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Abstract: The applications of cyber-physical systems (CPS), which have a wide range from industrial to medical, are increasing day by 
day thanks to its reliable, scalable and flexible structure. In a CPS, the consistency and reliability of system are much more important, 
because they are generally used in large-scale and critical tasks. Uncertainties are unexpected situations and no matter how well a system 
designed they are a threat to a system always. Fuzzy logic is one of the algorithms that can be utilized in cyber layer easily. But because of 
its insufficiency in handling uncertainties new fuzzy types are emerged. Nonstationary fuzzy system is a type of fuzzy logic which is able 
to handle uncertainty in reasonable time. In this study a new inference system for nonstationary fuzzy systems is developed to enhance 
nonstationary fuzzy systems. The system is based on two main steps, first adding some random uncertainties to nonstationary inputs, and 
second obtaining single output value for the inputs. Thus, the fuzzy system always has uncertainty and the behavior of system is prepared 
for the uncertainties. The proposed method is verified by simulation results which demonstrate the effectiveness of system especially for 
noisy data compared to the type-1, and nonstationary fuzzy systems. The proposed method can be used in CPS which need consistency 
and robustness.    
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1. Introduction 
CPS has multi-layered structure whose cyber and physical 
components are in different layers, but tightly integrated thanks to 
communication technologies. Simple CPS system works as [1]: 

1- Gathered data by sensors are sent to cyber layer with the help 
of communication technologies. 

2-The data reached to cyber layer are used to calculate the state 
of system and produce the necessary commands. 

3-The commands are transferred to physical components such 
as actuators thanks to communication technologies, and the system 
works in this loop (Fig. 1). 
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Fig. 1. The block diagram which shows simply how a CPS works [2]. 

CPS whose cyber and physical components are diverse, may have 
uncertainties due to cyber, physical or communication layer [3]. 
Robustness, reliability, safety, and security are main challenges to 
implement CPS [4]. As CPS are mission-critical system; ensuring 
safety, security, and sustainability of such systems is very 
important [5]. Fuzzy decision systems can be applied easily in CPS 
thanks to its layered structure. So, fuzzy systems which known by 
their success in handling uncertainty, are preferred in CPS 
applications [6]. A block diagram for CPS based field monitoring 
study is given by fig. 2 [7].  
Fuzzy systems, which aims to emulate human decision 
mechanism, have been used in decision making problems for years. 
But because they are not capable to handle uncertainties much, it 
brings the need of enhanced versions of fuzzy logic. Specialized 
fuzzy system to handle uncertainty, which is called type-2 fuzzy 
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Fig. 2. Sample CPS for monitoring potato fields [7]. 
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system, is developed.  Furthermore, nonstationary fuzzy systems, 
which aims to model type-2 inputs with type-1 sets, are evolved to 
handle uncertainties in fuzzy systems with reducing the 
computational burden of type-2 sets [8]. 
Fuzzy systems have been subjected to researches since it is 
announced by Zadeh [9]. One of the studies which benefit from 
fuzzy logic is Esposito’s study. Esposito et al. aim to select a 
suitable cloud storage service for customer’s needs considering 
uncertainty in the expression of subjective preferences with the 
help of fuzzy logic [10]. Aladi et al. make a comparative study for 
type-1 and type-2 sets. They use type-2 fuzzy sets with different 
amount of footprint of uncertainty (FOU) size, and they 
demonstrate the effect of change in FOU on sets with different 
noise values [11]. Petrou et al. use Dempster–Shafer theory to 
habitat mapping, in combination with fuzzy logic. They report that 
using DS principles help them in enhancing classifier, and using 
fuzzification approaches help them in improving the results which 
are obtained by crisp classification [12]. Lochan et al. examine 65 
papers about control of 2-DOF (degrees of freedom) robot 
manipulator in the literature. They highlight that using fuzzy logic 
rather than classical controller improve the robustness of the 
system considerably [13]. Gonzalez et al. propose an edge 
detection method based on the Sobel edge detection method with 
using generalized type-2 fuzzy logic systems. In order to reduce 
the complexity of general type-2 systems, they utilize the α-planes 
theory. Classical Sobel, type-1 fuzzy, interval type-2, and 
generalized type-2 system are compared to show advantages of 
method [14]. 
In this paper, nonstationary fuzzy sets are utilized both to avoid of 
complexity of general type-2 sets and to ensure the change in 
secondary memberships that interval type-2 sets are not capable. 
In order to enhance the results of nonstationary sets especially for 
uncertain status, random memberships are created within the FOU 
size. The memberships are combined according to the algorithm 
and the final crisp output obtained.  

2. Nonstationary Fuzzy Systems 
Nonstationary fuzzy sets are emerged from the idea of representing 
type-2 fuzzy sets with type-1 fuzzy sets in order to reduce the 
computational complexity of type-2 fuzzy sets. A nonstationary 
fuzzy system can be considered as collection of type-1 systems. 
So, in order to understand nonstationary fuzzy systems, type-1 and 
type-2 fuzzy systems should be comprehended first. 

2.1. Type-1 and Type-2 Fuzzy Systems 

Fuzzy systems are emerged from the need of emulating human 
decision mechanism. Fuzzy sets are suggested to prevent the 
disadvantages of sharp changes in classical set theory. 
For example, while in classical set theory the input 176 may 
considered as short absolutely; the same input may be considered 
0.7 tall, 0.3 short according to fuzzy set theory. Although it helps 
to give softer decisions for changes, uncertainties are still a 
problem for type-1 fuzzy sets. In order to handle uncertainties, 
type-2 fuzzy sets are developed. 
Uncertainty means a situation in which something is not known. 
Uncertainties are known as unexpected situations which are 
occurred from instant mistakes of devices or insufficient 
examination of system. But different expert views may also, cause 
uncertainties. While one may say the membership of tallness is 0.7 
for 176cm of input, another one may say 0.75 for the same input. 
No matter how it is occurred, the way to represent uncertainties is 
type-2 fuzzy sets. Type-2 fuzzy sets have two membership 

functions which are upper and lower membership function. A type-
2 fuzzy set example and second membership function for input 176 
is given by fig. 3. 
 
 

 
 
Fig. 3. Type-2 fuzzy (a), secondary membership function of 176 (b). 
 
Secondary membership function may vary for different input 
values, so type-2 fuzzy systems have generally complex 
computational requirements. If the second membership function is 
constant for all inputs, like in fig. 3.b, then the type-2 set is called 
interval type-2 fuzzy set and it need less computational 
requirements than general type-2 systems. A comparative 
presentation of type-1, type-2 and interval type-2 sets is given by 
Fig. 4. 
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Fig. 4. T1 fuzzy set (a), interval T2 set (b), and general T2 set (c). 
 
Classical type-1 fuzzy systems consist of fuzzification, inference, 
and defuzzification steps. In type-2 fuzzy systems there is one 
more step in addition to these steps which comes after inference 
system and is called type-reduction. A block diagram of type-1 and 
type-2 system steps are given by fig. 5.    
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Fig. 5. A block diagram for type-1 and type-2 fuzzy system steps. 
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2.2. Nonstationary Fuzzy Systems 

The complexity of interval type-2 fuzzy systems is lower than 
general type-2 fuzzy system’s. But it is not appropriate to consider 
variety in time. So, nonstationary fuzzy systems are emerged to fill 
the gap with reducing the complexity of general type-2 fuzzy 
systems. Nonstationary fuzzy systems aim to model type-2 
systems with using a collection of type-1 systems. 
Nonstationary sets for representing type-2 sets, can be produced by 
two different approach mainly. One of them is change in width, 
another one is change in centre [15]. The example set created by 
change in centre is given by fig. 6. 

Fig. 6. Nonstationary sets (a), and memberships for input of 2 (b). 
 
With the information given above, a nonstationary fuzzy system 
mechanism can be shown like in fig. 7. After employ type-1 fuzzy 
system n times, final de-fuzzifier, which aims to get final outputs 
from the set of results obtained by type-1 processes chain, is 
applied. 

3. Proposed Approach 
A system is vulnerable to uncertainties because a system is 
unexpected situation for systems. In this study, we aimed to make 
system familiar with uncertainties by adding randomly created 
inputs. 

 In figure 8, the system is waiting for robust data and any possible 
uncertainty in inputs will affect the system behavior badly. If the 
system is ready for uncertainty or randomness, like in fig. 9, any 
unexpected situation doesn’t affect the system behavior much. In 
order to handle uncertainties in a system, the effect of possible 
uncertainties should be minimized. This is possible with making 
membership degrees softer. For example, classical set 
memberships have sharp transition and small changes on inputs 
may cause big differences. Fuzzy set membership functions have 
softer transition and small changes don’t affect the system much as 
in classical set theory. In this study a method based on random 
memberships which near the original membership degree is 
implemented to minimize the effect of changes. The block diagram 
of proposed approach is given by fig. 9. 

 
Uncertainties are unexpected situations which all systems may 
have. In a CPS, uncertainties may occur from models in cyber 
layer, devices in physical layer or from communication layer. 
Uncertainties, both in general systems and fuzzy systems have a 
great deal of randomness, although they seem to be more 
systematic. It is possible to produce infinite number of random 
value in FOU area. But we limited the values in order to make 
available them for modelling. Triangular membership formulation 
and the formulation in order to produce random variables on it is 
given by (1) and (2) respectively. 
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Fig. 9. Proposed approach. 

 

Inputs

Inference System
Rule 
Base

Fuzzification

De-Fuzzification

Cumulate the outputs
Yes

Final De-fuzzification on cumulated outputs

No

İteration <= n

Sub-Outputs

Next 
sub type-1 

system

Final Outputs
 

Fig. 7. Block diagram of nonstationary fuzzy system mechanism. 
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Fig. 8. Main idea of proposed method. 
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Where a is the left corner, b is the hill point, and c is the right corner 
of triangle; R are randomly created values by random number 
creators, and probably are not same values; g is weight whose 
value is the half of FOU size. The parameters are visualized for 
triangular function by fig. 10. For example, assuming that we take 
4 random values in addition to the original membership rate and 
their weight like given in table 1. Then the new membership degree 
will be 0,4779 according to weighted average method. 

Table 2. Sample values for test  

Value Membership Weight 
 
Weighted Average 

Random 1 0.3721 0.15 0.0558 
Random 2 0.4432 0.15 0.0664 
Random 3 0.4587 0.15 0.0688 
Original 0.5 0.4 0.2 
Random 4 0.5794 0.15 0.0869 

0.4779 
 
In this way, it is aimed to minimize effect of possible uncertainty 
on a system with adding random memberships to original input 
memberships. 

4. Simulation results 
In order evaluate the performance of proposed method, DC motor 
position control problem is implemented in MATLAB. The block 
diagram for the system is given by fig. 11, and the transfer function 
for the system is given by (3).   

)94.0102.7109.8(
2.2)( 326 +×+×

= −− sss
sH             (3) 

As seen by fig. 10, necessary inputs for modelling the effects of 
uncertainty and noise are added. In addition to proposed method, 
system is run with type-1 and nonstationary fuzzy systems. The 
fuzzy inputs and output for type-1 systems are given with rule base 
by fig. 12 and 13. 

As seen by fig. 10, 5 linguistic variables which have triangular 
membership function are used. The inputs are made nonstationary 
with repeating 10 times in ±0.05 range uniformly. The 
memberships are normalized between [-1, 1] values. Min-max 
method is used for inference mechanism and centroid is used for 
defuzzification like in our previous study [17]. Fig. 14,15, 16 and 
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Fig. 10. The visualization of parameters of a,b,c,g, and FOU Size. 
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Fig. 12. Inputs and output membership functions. 

 

 
Fig. 13. Rules for DC motor control. 

 

 
Fig. 14. Output positions for low noisy data. 

 
Fig. 15. Output positions for medium noisy data. 

 
Fig. 16. Output positions for high noisy data. 
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Fig. 11. The block diagram of proposed system 
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17 gives the comparative results belong to type-1, type-2, 
nonstationary, and proposed method. The noise rate that affects the 
system are selected as 5x, 7x, 9x, 11x respectively. Figures show 
us that type-1 inputs are poor in handling uncertainty. The results 
obtained by different simulations verify the effectiveness of system 
with comparative results. 

5. Conclusion 
Uncertainty is a big treat to CPS which are used in mission-critical 
tasks generally. The insufficiency in handling uncertainty is one of 
the biggest problem for fuzzy systems in CPS. Type-2 fuzzy 
system is developed to model uncertainties but its high 
computational needs make it unpractical. After, non-stationary 
fuzzy system, which provides better solutions then type-1 and 
needs less time than type-2 fuzzy systems, is introduced. With the 
knowledge of that the uncertainties are mainly due to random 
sources, in this study, it is suggested combining the randomly 
created memberships within the FOU size. This make the system 
always ready for uncertainties and possible uncertainties doesn’t 
affect the system much. By adding the random membership to 
nonstationary fuzzy sets, uncertainties, which may have different 
impact value, can be modelled easily. The proposed approach is 
used to control the position of DC motor, and effective results are 
obtained. Simulation results for the proposed method are compared 
with type-1, type-2 and nonstationary systems. The results show us 
that bigger noise has a bigger bad effect on the system. The best 
coverage rate is obtained with type-2 controller, but the 
computational complexity of type-2 make proposed method ideal 
for use in real time CPS applications. 
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Fig. 17. Output positions for higher noisy data. 
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