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Abstract: Traffic forecast implies determining the volume and thickness of the traffic stream, typically for the reason of controlling vehicle 

development, decreasing congestion, and producing the ideal routes with the least amount of time or energy consumed. Accurate street 

traffic flow determination is among the foremost essential factors in smart cities. In this research, we utilized air quality data and ensemble 

regression methods to establish a predictive model for traffic patterns, recognizing the correlation between air pollution levels and 

congested traffic conditions. This study was conducted in two distinct stages. In the first phase, we compared the performance of 10 

different regression models (Decision Tree, KNN, Cat Boost, Linear Regression, Lasso, Elastic Net, Kernel Ridge, Gradient Boost, XGB, 

and LGBM), and K-Nearest Neighbour gave the best result with RMSE 2.80 and Lasso gave the least performance with 5.28 RMSE. In 

the second phase, we developed models based on ensemble techniques: bagging and stacking. Depending on the performance of the 

regressors in the first phase, we attempted numerous permutations of distinctive models in bagging and stacking till we got the most 

excellent conceivable results. Finally, out of many arrangements, the Stacking Model with CatBoost, KNN, and Decision Tree as base 

learners and Lasso as meta learner performed better than KNN and Bagging Ensemble Regression models with RMSE 2.09. 
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1. Introduction 

As economic development accelerates and population 

density rises, the vehicle fleet has expanded significantly, 

resulting in a notable increase in air pollution levels and 

having a substantial impact on the quality of life for citizens. 

A primary concern arises from traffic congestion, 

particularly stemming from the rise in the volume of motor 

vehicles on the roads. The rate at which vehicles increase, 

the road is built at the same rate, which creates a significantly 

expanded congestion rate[1].  Traffic blockage encompasses 

a negative effect on traffic execution since it 

increments destination reaching time and air contamination. 

Subsequently identifying traffic blockage may be a key 

component in encouraging the advancement of 

productive Intelligent Transport Systems. The presence of a 

large number of vehicles within urban areas underscores the 

significance of traffic-related issues for the effective 

functioning of the city and the well-being of its inhabitants. 

Vehicle-generated air pollution compounds the challenges of 

urban congestion, contributing to elevated illness rates in 

densely populated metropolitan areas. Urban residents often 

face heightened risks due to the concentration of both mobile 

and stationary sources of air pollution (such as traffic flow, 

industrial activities, and energy generation) in and around 

cities. 

Urbanization worldwide is swiftly advancing, with estimates 

suggesting that around two-thirds of the global population 

will inhabit urban regions by 2050 [2]. Traffic emissions are 

recognized as the primary contributors to air pollutants in 

various regions, encompassing substances like carbon 

monoxide, carbon dioxide, volatile organic compounds, 

hydrocarbons, nitrogen oxides, and particulate matter. The 

most recent figures give the impression that fine particulate 

matter or PM2.5, is accountable for almost four million 

impermanence around the world caused by cardiorespiratory 

circumstances like lung diseases, preterm births, and other 

disorders [3]. Enabling drivers to choose the most efficient 

route or adjust their departure times to avoid traffic 

congestion can significantly reduce their chances of getting 

stuck in traffic. Numerous studies have demonstrated the 

utility of road congestion data in predicting atmospheric 

pollutant levels. 

Kumar K et al[4] examined six years of air quality data from 

23 cities in India to evaluate and forecast air quality trends. 

Bekkar et al[5] developed various deep-learning models to 

predict the concentration of particulate matter (PM2.5) using 

air quality data collected from twelve locations by the 

Beijing Municipal Environmental Monitoring Centre. Their 

analyses did not incorporate traffic volume. Offering 

travelers information about the most efficient route to their 

destination improves their overall travel experience. 

Effective traffic management is integral to the concept of 

smart cities. The escalation of traffic congestion correlates 

with heightened air pollution levels, adversely affecting the 

sustainability of communities. Implementing intelligent 

congestion management schemes enables drivers to 
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circumvent congested routes, thereby mitigating air pollutant 

levels. Accurately predicting traffic congestion propagation 

is challenging due to the dynamic nature of road 

infrastructure. Intelligent transportation systems are crucial 

components of urban environments and are pertinent 

subjects within this domain. Our study findings indicate that 

atmospheric pollutants significantly influence traffic 

forecasting. Integrating pollution levels into traffic 

forecasting enhances its reliability. Prior research 

consistently utilized traffic data to forecast air quality, 

extrapolating pollutant proportions based on vehicular traffic 

volume. 

To date, only a minority of researchers have undertaken 

studies aimed at refining traffic forecasting techniques, and 

among those who have, the majority have neglected to 

consider air pollution. Additionally, they have 

predominantly relied on conventional statistical models. This 

deficiency presents a significant challenge in incorporating 

air pollution into traffic forecasting. Given that the volume 

of traffic is the primary contributor to pollution, it is logical 

to utilize pollution levels as a proxy for estimating the 

number of vehicles on the road. 

This study aims to assess the feasibility and effectiveness of 

a methodology that incorporates both air pollutants and 

traffic density to generate reliable outcomes. Moreover, if 

the findings are favorable, the model could lead to a 

reduction in the necessity for traffic sensors, potentially 

lowering maintenance costs. This shift from targeted sensing 

and monitoring to comprehensive sensing could enhance 

infrastructure management in expansive urban areas. This 

implies that instead of relying solely on sensors for traffic 

prediction, the model could utilize air quality data alone for 

this purpose. 

We have developed a novel approach for forecasting traffic 

volume using air pollution data. This involved constructing 

six ensemble regression models, each employing distinct 

regression techniques. Further details regarding the 

methodology of this innovative approach are elaborated in 

Section III. We evaluated the effectiveness of the regression 

models, bagging ensemble models, and stacking ensemble 

models using four evaluation criteria: Mean Absolute Error 

(MAE), Root Mean Squared Error (RMSE), and R-squared. 

This was done to determine the most accurate statistical 

model for estimating traffic intensity.  

In Section 2, a summary of relevant literature is provided. 

Section 3 elaborates on the architecture, methodology, and 

regression models utilized. Section 4 thoroughly examines 

the findings. Lastly, Section 5 presents the concluding 

remarks. 

2 Literature Review 

In this section, we briefly review the chosen methodologies 

introduced earlier in traffic prediction. Awan FM et 

al(2020)[6] have utilized datasets collected from open 

datasets in Madrid, Spain to demonstrate that the LSTM 

(Long-Term Memory Recurrent Neural Network) is more 

effective in predicting traffic flow when combined with time 

series traffic flow data, air pollution data (CO, NO, NO2, 

NOx, and O3) and atmospheric data, than when only using 

traffic flow data to forecast traffic. However, the air pollution 

data did not include PM2.5 data. Braz F J et al(2022)[7] 

looked at how to predict traffic on motorways based on 

weather data. They tested a bunch of different prediction 

methods, including CNN, which had the best results in terms 

of both error and execution time. They also looked at how 

long it took to learn and predict traffic at 10-minute intervals. 

The influence of air quality is not taken into account by them 

in their experiment.  Artificial neural networks are used by 

Loumiotis I et al(2018)[8] to figure out how fast cars are 

going on the road as a sign of how busy the road is. They 

have not used any air quality data, resulting in a higher mean 

absolute error value. Singh S et al(2023)[9] came up with a 

new way to figure out how busy a road is based on distance, 

speed, and time interval using the K-means Algorithm (The 

effect of air pollution was not considered). In these crowd-

sourced locations, with the aid of Bayesian Classifiers, they 

have estimated air quality using eight common air quality 

parameters. Neelakandan et al(2021)[10] introduced an 

efficient OWENN algorithm to forecast traffic efficiently. 

This model is compared with the existing ENN method, 

CNN method, NN method, and ANFIS method. The 

proposed one provides an average MAE value of 0.254 and 

an RMSE value of 0.345. We think that the error rate can be 

reduced by considering the impact of air pollution. Shepelev 

V et al(2023)[11] proposed a hybrid model that integrates 

convolutional neural networks with recurrent deep learning 

networks to enhance the precision of traffic intensity 

predictions for the purpose of calculating pollutant emissions 

associated with vehicles. The proposed model was found to 

accurately predict vehicle fleet size and significantly 

outperform competing models in predicting accuracy. 

Almeida et al(2022) [12] investigated how to understand and 

predict city traffic patterns using both statistical models and 

deep learning. They used algorithms like SARIMA and 

neural networks like Feed Forward Networks, LSTMs, and 

Hybrid LSTMs to do this. They found that statistical models 

were much better than neural networks at predicting traffic 

counter data over time, even when they noticed unusual 

traffic. They did not use air pollution data in their study. A 

hybrid model for the prediction of road movement was 

proposed by Tang et al(2019)[13] which includes noise 

mitigation methods as well as support vector machines 

(SVM). They have simply applied 3 characteristics to their 

experiment: Volume, speed, and occupancy. However, due 

to the lack of data on air quality, the error rate recurs 

significantly. To Analyze Traffic Flows in UK Zhuang W et 

al(2023)[14] used numerous machine learning algorithms, 

including SVR, LSTM, GRU, KNN-LSTM, and CNN-
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LSTM models, along with real-time recordings of time, flow, 

and speed from all detection points on all motorways in the 

city. However, the proposed K-Nearest Neighbor-

Bidirectional Long Short-Time Memory model has a better 

prediction. The experiment did not take into account air 

pollution data. Using a long-term memory network, 

Majumdar et al(2021)[15] predicted how long it would take 

for traffic to spread out on the roads. They used data from an 

Internet of Things (IoT) device that had a speed sensor in 

Buxton, UK. They looked at things like speed, how long it 

took, how fast it was moving, and headway. But they did not 

take into account air pollution factors, which caused the error 

value to be high.  

Fernandes et al. (2020) [16] performed a comprehensive 

empirical evaluation of multiple suburban roundabouts, 

analysing their effectiveness in managing traffic flow as well 

as their impact on air and noise pollution levels. However, 

their model is site-specific, limiting its applicability to 

roundabouts with similar traffic conditions. Luo X et al. 

(2019) [17] proposed a traffic flow prediction method that 

combines KNN and LSTM. The KNN model selects spatial 

stations, and the data from these stations are then inputted 

into LSTM for prediction. Song Xiang et al. (2018) [18] 

devised a model for daily traffic flow prediction using group 

data processing and time series prediction. They segmented 

data into three groups based on factors such as days of the 

week, weekends, holidays, and seasons, and used this group 

data as input for the time forecasting model, yielding 

promising results. Ma et al. (2021) [19] processed data into 

288 sampling intervals per day to predict daily traffic flows, 

aggregating them into a matrix periodically. The data for 

each period was fed into a CNN model, which extracted 

spatial features. Finally, the data was fed into a linear time-

stamping machine (LSTM) model for fusion across the entire 

connection layer, resulting in an accuracy of more than 90%. 

Qu et al. (2018) [20] introduced a traffic flow prediction 

method that explores spatial relationships within context 

using a supervised learning algorithm, followed by training 

a deep neural network (DNN) with the obtained data. This 

approach surpasses traditional traffic prediction methods in 

accuracy. Ma et al. (2021) [21] utilized a genetic algorithm 

to categorize input context factors for traffic flow 

forecasting, converting their significance into weights. 

Historical data sets were selected as inputs for prediction 

algorithms based on the similarity of these weights, 

consistently yielding reliable prediction outcomes. 

Several of the aforementioned models are designed for 

predicting time series data, while others are deep mixture 

models that incorporate both spatial and temporal aspects of 

traffic flow, recognizing their significance in road traffic 

forecasting. However, the majority of these models have 

overlooked the influence of air quality. Consequently, an 

increasing number of researchers have focused on 

investigating the effects of air pollution on road traffic 

prediction to achieve optimal forecasting conditions. 

3 Areas of Study and Methods 

The experiments utilized open data sourced from the Data 

Streams of the Year 2014 provided by the City of Denmark, 

Aarhus. The city administration has deployed 449 sensor 

pairs across its main roads, which record the vehicle count 

every five minutes. The air pollution dataset comprises 

measurements of pollutants such as carbon monoxide, 

nitrogen dioxide, sulfur dioxide, particulate matter, and 

ozone emitted into the air by vehicles. 

Initially, the air pollution datasets and traffic datasets were 

combined using timestamps. For the analysis, only vehicle 

intensity is retained from the traffic data, and all the features 

from the pollution data are used. The experiments were split 

into two sub-tests: one to compare different regression 

techniques, and two to analyze various proposed bagging and 

stacking ensemble techniques. Various optimization 

techniques were employed for the model, which included 

feature engineering, feature transformation, standardization, 

and hyperparameter tuning. The dataset is standardized using 

StandardSclaer and GridSearchCrossValidation is used to 

find the best hyperparameter combinations to improve the 

model performance. Figure 1 illustrates the location of the 

data source. Figure 2 is the suggested framework Regression 

Ensemble Model. 

 

Fig 1: Location of the Data source 

3. 1 Regression Methods 

3.1.1 Decision Tree Regression: Using training data, 

decision trees, also known as classification and regression 

trees, or CARTs, determine the best points to divide the data 

to reduce the cost metric. The mean squared error is the 

default cost metric for regression decision trees.  

3.1.2 KNN: The K-Nearest Neighbors (KNN) algorithm 

identifies the k most similar data instances from the training 

dataset for a new data point. Then, it derives a prediction by 

taking the mean or median output variable from these k 

neighbors. It is important to consider the distance metric 

employed, with the default being the Minkowski distance. 

This metric is a broader form that encompasses both the 

Euclidean distance (suitable when all inputs share the same 

scale) and the Manhattan distance (applicable when input 

variable scales differ). 

3.1.3 Catboost Regression: CatBoost Regression is a 

specialized machine learning method crafted to manage 
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categorical features within regression scenarios. It employs 

gradient boosting on decision trees to forecast continuous 

target variables. A standout characteristic of CatBoost is its 

capability to directly handle categorical variables, 

eliminating the need for preliminary encoding. Additionally, 

it applies a range of regularization techniques to mitigate 

overfitting and enhance overall predictive accuracy. 

3.1.4 Linear Regression: The foundation of linear regression 

is the idea that the distribution of the input variables is 

Gaussian. Additionally, it is assumed that while there is some 

correlation between the input and output variables, the 

correlation is not very strong. 

3.1.5 Lasso Regression: Lasso regression, referred to as L1 

regularization, is a linear regression method that integrates a 

penalty term proportional to the absolute value of coefficient 

magnitudes. This penalty fosters sparsity within the model, 

causing certain coefficients to be reduced to zero, thereby 

facilitating feature selection. Lasso regression proves 

beneficial in managing datasets with numerous dimensions, 

aiding in the identification of pivotal features for prediction 

while diminishing the influence of less significant 

coefficients. 

 

3.1.6 Elasticnet Regression: Elasticnet regression merges 

the regularization principles of Lasso(L1) and Ridge(L2) 

regression, achieving a compromise between feature 

selection and coefficient shrinkage by utilizing both penalty 

types. This method adeptly tackles the shortcomings of 

Lasso and Ridge regression, providing enhanced model 

adaptability and predictive accuracy, especially in datasets 

with highly correlated features. 

3.1.7 Kernel Ridge Regression: Kernel Ridge Regression, a 

derivation of Ridge Regression, employs the kernel trick to 

manage nonlinear associations between features and the 

target variable. By transforming the input space into a 

higher-dimensional feature space, Kernel Ridge Regression 

can effectively grasp intricate data patterns. This approach 

proves especially potent in handling nonlinear relationships, 

often yielding superior predictive accuracy over 

conventional linear models. 

3.1.8 Gradient Boost Regression: Gradient Boosting 

Regression is a machine learning method that iteratively 

combines weak regression models, such as decision trees, to 

create a strong predictive model. It sequentially trains new 

models on the residual errors of the previous ones, to reduce 

overall prediction error. This iterative approach steadily 

enhances model accuracy and effectiveness, rendering 

gradient-boosting regression a potent asset for predictive 

modeling endeavors. 

3.1.9 XGB: XGB regression, an adaptation of gradient 

boosting, employs the XGBoost algorithm for predictive 

modeling purposes. By sequentially integrating weak 

regression models, like decision trees, it constructs a sturdy 

predictive framework. Employing iterative training on 

residual errors, XGB regression reduces prediction errors 

and improves model accuracy, rendering it an asset for 

regression analysis. 

3.1.10 LGBM: LGBM regression, a form of gradient 

boosting, utilizes the LightGBM algorithm for regression 

applications. It adopts a distinctive approach to tree-based 

learning, growing tree leaf-wise to enhance computational 

efficiency and model effectiveness. Renowned for its 

capacity to manage extensive datasets and intricate 

relationships, LGBM regression proves instrumental in 

achieving precise regression analyses across diverse fields. 

3.2 Data Collection 

In our study, we utilized extensive real-time Internet of 

Things (IoT) data sourced from the publicly accessible City 

Pulse Aarhus dataset. This dataset consists of two distinct 

sets: one dedicated to pollution levels and the other to traffic 

flow. Aarhus City maintains numerous sensors that monitor 

vehicle counts every five minutes, while the air pollution 

dataset provides details on various emissions from vehicles, 

including carbon monoxide, nitrogen dioxide, sulfur dioxide, 

particulate matter, and ozone. 

3.3 Data Processing 

In our research, we acquired two separate datasets—one 

dedicated to pollution levels and the other to traffic flow—at 

a particular location and time. As both datasets originated 

from the same location and time, we amalgamated them to 

form an integrated dataset for forecasting traffic based on 

pollution levels in that vicinity. However, the obtained 

dataset necessitated normalization and standardization 

procedures, which we conducted using the MinMax Scaler 

and Normalization techniques. Furthermore, we handled 

missing data by utilizing the mean method: identifying 

columns with absent values, calculating the mean for those 

columns, and replacing the missing values with the 

computed mean. 

         3.4 Developing Ensemble Regression  Models 

3.4.1 Bagging  

We employed the "BaggingRegressor" from the scikit-learn 

library to train the base regressors. Two bagging ensemble 

models were introduced in our approach. Our ensemble 

model combines the predictions of the base regressors by 

averaging them to generate a final prediction. We utilized 10 

base estimators in the ensemble. Additionally, we developed 

a method to evaluate the performance of each base estimator 

on the test data and obtain their corresponding prediction 

values. The predictions generated by each base estimator are 

stored in individual columns, and the final prediction for 

Mean Squared Error, Mean Absolute Error, Root Mean 

Square Error (RMSE) and RSquare calculations are 

computed by averaging all the respective predictions. Below 

are the base regressors utilized in our proposed bagging 

ensemble models: 
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1) Bagging Ensemble Model 1: Linear Regression, Lasso, 

Elastic Net and Kernel Ridge 

2) Bagging Ensemble Model 2: Gradient Boosting, 

Catboost, XGB, and KNN 

Among these two models, the Bagging ensemble model2 

demonstrates the most favorable outcome. Consequently, 

Figure 2 illustrates Gradient Boosting, Catboost, XGB, and 

KNN as base regressors. 

3.4.2 Stacking 

We utilized the Stacking Regressor module from the scikit-

learn library for our regression task. We experimented with 

various combinations of different models in stacking to 

achieve the best possible outcomes. Among the ten 

regression models tested, "KNN" emerged as the top 

performer. Consequently, we employed it as the meta 

learner, while utilizing other algorithms as base estimators in 

Stacking Ensemble Model 1 and Stacking Ensemble Model 

2. Conversely, "Lasso" performed the least effectively. 

Therefore, we designated Lasso as the meta learner and 

employed other algorithms as base estimators in Stacking 

Ensemble Model 3 and Stacking Ensemble    Model 4. In 

summary, we proposed four Stacking Ensemble Models 

which are:

Fig 2: Suggested framework – Regression Ensemble Model 

1) Stacking Ensemble Model1: KNN meta learner, 

Catboost Regressor, Gradient Boosting Regressor, and  

Decision Tree Regressor as base estimators. 

2) Stacking Ensemble Model2: KNN meta learner, 

XGB, Catboost and Decision Tree as base estimators. 

3) Stacking Ensemble Model3: Lasso meta learner, 

KNN, Catboost and Decision Tree as base estimators. 

4) Stacking Ensemble Model4: Lasso meta learner, 

KNN Catboost, Gradient Boosting Regressor as base 

estimators.  

Among these four models, the Stacking Ensemble Model3 

with CatBoost, KNN, and Decision Tree as base learners and 

Lasso as meta learner yields the most favorable outcome than 

KNN and Bagging models. Consequently, in Figure 2, for 

stacking CatBoost, KNN, Decision Tree, and Lasso are 

depicted as the machine learning algorithms utilized. 

Out of the four models considered, Stacking Ensemble 

Model3, incorporating CatBoost, KNN, and Decision Tree 

as base learners with Lasso as the meta learner, demonstrates 

superior performance compared to both the KNN and 

Bagging models. Therefore in Figure 2, the machine learning 

algorithms utilized for stacking include CatBoost, KNN, 

Decision Tree, and Lasso. 
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4 Assessment of Experiments 

In our experiment, we exclusively incorporated the vehicle 

count data and synchronized it with the pollution dataset 

according to the timestamp. We opted for this  

 

approach because the pollution and traffic data sensors  

were located in the same area. Furthermore, there exists a 

direct correlation between the number of vehicles and air 

pollution levels; as traffic density increases, so do 

concentrations of carbon monoxide, nitrogen dioxide, sulfur 

dioxide, particulate matter, and ozone.  

The motive behind utilizing air pollution data for traffic 

forecasting is to decrease the reliance on traffic sensors, 

thereby cutting down maintenance costs and enabling the 

development of a more expansive environmental monitoring 

infrastructure. This shift involves moving away from 

specific sensing and monitoring towards broader coverage 

across large urban areas. As a result, instead of depending on 

traffic sensors, the model can forecast based solely on air 

pollution data. 

Root Mean Square Error (RMSE), Mean Absolute Error 

(MAE), and R-Square (R2) are utilized to assess the 

effectiveness of the proposed model. 

4.1 Regression Models Comparison 

This comparative analysis aims to identify the optimal 

prediction model for traffic forecasting. Table 1 presents an 

overview of all evaluation metrics for each regression model, 

while Figure 3(a) specifically displays the RMSE values of 

these models. RMSE serves as a conventional method for 

quantifying a model's forecasting error when predicting 

numerical outcomes. It is widely recognized as an excellent 

general-purpose metric for predictive forecasts. A smaller 

RMSE value indicates a closer fit to the data. In this context, 

KNN exhibits the lowest RMSE value of all models, with a 

value of 2.80 (as shown in Table 1), indicating its superior 

performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3(b) illustrates the MSE values of the 10 regression 

models. Among these models, KNN exhibits the lowest MSE 

value, which is regarded as the most favorable value at 7.85 

(refer to Table 1). 

Figure 3(c) illustrates the Mean Absolute Error (MAE) 

values of the 10 regression models. Among these models, 

KNN exhibits the lowest value, 1.82, representing the most 

favorable outcome. 

Figure 3(d) illustrates the R-squared values of the 10 

regression models. R-squared serves as an assessment metric 

indicating the goodness of fit of the regression model. An 

ideal R-squared value is 1, signifying a perfect fit. The closer 

the R-squared value is to 1, the better the model fits the data. 

In this instance, KNN exhibits the highest value among all 

models, with a value of 0.72, which is considered the most 

favourable. 

Figure 4 provides a summary of the results discussed earlier. 

It indicates that KNN consistently outperforms other 

regression techniques across various aspects. 

4.2 Comparison of Ensemble Models  

This comparative analysis aims to identify the most effective 

prediction ensemble model among the six proposed models 

for traffic forecasting. We have developed six distinct 

models: two based on bagging and four based on stacking. 

Figure 5(a)–(d) display the evaluation metrics, including 

RMSE, MSE, MAE, and R-squared, for each model. 

 

 

 

a b 

  

c d 

Fig. 3. (a): Root Mean Square Error across various regression methods. (b): MSE across various regression 

methods. (c): MAE across various regression methods. (d): RSquared across various regression methods. 
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Based on the findings depicted in Figures 5(a)–(d), it can be 

concluded that Stacking Ensemble Model3 consistently 

outperforms other ensemble regression models across all 

evaluation parameters. Stacking Ensemble Model3 

demonstrates the most accurate traffic predictions compared 

to the alternatives. Specifically, its RMSE value of 2.09 is 

the lowest among all models, while its MSE value of 7.80 

also ranks as the lowest. Additionally, Stacking Ensemble 

Model3, with Lasso as meta learner and KNN, Catboost and 

Decision Tree as base learners, exhibits the lowest MAE 

value of 1.82 and the highest R-squared value of 0.73 among 

all models. 

Table 2 displays the parameter values for each ensemble  

regression model, while Figure 6 provides a visual 

representation of the above-mentioned results. 

 

 

Table 1: Regression Models Comparison 

 

 

 

 

 

 

 

 

 

    

 

 

Fig. 4. Comparison of different Regression techniques. 

  

a b 

Regression Models RMSE MSE MAE R-squared 

Decision Tree 4.268587 18.220831 2.642944 0.358218 

KNN 2.802102 7.851778 1.815638 0.723441 

Catboost 3.642688 13.269178 2.526262 0.532627 

Linear Regression 5.276512 27.841577 3.985246 0.019352 

Lasso Regression 5.276527 27.841737 3.985317 0.019346 

Elastic net 

Regression 

5.276526 27.841727 3.985315 0.019347 

Kernel Ridge 

Regression 

5.169532 26.724058 3.879650 0.058714 

Gradient Boosting 3.756299 14.109780 2.465573 0.503019 

XGB 4.208979 17.715506 3.001670 0.376017 

LGBM 5.164498 26.672042 3.842367 0.060546 
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c d 

Fig. 5. (a): RMSE for Ensemble Regression Models. (b): MSE for Ensemble Regression Models. (c): MAE for 

Ensemble Regression Models.  (d): RSquared for Ensemble Regression Models. 

 

Table 2: Ensemble Regression Models Comparison 

Regression Models RMSE MSE MAE R-Squared 

 

Bagging Ensemble Model 1:  

Linear Regression, Lasso, Elastic Net, and 

Kernel Ridge 

 

5.234646 27.401520 3.945002 0.034852 

Bagging Ensemble Model 2: 

Gradient Boosting, Catboost, XGB, and KNN 

 

3.496845 

 

12.227951 2.295272 0.521837 

Stacking Ensemble Model1:  

Meta Learner: KNN  

Base Estimators: Catboost Regressor, 

Gradient Boosting Regressor, and Decision 

Tree Regressor 

 

2.853295 8.141295 1.821564 0.713244 

Stacking Ensemble Model2: 

Meta Learner: KNN Base Estimators: XGB, 

Catboost, and Decision Tree 

 

2.876635 8.275027 1.827550 0.708533 

Stacking Ensemble Model3: 

Meta Learner: Lasso 

Base Estimators: KNN, Catboost and 

Decision Tree 

 

2.092050 7.795545 1.821481 0.825422 

Stacking Ensemble Model4:  

Meta Learner: Lasso Base Estimator: KNN 

Catboost, Gradient Boosting Regressor 

2.805884 7.872984 1.824692 0.722694 

 

Fig. 6. Comparison of different Ensemble Regression Models. 
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5 Conclusion  

In this research, we evaluated the efficacy of various 

Regression Models in accurately forecasting traffic flow. We 

introduced a method incorporating both bagging ensemble 

regression model techniques and stacking ensemble 

regression model techniques. This study was conducted in 

two distinct phases.  In the first phase , we conducted a 

comparative analysis of 10 different regression models to 

identify the most precise model, with KNN emerging as the 

top performer. Secondly, we proposed a framework for 

bagging and stacking utilizing regression models. Our 

suggested stacking ensemble framework yielded superior 

outcomes in comparison to the 10 regression models and 

bagging models. The experimental results confirm the overall 

efficacy of the integrated approach we introduced. Especially 

noteworthy, the Stacking Ensemble Model, which utilized 

CatBoost, KNN, and Decision Tree as base learners, and 

Lasso as the meta learner, demonstrated robust performance 

with an RMSE of 2.09. 
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