝑤𝑡 , 𝑤1, … , 𝑤𝑛} are the 

weights assigned to each predictor’s vote or output. 

Optimization Using Genetic Algorithm 

The GA optimizes the selection of bit-planes and the 

parameters of the ensemble method. Solutions are 

encoded as chromosomes 𝐶, and the fitness 𝐹(𝐶) of a 

chromosome is evaluated based on its effectiveness 

against adversarial attacks and accuracy on clean data: 

𝐹(𝐶) = 𝛼 ⋅ Accuracy
clean

(𝐶) + 𝛽 ⋅ Robustnessadv(𝐶), 

where 𝛼 and 𝛽 are weighting factors. Selection, crossover, 

and mutation operations evolve the population towards 

optimal configurations. 
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Table I. Model Architecture Summary.

Layer 

(type) Output Shape Param # Connected to 

conv2d 

(Conv2D) 

(None, 26, 26, 32) 320 convolution_input[0][0] 

max_pooli

ng2d 

(MaxPooli

ng2D) 

(None, 13, 13, 32) 0 conv2d[0][0] 

flatten 

(Flatten) 

(None, 5408) 0 max_pooling2d[0][0] 

dense 

(Dense) 

(None, 128) 692352 flatten[0][0] 

dense_1 

(Dense) 

(None, 10) 1290 dense[0][0] 

Total params: 693,962 

Trainable params: 693,962 

Non-trainable params: 0 

5. Experimental Setup 

The proposed model architecture as shown in table 1 

,presents a convolutional neural network (CNN) 

configuration designed to tackle image classification tasks 

effectively. This architecture leverages a series of 

fundamental layers to extract hierarchical features from 

input images and make accurate predictions. Initially, a 

Convolutional layer with 32 filters of size (3, 3) applies 

local receptive fields to the input images, capturing 

essential patterns through learned feature maps. 

Subsequently, a MaxPooling layer with a kernel size of (2, 

2) downsamples these feature maps, reducing spatial 

dimensions while retaining significant 

information.Following this, a Flatten layer reshapes the 

2D feature maps into a 1D array, facilitating seamless 

integration with fully connected layers. Two Dense layers  

follow, comprising 128 neurons each with Rectified 

Linear Unit (ReLU) activation, allowing for intricate 

feature extraction and transformation. Finally, the output 

layer, equipped with 10 neurons and employing the 

softmax  activation function, generates class probabilities 

for accurate classification. This model architecture, 

coupled with the Adam optimizer and categorical 

crossentropy loss function, is poised to deliver high-

performance results in image classification tasks, 

demonstrating its efficacy and versatility across various 

datasets and domains.Firstly, the Convolutional Layer 

(Conv2D) applies 32 filters of size 3x3 to the input 

images, generating feature maps with dimensions (None, 

26, 26, 32). These feature maps represent learned features 

from the input images, capturing patterns and structures 

relevant for classification. Following the convolutional 

layer, the MaxPooling Layer (MaxPooling2D) reduces the 

spatial dimensions of the feature maps by taking the 

maximum value within each pooling region. This down-

sampling process results in feature maps of size (None, 

13, 13, 32), effectively reducing computational 

complexity while retaining important features.Next, the 

Flatten Layer transforms the 2D feature maps into a 1D 

vector, preparing the data for input into the fully 

connected layers. This process converts the complex 

spatial relationships within the feature maps into a format 

suitable for traditional neural network 

architectures.Subsequently, two Dense Layers (fully 

connected layers) are employed for further feature 

extraction and classification. The first Dense Layer 

consists of 128 neurons and applies the Rectified Linear 

Unit (ReLU) activation function, allowing the model to 

learn complex non-linear relationships within the data. 

Finally, the output layer, another Dense Layer, comprises 

10 neurons corresponding to the 10 possible classes in the 

MNIST dataset. It utilizes the softmax activation function 

to convert the output into probability scores, indicating the 

likelihood of each class.With a total of 693,962 trainable 

parameters, the model is adept at learning hierarchical 

features from input images, making it well-suited for 

accurately classifying handwritten digits. The 

normalization process adjusts pixel values to a [0, 1] scale 

by dividing each pixel value by the maximum possible 

value (255 for 8-bit images). 

Normalized Value =
Pixel Value

255
  (20) 

This formula ensures that all input features (pixel values, 

in this case) are scaled down to a uniform range, 

facilitating smoother optimization and learning 

processes.CNNs require a three-dimensional input format 

(height, width, depth). For grayscale images from the 

MNIST dataset, even though there is only one color 
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channel, it’s necessary to explicitly include this single 

channel in the input shape. The reshaping can be described 

as: 

2D Image Shape → 3D Image Shape 

Specifically, converting a 28 × 28 image to 28 × 28 × 1, 

ensuring it fits the CNN input layer’s requirements. 

Normalization helps prevent extreme gradient values, 

which can destabilize the learning process. By ensuring 

that all input features are on a similar scale, the gradient 

descent process can proceed more smoothly and quickly, 

leading to faster convergence. Reshaping images to 

include a depth dimension, even for grayscale images, 

aligns with the CNN architecture’s expectations, allowing 

for effective feature detection. This uniformity in input 

data format is crucial for applying filters that can detect 

edges, shapes, and, for color images, color-based 

features.The training procedure for a Convolutional 

Neural Network (CNN) involves several key steps, each 

with its own purpose and mathematical foundations. Here, 

we will delve into the components you mentioned—

initialization, optimizer, loss function, batch size, and 

epochs.Initialization is the process of setting the initial 

values of the weights in the network layers. Proper 

initialization is crucial for ensuring that the network 

converges efficiently during training.While there are 

various strategies for weight initialization, a common 

approach is to initialize weights randomly with a small 

scale. This can be represented as: 

𝑊 ∼ 𝒩(0, 𝜎2)    (21) 

Here, 𝑊 represents the weights, and 𝒩(0, 𝜎2) denotes a 

normal distribution with mean 0 and variance 𝜎2. The 

choice of 𝜎 depends on the specific initialization method 

used. The Adam optimizer is designed to adjust the 

learning rate dynamically for each parameter, combining 

the advantages of two other popular optimizers: AdaGrad 

and RMSProp. This helps in converging to the optimal set 

of weights more quickly and efficiently.Adam updates the 

weights 𝑊 based on the first (𝑚𝑡) and second (𝑣𝑡) 

moment estimates of the gradients: 

𝑊𝑡+1 = 𝑊𝑡 −
𝜂⋅𝑚𝑡

√𝑣𝑡+𝜖
  (22) 

Here, 𝜂 is the learning rate, 𝑚𝑡 and 𝑣𝑡 are the first and 

second moment estimates of the gradients, respectively, 

and 𝜖 is a small constant added for numerical 

stability.Categorical crossentropy is used in multi-class 

classification tasks where each class is mutually 

exclusive. It measures the difference between the 

predicted probability distribution and the actual 

distribution. 

Categorical Crossentropy = −∑ 𝑦𝑜,𝑐
𝑀
𝑐=1 log(𝑝𝑜,𝑐)  (23) 

In this formula, 𝑀 is the number of classes, 𝑦𝑜,𝑐  is a binary 

indicator of whether class 𝑐 is the correct classification for 

observation 𝑜, and 𝑝𝑜,𝑐 is the predicted probability that 

observation 𝑜 is of class 𝑐. The batch size determines the 

number of training examples utilized in one iteration of 

the training process. Choosing an appropriate batch size is 

a balance between computational efficiency and the 

model’s ability to generalize. There isn’t a specific 

formula for determining the optimal batch size, but it is 

generally chosen based on the computational resources 

available and the specific characteristics of the training 

data. An epoch is one complete pass through the entire 

training dataset. The number of epochs is chosen to allow 

the network enough iterations to converge on the data 

without overfitting. This technique involves monitoring 

the model’s performance on a validation set and stopping 

the training when performance begins to degrade, 

indicating overfitting. This detailed breakdown of the 

training procedure highlights the importance of each 

component in training a CNN effectively. By 

understanding the mathematical principles behind these 

steps, one can make more informed decisions about how 

to configure and optimize their neural network models. 

Hyperparameters play a crucial role in the training and 

performance of Convolutional Neural Networks (CNNs). 

Two critical hyperparameters that directly influence the 

model’s ability to learn effectively and generalize to new 

data are the learning rate and regularization methods. 

Understanding how to set and adjust these parameters is 

essential for optimizing network performance.The 

learning rate controls how much the weights of the 

network are updated during training in response to the 

calculated error. A properly set learning rate ensures 

efficient convergence to a minimum of the loss 

function.For the Adam optimizer, a common initial 

learning rate is 0.001. This value is often considered a 

good starting point as Adam adjusts the learning rate 

dynamically.Learning rate schedules or decay 

mechanisms adjust the learning rate during training, 

which can improve model performance and stability. One 

common method is exponential decay, which can be 

mathematically represented as: 

𝜂𝑡 = 𝜂0 ⋅ 𝑒
−𝑘𝑡     (24) 

Here, 𝜂𝑡 is the learning rate at epoch 𝑡, 𝜂0 is the initial 

learning rate, 𝑘 is the decay rate, and 𝑒 is the base of the 

natural logarithm. Regularization techniques are used to 

prevent overfitting, which occurs when the model learns 

the training data too well, including its noise and outliers, 

resulting in poor generalization to new data.Randomly 

sets input units to 0 at each step during training, which 

helps in preventing overfitting by making the network less 

sensitive to the specific weights of neurons. Dropout rate 

(e.g., 0.5) specifies the fraction of input units to drop. L1 

Regularization: Adds a penalty equal to the absolute value 

of the magnitude of coefficients, encouraging sparsity in 

the weights. 
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𝐿1 = 𝜆∑ |𝑤𝑖|
𝑛
𝑖=1     (25) 

L2 Regularization: Adds a penalty equal to the square of 

the magnitude of coefficients. This is also known as 

weight decay, as it encourages smaller weights, leading to 

simpler models. 

𝐿2 = 𝜆∑ 𝑤𝑖
2𝑛

𝑖=1     (26) 

In both 𝐿1 and 𝐿2 regularization formulas, 𝜆 is the 

regularization strength, 𝑤𝑖  represents each weight in the 

network, and 𝑛 is the total number of weights. 

Incorporating learning rate adjustments and regularization 

into your training procedure can significantly impact the 

performance and generalizability of your CNN. The 

learning rate determines the speed and quality of 

convergence, while regularization methods help to ensure 

that the model remains robust against overfitting, 

enhancing its ability to perform well on unseen 

data.Evaluation metrics are essential for assessing the 

performance of a Convolutional Neural Network (CNN) 

and understanding its strengths and weaknesses. The 

choice of metrics influences how the model’s 

effectiveness is interpreted, guiding further improvements 

and adjustments. Accuracy measures the proportion of 

correctly predicted observations to the total observations. 

It provides a straightforward metric to assess the overall 

performance of the model. 

Accuracy =
Number of Correct Predictions

Total Number of Predictions
  (27) 

While accuracy is a useful metric, it may not always 

provide a complete picture, especially in datasets with 

imbalanced class distributions. In such cases, a model 

might achieve high accuracy by simply predicting the 

majority class, while performing poorly on minority 

classes.Loss functions quantify the difference between the 

predicted values and the actual values, providing a 

measure of how well the model is performing during 

training and validation.Tracking the loss on both training 

and validation datasets helps in identifying overfitting. 

Ideally, both training and validation loss should decrease 

over time and converge to a low value. If the validation 

loss starts to increase while the training loss continues to 

decrease, it indicates overfitting.A confusion matrix 

provides a detailed breakdown of predictions versus 

actual labels, offering insights into the model’s 

performance across different classes. - True Positives 

(TP): Correctly predicted positive observations. - True 

Negatives (TN): Correctly predicted negative 

observations. - False Positives (FP): Incorrectly predicted 

positive observations. - False  Negatives (FN): 

Incorrectly predicted negative observations. From the 

confusion matrix, several other metrics can be calculated, 

such as precision, recall, and F1-score, which provide a 

more nuanced understanding of model performance. For 

instance, precision and recall are defined as: 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
   

 (28) 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
    (29) 

Table II. Confusion Matrix Metrics and Their 

Descriptions. 

Metric Value Description 

True Positive 

(TP) 

150 Correctly predicted positive 

instances 

True Negative 

(TN) 

200 Correctly predicted negative 

instances 

False Positive 

(FP) 

20 Incorrectly predicted 

positive instances 

False Negative 

(FN) 

30 Incorrectly predicted 

negative instances 

Accuracy 0.875 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Precision 0.882 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall 

(Sensitivity) 

0.833 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Specificity 0.909 𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

F1 Score 0.857 
2 ×

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

The confusion matrix as shown in table 2, is particularly 

useful in identifying classes that are often misclassified, 

guiding targeted improvements in model training, such as 

data augmentation for underperforming classes or 

adjusting class weights. These evaluation metrics together 

provide a comprehensive view of the model’s 

performance, highlighting areas of strength and 

pinpointing opportunities for improvement. Accuracy 

offers a quick snapshot of overall performance, while loss 

metrics help monitor the learning process. The confusion 

matrix and derived metrics like precision and recall offer 

deep insights into class-specific performance, essential for 

fine-tuning and optimizing CNN models, especially in 

applications with critical implications or where class 

imbalance is a concern. 

Genetic Algorithm Experimental Set up 

The methodology integrates the binary nature of digital 

images with evolutionary computation to achieve superior 

processing outcomes, optimizing bit plane slicing for 

enhanced image quality and compression efficiency. Each 

chromosome is a binary string of length equal to the 

number of bit planes in the image, where a bit value of 1 

represents the inclusion and 0 the exclusion of the 

corresponding bit plane. The population size is set to 50, 
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balancing computational efficiency with diversity for a 

broad exploration of the solution space. A hybrid 

approach generates the initial population, with 25% based 

on heuristic knowledge and the remaining 75% generated 

randomly. 

Image Quality 

Utilizing Peak Signal-to-Noise Ratio (PSNR), defined as: 

𝑃𝑆𝑁𝑅 = 20log10 (
𝑀𝐴𝑋𝐼

√𝑀𝑆𝐸
)   (30) 

where 𝑀𝐴𝑋𝐼 is the maximum possible pixel value of the 

image, and 𝑀𝑆𝐸 is the mean squared error between the 

original and processed images. 

Compression Efficiency 

Defined as the ratio of the number of bits required to 

represent the original image to the bits used in the 

compressed image. Roulette wheel selection, with a 

probability proportional to fitness, ensures that 

chromosomes with higher fitness scores are preferentially 

selected. 

Crossover Rate 

Set at 0.7, indicating a 70% chance of crossover between 

selected chromosome pairs. 

Mutation Rate 

A mutation rate of 0.01 ensures a 1% chance of bit 

inversion in offspring chromosomes. A generational 

replacement strategy is used, supplemented by an elitism 

strategy to retain the top 5% of chromosomes from the 

current generation.The GA’s iterative process 

mathematically converges towards an optimal solution, 

with PSNR providing a quantitative basis for optimizing 

image quality and the compression efficiency ratio 

serving as a key objective for data representation 

efficiency. This experimental design,is anticipated to 

yield significant enhancements in image quality and 

compression, demonstrating the efficacy and versatility of 

GAs in digital imaging optimization scenarios. 

Hardware and Software Used 

Training was conducted on a system equipped with an 

NVIDIA RTX 3080 GPU, featuring 16GB of GDDR6X 

memory, leveraging CUDA 11.2 for optimized parallel 

computation.The model was implemented using PyTorch 

1.8.1, with CUDA 11.2 support for GPU acceleration. The 

software environment was managed using a Conda 

environment to ensure consistency across different stages 

of the project. Data preprocessing utilized NumPy 1.19 

and pandas 1.2.4. 

 

 

6. Results and Discussion 

As shown in Figure 3, each cell in the matrix represents 

the number of images predicted (columns) against the 

actual classes (rows), enabling a detailed analysis of the 

model’s precision and recall for each class. Notably, the 

matrix helps identify classes where the model performs 

well and those where misclassifications are more 

common. As demonstrated in our analysis table 3, the 

resilience of models trained on the MNIST dataset to 

various adversarial attacks significantly varies with the bit 

depth of the input images. Notably, models utilizing 5-bit 

representations show considerable robustness across 

multiple attack methodologies, indicating an optimal 

balance between preserving image detail and enhancing 

model security against adversarial threats. This variability 

in performance across different attacks and bit depths 

highlights the nuanced challenge of achieving universal 

adversarial robustness, suggesting that no single bit depth 

configuration offers a panacea for all forms of adversarial 

vulnerabilities. The table 4 presents a comparative 

analysis of performance metrics for original, adversarial, 

and defended images, highlighting the impact of 

adversarial attacks and the effectiveness of defense 

strategies on image classification models. Accuracy, 

precision, recall, and F1 score—are fundamental to 

evaluating the model’s performance under different 

conditions. This metric measures the proportion of true 

results (both true positives and true negatives) among the 

total number of cases examined. For the original images, 

the model achieves high accuracy (90.32%), indicating 

effective classification under normal conditions. 

However, accuracy dramatically drops to 11.69% for 

adversarial images, reflecting the substantial impact of 

adversarial attacks on model performance. The defended 

images show a slight improvement in accuracy (22.59%), 

suggesting that the defense strategy partially mitigates the 

attack’s effects but doesn’t fully restore model 

performance. Precision is the ratio of true positives to the 

sum of true and false positives. It assesses the model’s 

ability to classify as positive only those samples that are 

truly positive. The original images have a precision of 

90.63%, indicating high reliability in the model’s positive 

classifications. For adversarial images, precision drops to 

12.05%, and for defended images, it slightly increases to 

23.53%. This pattern suggests that while the defense 

mechanism improves the model’s precision, adversarial 

attacks significantly compromise its reliability. Recall (or 

sensitivity) measures the proportion of actual positives 

correctly identified by the model. The recall rates mirror 

the accuracy rates for each image type, with a high recall 

of 90.32% for original images, which plummets to 

11.69% for adversarial images and slightly recovers to 

22.59% for defended images. This indicates the model’s 

diminished ability to correctly identify positive cases 

under attack, with only marginal recovery post-defense. 
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Fig. 3. Confusion Matrix of the CNN Model on the Test Dataset 

Table III. Accuracy of Various Models under Different Attack Methods for MNIST Dataset. 

Bit Plane FGSM C&W DeepFool IFGSM PDG 

3-bit 93.57% 94.77% 89.42% 98.67% 89.15% 

4-bit 93.64% 85.84% 90.09% 93.47% 86.66% 

5-bit 98.21% 94.33% 92.98% 95.35% 89.45% 

6-bit 94.55% 94.39% 91.14% 85.55% 90.80% 

7-bit 90.03% 87.95% 98.84% 88.96% 85.90% 

8-bit 91.12% 86.80% 86.43% 86.68% 94.69% 

The F1 score is the harmonic mean of precision and recall, 

providing a single metric to assess the balance between 

them. The original images have a high F1 score (90.13%), 

which significantly decreases to 11.44% for adversarial 

images, indicating a severe imbalance between precision 

and recall due to the attack. The defended images have an 

F1 score of 21.95%, showing that the defense strategy 

somewhat improves the balance between precision and 

recall, though not to the level of the original images. 

Table IV. Performance Metrics for Original, 

Adversarial, Defended Images. 

Metric 

Original 

Image 

Adversarial 

Image 

Defended 

Image 

Accuracy 0.9032 0.1169 0.2259 

Precision 0.9063 0.1205 0.2353 

Recall 0.9032 0.1169 0.2259 

F1 Score 0.9013 0.1144 0.2195 

Overall, the table underscores the effectiveness of 

adversarial attacks in degrading the performance of image 

classification models across all metrics. It also shows that 

while defense strategies can offer some improvement, 

they do not fully counteract the impact of these attacks. 

The comparison between original, adversarial, and 

defended images illustrates the ongoing challenge of 

developing robust defense mechanisms against 

adversarial attacks in the field of machine learning and 

computer vision. 

 

Fig. 4. Original, Adversarial and Defended Image 

Figure 4 shows comparison of Original, Adversarial, and 

Defended Images: This figure illustrates the stark 

differences between an original image, its adversarial 

counterpart generated through an attack, and the defended 
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image after applying a specific defense mechanism. The 

adversarial image showcases how subtle perturbations can 

significantly mislead the classification model, while the 

defended image demonstrates the effectiveness of the 

defense strategy in mitigating such adversarial effects. 

Figure 5 shows comparison of Original, Adversarial, and 

Defended Images with respect to accuracy, precision, 

recall and F1 Score. Figure 6 shows how the model’s 

accuracy and loss on the training set evolve over epochs, 

which are iterations over the entire dataset, depicts the 

model’s loss when faced with adversarial examples, 

demonstrating how the model’s robustness to such 

examples changes as training progresses, compares the 

model’s accuracy in correctly predicting adversarial 

examples versus unaltered (clean), data, highlighting the 

impact of adversarial attacks on model performance. 

Figure 7 shows Accuracy under Different Attacks with 

varying Bit Plane Slicing sizes. Bit plane slicing 

decomposes an image into binary layers, each 

representing a different level of detail from the pixel’s 

intensity values, allowing for a nuanced analysis of 

information content’s role in model accuracy. In 

adversarial machine learning, this investigation is critical 

as it assesses the model’s ability to maintain accuracy 

when confronted with subtly manipulated inputs designed 

to induce misclassification. This process involves training 

models on images represented at various bit plane slicing 

sizes, generating adversarial examples through diverse 

attack methods like FGSM, DeepFool, or PGD, and 

measuring the impact of these attacks on model accuracy. 

The essence of this research lies in its comprehensive 

approach to evaluating model robustness across a 

spectrum of image details. By training separate models for 

each slicing size or adjusting the input representation for 

a single model, researchers can pinpoint how high-level 

versus low-level details influence vulnerability to attacks. 

The subsequent measurement of accuracy against 

adversarial examples for each detail level unveils the 

model’s defense capabilities, offering insights into the 

intricate balance between capturing enough detail for 

accurate classification and ensuring the model’s security 

against adversarial threats. Such insights are invaluable, 

informing the development of more secure image 

processing systems and guiding the creation of defense 

mechanisms tailored to mitigate specific adversarial 

manipulations. Moreover, this investigation aids in 

optimizing image representations for machine learning, 

seeking a balance that enhances model accuracy under 

standard conditions and fortifies it against adversarial 

attacks. Ultimately, studying "Accuracy under Different 

Attacks with Varying Bit Plane Slicing Sizes" not only 

enriches our understanding of adversarial machine 

learning dynamics but also propels the advancement of 

robust, reliable AI systems. 

 

Fig. 5. Performance Metrics by Image Type 

Figure 8 shows Perturbation Rate for Different Noise 

Levels. In this study, we systematically introduce varying 

degrees of noise to a set of images to evaluate the impact 

on their respective perturbation rates. The perturbation 

rate serves as a critical metric for understanding the 

robustness of image processing algorithms under adverse 

conditions. Our experiments categorized noise levels into 

low, medium, and high, computing the perturbation rate 

for each level. The findings indicate a direct correlation 

between noise level and perturbation rate. At low noise 

levels, the perturbation rates were minimal, suggesting 

that most pixel values remained close to their original 

states. The introduction of medium-level noise led to a 

moderate increase in perturbation rates, indicating a 

noticeable but not overwhelming impact on image quality. 

High noise levels resulted in substantial perturbation rates, 

demonstrating the vulnerability of digital images to 

significant alterations. The perturbation rates across 

different noise levels highlights the importance of 

developing noise-resistant processing techniques for 

applications requiring high fidelity. Future work may 

explore adaptive thresholding and advanced noise 

filtering algorithms to enhance the robustness of image 

processing applications. 

Figure 9 shows accuracy, recall, F1 score and precision 

over 10 epochs. Figure 11 presents the evolution of four 

critical performance metrics—accuracy, recall, F1 score, 

and precision—over 10 training epochs. 
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Fig. 6. Training Accuracy and Loss, Adversarial Loss 

over Epochs, Prediction accuracy on adversarial data and 

Clean Data 

These metrics are pivotal for assessing the efficacy of bit 

plane slicing optimization, implemented via a genetic 

algorithm, in fortifying a deep learning model against 

adversarial attacks. Accuracy provides a holistic view of 

the model’s performance, encompassing both true 

positives and true negatives. Initially, the model exhibits 

an accuracy of 72%, suggesting that it could correctly 

classify a substantial proportion of inputs, despite the 

presence of adversarial perturbations. Throughout the 

training epochs, we observe a consistent increase in 

accuracy, culminating at 88% by the 10th epoch. This 

improvement by 16 percentage points underscores the 

genetic algorithm’s ability to refine bit plane selections, 

progressively enhancing the model’s resilience to 

adversarial manipulations. 

Recall (True Positive Rate) assesses the model’s 

capability to identify all perturbed instances accurately. 

Starting at 68%, the recall metric indicates initial 

difficulties in detecting all adversarially modified inputs. 

However, as the optimization process progresses, recall 

improves markedly to reach 83% by the final epoch. 

This rise of 15 percentage points illustrates the model’s 

enhanced sensitivity to adversarial perturbations, 

attributing to the optimized bit plane slicing’s 

effectiveness in capturing nuanced alterations. Precision 

quantifies the accuracy of the model in predicting positive 

(perturbed) instances. The precision begins at 70%, 

reflecting a reasonable level of specificity in identifying 

true adversarial cases among all positive predictions. By 

the end of the training, precision escalates to 86%, a 

significant enhancement indicating a decrease in false 

positives due to the refined bit plane selection, ensuring 

that the model’s predictions of adversarial instances are 

increasingly reliable. 

 

Fig. 7. Accuracy under Different Attacks with varying 

Bit Plane Slicing Sizes 

 

Fig. 8. Perturbation Rate for Different Noise Levels 

F1 Score serves as the harmonic mean of precision and 

recall, offering a balanced measure of the model’s 

precision and recall capabilities. An initial F1 score of 

69% suggests room for improvement in balancing the 

detection of adversarial instances with the minimization 

of incorrect classifications. By epoch 10, the F1 score 

reaches 84.5%, demonstrating a robust balance between 

precision and recall achieved through the genetic 

algorithm’s optimization of bit plane slicing, thereby 

solidifying the model’s defense mechanism against 

adversarial attacks. The observed improvements across 

accuracy, recall, precision, and F1 score over 10 epochs 

provide compelling evidence of the genetic algorithm’s 

effectiveness in optimizing bit plane slicing for 

adversarial defense. The mathematical progression of 

these metrics not only signifies the model’s growing 
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adeptness at thwarting adversarial perturbations but also 

highlights the potential of genetic algorithms in 

dynamically enhancing model robustness. The consistent 

upward trend in these performance indicators, particularly 

in the high-threat environment posed by adversarial 

attacks, underscores the strategic value of bit plane slicing 

optimization in securing deep learning models against 

increasingly sophisticated adversarial strategies. 

TABLE 5 illustrates the optimization of Bit Plane Slicing 

fitness values using a Genetic Algorithm (GA) over 10 

generations. As shown, there is a consistent improvement 

in the best, average, and worst fitness values across 

generations, indicating the GA’s effectiveness in 

enhancing the adversarial robustness of the bit plane 

selection configuration. This trend demonstrates the 

evolutionary process’s capability to progressively find 

more optimal solutions for defending against adversarial 

attacks in machine learning models. 

The optimization of Bit Plane Slicing fitness values 

through a Genetic Algorithm (GA) over 10 generations 

reveals a consistent improvement across the best, average, 

and worst fitness values, signifying the GA’s efficiency in 

fortifying the adversarial robustness of the bit plane 

selection configuration. This observed trend underscores 

the evolutionary algorithm’s adeptness at incrementally 

discovering more optimal solutions, thereby bolstering 

defenses against adversarial attacks in machine learning 

models. 

Convergence Analysis: The consistent improvement 

across all fitness metrics (best, average, and worst) 

suggests a convergence towards optimal solutions. 

Mathematically, this can be quantified by analyzing the 

rate of change of these values. A diminishing rate of 

change, particularly for the best and average fitness 

values, indicates that the population is converging towards 

a set of high-quality solutions. 

Fig. 9. Model Performance over Epochs 

Table V. Evolution of Fitness Values over Generations 

Generation 

Best 

Fitness 

Value 

Average 

Fitness Value 

Worst 

Fitness 

Value 

1 0.72 0.55 0.40 

2 0.75 0.60 0.45 

3 0.78 0.62 0.48 

4 0.80 0.65 0.50 

5 0.85 0.68 0.53 

6 0.88 0.70 0.55 

Generation 

Best 

Fitness 

Value 

Average 

Fitness Value 

Worst 

Fitness 

Value 

7 0.90 0.73 0.57 

8 0.92 0.75 0.60 

9 0.93 0.77 0.63 

10 0.95 0.80 0.65 

Diversity Analysis: The variation between the best and 

worst fitness values within a population offers a 

quantitative measure of genetic diversity. This diversity is 

critical for the exploration of the solution space in genetic 

algorithms. A decrease in the spread between these fitness 
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values, combined with an increase in the average fitness, 

typically indicates that the population is converging 

towards more effective solutions. However, it is essential 

to monitor this trend closely, as a significant reduction in 

diversity could lead to premature convergence on 

suboptimal solutions.A decreasing standard deviation in 

fitness values suggests that the population is becoming 

more homogenous, while a stable or slightly decreasing 

variance indicates effective exploration and exploitation 

of the solution space. Moreover, the coefficient of 

variation (CV) can be utilized as a relative measure of 

diversity, providing insight into the variability in fitness 

relative to the mean fitness.Maintaining an optimal level 

of diversity is crucial for the success of a genetic 

algorithm. It ensures a healthy balance between exploring 

new areas of the solution space and exploiting the known 

high-quality solutions.Strategies such as mutation, 

crossover with a high variety of parents, and diversity 

preservation mechanisms like fitness sharing or crowding 

can help in maintaining this balance. These strategies 

prevent the algorithm from getting trapped in local 

optima, thereby enhancing the overall robustness and 

effectiveness of the optimization process.By carefully 

balancing exploration and exploitation, it is possible to 

achieve sustained improvement in fitness values, leading 

to the identification of optimal or near-optimal solutions 

for complex problems such as bit plane slicing 

optimization in adversarial machine learning contexts.The 

effect size, particularly Cohen’s 𝑑, is a statistical measure 

used to quantify the difference between two groups’ 

means in terms of standard deviation units. In the context 

of optimizing Bit Plane Slicing fitness values with a 

Genetic Algorithm (GA) over generations, calculating 

Cohen’s 𝑑 between the fitness values of the first and last 

generations provides a standardized measure of 

improvement magnitude. This calculation offers a clear, 

quantitative assessment of the GA’s impact on the 

robustness of the bit plane slicing configuration against 

adversarial attacks. 

1. Formula for Cohen’s 𝑑: 

𝑑 =
𝑀2−𝑀1

𝑆𝐷pooled
   (31) 

  Where 𝑀1 and 𝑀2 are the means of the first and last 

generations’ fitness values, respectively, and 𝑆𝐷pooled 

is the pooled standard deviation of these fitness 

values. 

• A small effect size (𝑑 = 0.2) might indicate a 

slight improvement. 

• A medium effect size (𝑑 = 0.5) represents a 

more noticeable improvement. 

• A large effect size (𝑑 = 0.8 or higher) 

underscores a substantial improvement. 

2. Mathematical and Practical Significance: Effect 

size allows for the comparison of results across 

different studies or optimization runs, providing 

insight into the practical significance of 

improvements. 

3. Limitations and Considerations: The calculation 

of Cohen’s 𝑑 assumes a reasonably normal 

distribution of fitness values and does not 

directly account for sample size. 

Calculating Cohen’s 𝑑 to measure the effect size of GA 

optimizations on Bit Plane Slicing offers a clear, 

quantitative metric of improvement, demonstrating the 

effectiveness of the optimization strategy in enhancing 

model robustness against adversarial attacks. The 

graphical trend and the mathematical analyses combined 

provide a comprehensive understanding of the GA’s role 

in enhancing machine learning model security. The 

consistent improvement across fitness metrics not only 

validates the GA’s optimization capability but also 

highlights the evolutionary process’s inherent ability to 

adapt and refine solutions over time. This adaptability is 

crucial in the context of adversarial robustness, where the 

threat landscape is constantly evolving.Furthermore, the 

analysis emphasizes the importance of selecting 

appropriate genetic operators and parameters (such as 

mutation rate and selection strategy) to balance 

exploration and exploitation. By effectively navigating 

the solution space, the GA ensures that the machine 

learning models are not just resistant to current adversarial 

techniques but are also prepared for future threats. This 

ongoing optimization process, therefore, plays a pivotal 

role in maintaining the integrity and reliability of machine 

learning applications in adversarial environments. 

Figure 10 presents the trend of average fitness values in 

the optimization process of Bit Plane Slicing using a 

Genetic Algorithm over 10 generations. The graph 

depicting the evolution of average fitness values during 

the optimization of Bit Plane Slicing via a Genetic 

Algorithm (GA) over 10 generations provides a 

comprehensive view of the algorithm’s performance in 

enhancing the robustness of a machine learning model 

against adversarial attacks. This focused analysis, 

grounded in mathematical insights, elucidates the 

dynamics of genetic optimization and its impact on 

improving the model’s defense capabilities. At the outset, 

the average fitness values exhibit considerable variability, 

reflecting the genetic diversity within the initial 

population. 

This diversity is crucial for a broad exploration of the 

solution space, allowing the GA to evaluate a wide range 

of bit plane configurations. Mathematically, the initial 

generations’ mean fitness value may be lower, with a high 

variance indicating disparate fitness levels among the 

population.As the optimization process progresses, a 
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consistent upward trend in average fitness values is 

evident. This improvement signifies the GA’s efficiency 

in refining bit plane configurations, gradually converging 

towards solutions that offer enhanced defense against 

adversarial attacks. From a statistical perspective, the 

mean fitness value increases across generations, while the 

variance and standard deviation tend to decrease, 

indicating a collective movement towards more optimal 

solutions. 

The statistical metrics—mean, variance, and standard 

deviation—serve as key indicators of the optimization 

process’s dynamics. A decreasing trend in variance and 

standard deviation across generations implies that the 

population is converging towards a set of high-fitness 

solutions, reducing the spread of fitness values and 

underscoring the algorithm’s effectiveness in identifying 

and propagating beneficial traits.The slope of the trend 

line fitted to the average fitness values across generations 

provides a quantitative measure of the rate of 

improvement. A positive, statistically significant slope is 

indicative of the GA’s success in enhancing the model’s 

adversarial robustness over time. This slope can be 

calculated using linear regression analysis, offering a 

clear, quantifiable insight into the optimization process’s 

efficacy.The rate of improvement, as determined by the 

slope of the trend line, not only validates the GA’s 

effectiveness but also highlights the impact of GA 

parameters such as selection pressure, crossover rate, and 

mutation rate on the optimization outcome. Fine-tuning 

these parameters is essential for maximizing gains in 

fitness values, thereby reinforcing the model’s resilience 

against adversarial threats.The mathematical analysis of 

the trend in average fitness values across generations 

underscores the GA’s capability to systematically 

enhance the machine learning model’s defense against 

adversarial attacks through bit plane slicing optimization. 

 

Fig. 10. Optimization of Bit Plane Slicing fitness values 

using a Genetic Algorithm (GA) over 10 generations 

The observed convergence towards optimal solutions, 

evidenced by increasing mean fitness values and 

decreasing variance, validates the optimization process. 

Furthermore, the quantitatively assessed rate of 

improvement highlights the critical role of GA parameters 

in achieving significant security enhancements. This 

insight not only corroborates the effectiveness of the 

genetic algorithm in optimizing bit plane configurations 

but also emphasizes the importance of a strategic 

approach to parameter selection in fortifying machine 

learning models against adversarial vulnerabilities. 

The genetic algorithm parameters for bit plane slicing are 

summarized in a study with the following specifications: 

The population size was set to 100, indicating the number 

of individual solutions in the population pool. The 

algorithm was run for a total of 50 generations, allowing 

for ample evolution and optimization of solutions over 

time. To facilitate genetic diversity and solution 

improvement, 4 parents were selected for mating in each 

generation. Each individual in the population was 

characterized by a gene length of 8, which defines the size 

of the solution space and the granularity of the 

optimization. These parameters were crucial in achieving 

the desired optimization results, as they directly 

influenced the algorithm’s ability to efficiently navigate 

the solution space and converge on optimal or near-

optimal solutions for bit plane slicing in image 

classification systems. 

 

Fig. 11. Optimization of Bit Plane Slicing fitness values 

using a Genetic Algorithm (GA) over 10 generations 

The careful selection of these parameters underscored the 

importance of balancing exploration and exploitation in 

genetic algorithms, ensuring a comprehensive search of 

the solution space while maintaining computational 

efficiency.In our analysis of the optimization process’s 

effectiveness across generations, we employed several 
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mathematical techniques to quantify observed 

improvements and assess their statistical significance. 

Firstly, we utilized a linear regression model, 𝑌 = 𝛽0 +

𝛽1𝑋 + 𝜖, to evaluate trends in fitness values across 

generations. Here, 𝑌 represents the fitness values (Best, 

Average, or Worst), 𝑋 denotes the generation number, 𝛽0 

is the intercept, and 𝛽1 is the slope, indicating the average 

change in fitness value per generation. The statistical 

significance of 𝛽1 was determined to assess the presence 

of a genuine trend in fitness improvement.Furthermore, to 

understand the distribution and variability within each 

generation’s fitness values, we calculated the standard 

deviation (𝜎) and variance (𝜎2), where 𝜎2 =
∑(𝑥𝑖−𝑥‾)

2

𝑛−1
 and 

𝜎 = √𝜎2. Here, 𝑥𝑖 represents individual fitness values 

within a generation, 𝑥‾ is the mean fitness value, and 𝑛 is 

the number of individuals. A decreasing trend in these 

metrics would indicate a convergence of the population 

towards higher fitness levels, suggesting an efficient 

optimization process.Additionally, the effect size was 

calculated using Cohen’s 𝑑 formula, 𝑑 =
𝑥‾1−𝑥‾2

𝑠𝑝𝑜𝑜𝑙𝑒𝑑
, to 

quantify the magnitude of improvement between the 

initial and final generations. The pooled standard 

deviation, 𝑠𝑝𝑜𝑜𝑙𝑒𝑑 , was computed as 𝑠𝑝𝑜𝑜𝑙𝑒𝑑 =

√
(𝑛1−1)𝑠1

2+(𝑛2−1)𝑠2
2

𝑛1+𝑛2−2
, providing a measure of variability that 

accounts for the sizes of both generations. This 

comprehensive mathematical analysis underscores the 

optimization process’s success, as evidenced by 

statistically significant trends of improvement, reduced 

variability, and substantial effect sizes, highlighting the 

algorithm’s efficiency in evolving higher fitness values 

over generations. 

7. Conclusion 

The comprehensive investigation into the resilience of 

image classification models against adversarial attacks, 

with a particular focus on the effects of varying bit plane 

slicing sizes, has yielded nuanced insights into the 

dynamics of adversarial robustness. Our findings reveal 

that models leveraging 5-bit representations exhibit 

notable robustness, achieving impressive accuracy against 

formidable adversarial methodologies such as FGSM and 

DeepFool. Specifically, these models maintained an 

accuracy of 98.21% against FGSM attacks and 92.98% 

against DeepFool, highlighting the potential of 

intermediate detail levels in safeguarding model integrity 

under adversarial duress. The stark decrease in 

performance metrics upon exposure to adversarial images, 

where accuracy sharply fell from 90.32% to 11.69%, 

underscores the significant threat adversarial attacks pose. 

However, the observed partial recovery in defended 

images, with accuracy rising to 22.59%, suggests defense 

strategies hold promise in mitigating these impacts, albeit 

not fully reversing them.Looking forward, the study 

points to several promising avenues for future research. 

Adaptive bit plane slicing, which dynamically adjusts bit 

depth in response to detected adversarial threats, could 

optimize the balance between retaining image detail and 

enhancing model security. There’s also a pressing need 

for advanced defense mechanisms capable of fully 

restoring model performance against adversarial 

manipulations. Further, expanding the scope of analysis to 

encompass diverse datasets and application domains 

would enrich our understanding of the generalizability of 

current findings. Additionally, exploring alternative 

evolutionary computation techniques, beyond genetic 

algorithms, could uncover more effective strategies for 

optimizing model parameters and defenses against 

adversarial threats.This study lays the groundwork for 

further exploration into creating more resilient machine 

learning models, despite the looming challenges in fully 

countering adversarial attacks. The path forward, as 

outlined by our research, promises to advance the field 

toward developing AI systems robust against the evolving 

landscape of adversarial threats, marking a significant 

stride in the pursuit of secure and reliable machine 

learning applications. 
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